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The traditional statistical approach to the evaluation of di-
agnostic tests, prediction models, and molecular markers is to
assess their accuracy, using metrics such as sensitivity, speci-
ficity, and the receiver-operating-characteristic curve. However,
there is no obvious association between accuracy and clinical
value: it is unclear, for example, just how accurate a test needs
to be in order for it to be considered “accurate enough” to war-
rant its use in patient care. Decision analysis aims to assess the
clinical value of a test by assigning weights to each possible
consequence. These methods have been historically considered
unattractive to the practicing biostatistician because additional
data from the literature, or subjective assessments from individ-
ual patients or clinicians, are needed in order to assign weights
appropriately. Decision analytic methods are available that can
reduce these additional requirements. These methods can pro-
vide insight into the consequences of using a test, model, or
marker in clinical practice.

KEY WORDS: Decision support techniques; Outcome assess-
ment; Prognosis.

1. INTRODUCTION

Much of clinical medicine concerns diagnosis and prediction:
patients want to know what they have (“Do I have cancer?”),
and what is likely to happen to them (“Will I be cured or will
the cancer come back?”); clinicians want to know what to treat
(“Should I operate?”) and how aggressive treatment should be
(“Should I also give chemotherapy?”). Diagnosis and predic-
tion have traditionally been based on clinical history and physi-
cal examination. Recent years has seen an upsurge of interest in
molecular markers of disease, based on sophisticated analysis
of blood or tissue, particularly with respect to genomic infor-
mation. For example, predicting a breast cancer patient’s risk of
recurrence traditionally depended on determining how far the
cancer had spread (cancer stage); it has recently been suggested
that genetic mutations in breast cancer cells also predict disease
behavior (Marchionni et al. 2008).

From a statistical standpoint, prediction and diagnosis
present similar analytic challenges: in both cases our dataset
consists of an estimate on the basis of a test T (with values T+

and T−, for “positive” and “negative”), a true disease state D
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(with values D+ and D−, for “diseased” and “nondiseased”).
The traditional statistical approach has been to assess accuracy,
typically defined using a measure of association between T and
D. However, accuracy metrics have questionable clinical rel-
evance. As an alternative, decision analytic methods have been
proposed that can evaluate diagnostic tests, predictive models or
molecular markers in terms of their real clinical consequences.
A drawback of such methods is the requirement of additional
information about clinical benefits and harms. However, some
novel statistical methods are available to reduce these additional
requirements.

2. STATISTICAL APPROACHES TO EVALUATION OF
TESTS, MODELS, AND MARKERS

Consider the diagnosis of prostate cancer using the molecular
marker prostate-specific antigen (PSA). Men with elevated lev-
els of PSA in the blood are typically referred for prostate biopsy.
However, only a minority of men with high PSA, around 20–
25%, actually have prostate cancer. Some researchers have sug-
gested that the level of unbound PSA (“free” PSA) can distin-
guish prostate cancer from benign prostate disease; specifically,
cancer is more likely if the ratio between total and free PSA
is low (Roddam et al. 2005). To investigate the value of free-
to-total PSA ratio, I will use a dataset from the Gotebörg site of
the European Randomized Study of Screening for Prostate Can-
cer (ERSPC) (Schroder et al. 2003). The dataset consists of 753
Swedish men with elevated PSA (3 ng/ml or higher) who were
biopsied, of whom 192 were found to have prostate cancer. The
study question is whether free-to-total PSA ratio can help deter-
mine which men really have prostate cancer, and hence should
undergo biopsy, and which men do not have cancer, and who
should therefore avoid what would be an unnecessary biopsy.

