Schedule
   Subject to change.
   
     Wed 11 Jan 2017
     
     Lecture 1: Introduction to Deep Learning
     
     
     
     Wed 18 Jan 2017
     
     Lecture 2: Intro to Deep Learning Software and Hardware
     
     
    
   
     Feedforward Networks
     Mon 23 Jan 2017
     
     Lecture 3: Deep Feedforward Networks
     
     
     
     Wed 25 Jan 2017
     
     Lecture 4: Optimization
     
     
     
     Mon 30 Jan 2017
     
     Lecture 5: Convolutional Neural Networks
     
     
     Wed 1 Feb 2017
     
     Lecture 6: Convolutional Neural Networks
     
     
      
 
     Time Series Models
 Mon 6 Feb 2017
     
     Lecture 7: Recurrent Neural Networks
     
     
     
     
 Wed 8 Feb 2017
     
     Lecture 8: Dynamic Bayesian Networks
     
     
     
    
 
     Reinforcement Learning
 Mon 13 Feb 2017
     
     Lecture 9: Deep RL, Discrete Action Spaces 
     
     
     
     
 Wed 15 Feb 2017
     
     Lecture 10: Deep RL, Continuous Action Spaces 
     
     
     
    
 
     Applications & Practicals
 Mon 20 Feb 2017
     
     Lecture 11: Deep Learning in Practice
     
     
     
     
 Wed 22 Feb 2017
     
     Lecture 12:  Biomedical Applications
     
     
     
    
   
     Unsupervised Deep Learning
     
     Monday 27 Feb 2017
     
     Lecture 13:  Linear Factor Models
     
       
        - [required] Book: Goodfellow -- Chapter 13 -- Linear Factor Models
 
        - [required] Book: Murphy -- Chapter 12 -- Latent Linear Models
 
        - [optional] Video: Zoubin Ghahramani -- Graphical Models
 
        - [required] Paper: Sam Roweis and Zoubin Ghahramani. A Unifying Review of Linear Gaussian Models. Neural Computation 11(2), 1999.
 
       
      
     
     
     Mon 13 March 2017
     
     Lecture 14:  Autoencoders
     
     
     
     Wed 15 March 2017
     
     Lecture 15: Introduction to Boltzmann Machines
     
     
     
          
          
     Mon 20 March 2017
     
     Lecture 16:  Unsupervised Time Series Modeling 
     
     
     
     
     Wed 22 March 2017
     
     Midterm Project Presentations
     
     
 
   
     Sampling and Inference Procedures
     Mon 27 March 2017
     
     Lecture 17: Sampling Techniques
     
       
       - [required] Book: Goodfellow -- Chapter 17 -- Monte Carlo Methods
 
       - [optional] Book: Murphy -- Chapter 23, Section 23.1-23.4 -- Monte Carlo Inference
 
       - [optional] Book: Murphy -- Chapter 24, Sections 24.1-24.4 -- Markov Chain Monte Carlo (MCMC) Inference
 
       - [optional] Book: Murphy -- Chapter 24, Sections 24.5-24.7 -- Markov Chain Monte Carlo (MCMC) Inference
 
       - [optional] Video: Iain Murray -- Markov Chain Monte Carlo
 
       - [optional] Video: de Freitas -- Monte Carlo Simulation for Statistical Inference
 
       - [optional] Video: Christian Robert -- Markov Chain Monte Carlo Methods
 
       
      
     
Wed 29 March 2017
     
     Lecture 18: Approximate Inference
     
       
       - [required] Book: Goodfellow -- Chapter 18-19 -- Partition Function and Approximate Inference
 
       
      
     
    
     
   
     Deep Generative Models
     Mon 3 April 2017
     
     Lecture 19: Restricted Boltzmann Machine
     
       
         - [required] Book: Goodfellow -- Chapter 20.3-20.5 -- Deep Boltzmann Machines
 
         - [optional] Book: Murphy -- Chapter 27, Section 27.7 -- Latent Variable Models for Discrete Data
 
         - [optional] Video: Geoffrey Hinton -- Deep Belief Networks
 
	     - [optional] Video: Yoshua Bengio and Yann LeCun -- Tutorial on Deep Learning Architectures
 
       
      
     
     
     Wed 5 April 2017
     
     Lecture 20: Recurrent Temporal RBM
      
     
     
     Mon 10 April 2017
     
     Lecture 21: Helmholtz Machines I
     
     
     
     Wed 12 April 2017
     
     Lecture 22: Helmholtz Machines II
     
     
      
 
 
    Deep Learning research
     
       Mon 17 April 2017
       
         
       
       Mon 19 April 2017 
       
         
       
      
   
    
    Final Presentations and Reports
     
       Mon 24, Wed 26 April 2017
       
         
           - Final Project Presentations
 
         
       
     
     May 1  2017
       
         
           - Final Project Reports Due