The simplest approach is to use free-to-total PSA ratio as
a binary test: for example, men with a ratio of 0.18 or less
are defined as positive (T+) and require biopsy, whereas those
with free-to-total PSA ratio above 0.18 are defined as negative
(T−) and do not need biopsy. Traditional biostatistical analysis
starts by creating a two-by-two table of D by T and then calcu-
lates accuracy metrics such as sensitivity Sens = P(T+|D+)
and specificity Spec = P(T−|D−). Table 1 gives sensitiv-
ity and specificity estimates, using the ERSPC dataset, for
various cut-points of free-to-total PSA ratio. If such calcula-
tions are repeated for the entire range of free-to-total PSA val-
ues, we can plot Sens versus 1 − Spec to obtain the receiver-
operating-characteristic (ROC) curve, with the area-under-the-
curve (AUC) providing a global metric of test accuracy. Figure
1 gives the ROC curve for free-to-total PSA ratio and positive
biopsy in men with elevated PSA, with AUC = 0.769.
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Table 1. Sensitivity and specificity for various cut-points of free-to-
total PSA ratio for predicting prostate cancer in men with elevated PSA

Cut-point for free-to-total PSA ratio Sensitivity Specificity

0.18 88% 53%
0.15 71% 68%
0.20 91% 39%

3. LIMITATIONS OF ACCURACY METRICS

There are two general problems with accuracy metrics such
as sensitivity, specificity, and AUC. In general, an accurate test,
model, or marker is more likely to be useful than one less accu-
rate, but it is difficult to know for any specific situation whether
the accuracy of a test is high enough to warrant implementa-
tion in the clinic. Does an AUC of 0.769 mean that free-to-total
PSA ratio should be used to determine who does or does not get
biopsy, or would some higher value, say, 0.850, be required?

The second problem with accuracy metrics concerns the
choice of cut-point. Assuming that we did decide to use free-
to-total PSA ratio to determine which men with elevated PSA
were referred to biopsy, what value should we use as the crite-
rion for biopsy? In the case of cancer, sensitivity is valued over
specificity, but it is difficult to say which combination of sensi-
tivity and specificity in Table 1 is optimal.

4. INCORPORATING CLINICAL CONSEQUENCES

In decision analysis, one identifies possible actions and con-
sequences, and selects the action with the best expected conse-

quence. Often this process is aided by constructing a “decision
tree,” such as that shown in Figure 2 for prostate biopsy in men
with elevated PSA. The principle of the decision tree is first
to identify every possible decision, then identify every possible
consequence of each decision, and finally to assign a probabil-
ity and a benefit to each consequence (Hunink et al. 2001). We
denote probabilities as pxy and benefits as bxy where x is an
indicator for the test result and y is the indicator for disease.

When faced with an elevated PSA, a patient has to decide
among three options: undergo biopsy without further testing;
refuse biopsy; undergo further testing and decide whether or not
to have biopsy dependent on the results of those tests. A patient
either has cancer or does not, and so the four possible conse-
quences are finding cancer (true positive, p11 and b11); unnec-
essary biopsy (false positive, p10 and b10); missing cancer (false
negative, p01 and b01); and avoiding unnecessary biopsy (true
negative; p00 and b00). In the case of decisions for or against
biopsy without further testing, the probability of each outcome
depends on the prevalence π = P(D+) of prostate cancer. In
the case of additional testing, these probabilities are also depen-
dent on the sensitivity and specificity of the additional test as
follows:

p11 = Sens× π

p10 = (1− Spec)× (1− π)

p01 = (1− Sens)× π

p00 = Spec× (1− π).

The values of each outcome b11, b10, b01, and b00 are diffi-
cult to specify. One approach is to use published estimates. For

Figure 1. ROC curve for free-to-total PSA ratio in men with elevated PSA.
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Figure 2. Decision tree for prostate cancer biopsy in men with elevated PSA.

example, Berry and Parmigiani (1998) used published values
related to quality of life in a decision analysis of breast can-
cer screening. The problem for the practicing biostatistician is
that obtaining such values from the published literature can be
time-consuming, that estimates can vary substantially between
different papers and that converting published estimates (such
as the probability of a localized cancer progressing in 10 years)
into a benefit parameter on a 0–1 scale can be complex.

A simple alternative is to fix the best possible outcome at 1 (in
this case, no biopsy and no disease, true negative, b00 = 1) and

the worst at 0 (no biopsy and disease, false negative, b01 = 0),
hence only two remaining values need be specified. For now
assume that, following a discussion with a clinician, we obtain
b11 and b10 of 0.6 and 0.85, respectively.

The optimal decision is the one with the highest expected
benefit. Table 2 shows the results of the decision tree using a
cut-point of 0.18 for free-to-total PSA ratio, where the preva-
lence of prostate cancer is π̂ = 25.5%. The estimated expected
benefit for using the free-to-total PSA ratio is 0.827, which is
higher than the values for either biopsying everyone (0.786)

Table 2. Use of a decision tree to make a biopsy decision.

Expected outcome

Parameters Value Strategy Expected value Expected value Total

Health values for each outcome Test b11 × p11 0.6× 22.44% 0.135
b11 (true positive, biopsy cancer) 0.6 b10 × p10 0.85 × 35.02% 0.298
b10 (false positive, unnecessary biopsy) 0.85 b01 × p01 0 × 3.06% 0.000
b01 (false negative, missed cancer) 0 b00 × p00 1 × 39.49% 0.395
b00 (true negative, avoid biopsy) 1 0.827

Prevalence (π ) 25.5%
Sensitivity (Sens ) 88% Biopsy b11 × (p11 + p01) 0.6 × 25.5% 0.153
Specificity (Spec) 53% b10 × (p10 + p00) 0.85 × 74.5% 0.633
Probability of each outcome 0.786

p11: Sens × π 22.44%
p10 : (1− Spec)× (1− π) 35.02% No biopsy b01 × (p11 + p01) 0 × 25.5% 0
p01 : (1− Sens)× π 3.06% b00 × (p10 + p00) 1 × 74.5% 0.745
p00 : Spec× (1− π) 39.49% 0.745
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or no one (0.745). Therefore the strategy of undergoing fur-
ther testing for all men with elevated PSA, and then sending
for biopsy those with a ratio of 0.18 or less, is estimated to be
optimal.

5. DRAWBACKS OF CONVENTIONAL DECISION
ANALYSIS

Determining values for b11, b10 used in Table 2 involve judg-
ments about the relative harm of a missed cancer versus an un-
necessary biopsy. Patients’ and physicians’ judgments can vary
on this point: for example, some patients do not tolerate invasive
procedures such as biopsy particularly well. So while a standard
decision analysis such as that in Table 2 may be a good starting
point, in theory we should ask each physician or patient to eval-
uate benefits and harms individually, use their answers in the
decision tree, and then work out whether outcome would be im-
proved by using free-to-total PSA. This can be difficult to do,
especially as the benefit parameters are not intuitive to specify.

From the analyst’s point of view, the determination of
b11, b10, whether from the literature or from individual patients
or physicians, is problematic. In the next section, I show how an
alternative parameter, the threshold probability, can be used in
decision analysis.

6. USING THRESHOLD PROBABILITY IN
DECISION ANALYSIS

Suppose it is possible to specify a pt , the threshold probabil-
ity of disease for taking some action, such as biopsying a man
for prostate cancer: if a patient’s estimated probability of dis-
ease is greater than pt he will opt for biopsy; if it is less than pt ,
he will not opt for biopsy. By definition, when the probability
of disease is equal to the threshold probability pt , the benefits
of opting for biopsy or no biopsy are equal. Thus:

b11 × pt + b10 × (1− pt ) = b01 × pt + b00 × (1− pt ).

And therefore

(b00 − b10)/(b11 − b01) = pt/(1− pt ). (1)

Now b00 − b10 is the benefit of true negative result compared
to a false positive result; in clinical terms, the benefit of avoid-
ing unnecessary treatment such as a negative biopsy. Compara-
bly, b11 − b01 is the benefit of a true positive result compared
to a false negative result; in other words, the benefit of treat-
ment where it is indicated. Equation (1) therefore tells us that
the threshold probability at which a patient will opt for treat-
ment is informative of how a patient weighs the relative benefit
of appropriate treatment compared to the benefit of avoiding un-
necessary treatment (Pauker and Kassirer 1980).

We can rearrange (1) to obtain

−(b10 − b00) = (b11 − b01)× pt/(1− pt ). (2)

This states that the harm of a false positive compared to a true
negative, is equal to the benefit of a true positive compared to
a false negative, multiplied by the odds at pt . A “net benefit”

is benefit minus harm, thus the theoretical relationship in (2)
allows us to define a net benefit (first described by C.S. Peirce
(Baker and Kramer 2007)):

True Positive Count− False Positive Count×
(

pt

1− pt

)

Total Sample Size
.

(3)
This expression is equivalent to

Sens× π − (1− Spec)× (1− π)×
(

pt

1− pt

)
. (4)

There are three advantages to using the threshold probabil-
ity pt in place of the benefit parameters bxy . First, only a sin-
gle parameter needs to be chosen. Second, the units of the pa-
rameter are more intuitive: patients and clinicians understand
the concept of risk much more easily than the idea of a health
state value on a scale of 0 to 1. Indeed, threshold probability
is closely related to a widely used statistic, positive predictive
value. For example, it has been argued that the positive predic-
tive value of a screening test for ovarian cancer needs to be at
least 10%, because clinicians would be unwilling to conduct
more than 10 surgeries to find a single case of ovarian cancer
(Skates et al. 1995). Accordingly, we might therefore use a pt of
10% in a decision analysis of ovarian cancer. Third, a threshold
probability can be used both for weighting true and false pos-
itive test results and for determining the cut-off for a positive
test result: instead of arbitrarily choosing a free-to-total PSA
ratio cut-off of 0.18, 0.15, or 0.20, we calculate probabilities of
cancer by logistic regression and use the threshold probability
as the cut-off.

Following Vergouwe et al. (2002), a straightforward decision
analytic method for determining the value of a diagnostic test,
predictive model or molecular marker is as follows:

1. Obtain a threshold probability ( pt ) for treatment.

2. If necessary, use logistic regression to convert the results
of the test, marker or model into a predicted probability of
disease

_
p .

3. Define patients as test positive if
_
p ≥ pt and negative oth-

erwise. For a binary diagnostic test, p̂ is 1 for positive and
0 for negative.

4. Calculate net benefit of the test, marker, or model using the
formula for net benefit in Equation (3) or (4).

5. Calculate clinical net benefit for the strategy of treating
all patients. As sensitivity is 100% and specificity 0%, (4)
simplifies to

π − (1− π)×
(

pt

1− pt

)
.

6. The net benefit for the strategy of treating no patients is
defined as zero.

7. The optimal strategy is that with the highest clinical net
benefit.
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Table 3. Net benefit at a threshold probability pt of 20%.

Strategy Sample size Negatives True positives False positives Net benefit calculation Net benefit

Model with free-to-total ratio 753 384 149 220 [149 − 220 × (0.2 ÷ 0.8)] ÷ 753 0.1248
Biopsy all men 753 0 192 561 [192 − 561 × (0.2 ÷ 0.8)] ÷ 753 0.0687

Note that the unit for net benefit is the number of true cases
found per patient and therefore has a maximum value at the
prevalence π : all cases found, with no false positives.

To illustrate calculation of a net benefit, we will use a pt

of 20%. To calculate the net benefit for free-to-total ratio, we
first have to convert values of the marker into predicted prob-
abilities of cancer by logistic regression. Table 3 shows that
of the total of 753 patients, there were 369 who, on the ba-
sis of the predictive model using free-to-total PSA ratio, had
a predicted probability of cancer of 20% or more. Of these,
149 had cancer and 220 did not. This gives a net benefit of
[149 − 220 × (0.2 ÷ 0.8)] ÷ 753 = 0.1248. In comparison,
the net benefit for a strategy of biopsying all men is 0.0687; the
net benefit for biopsying no men is, by definition, zero.

As was for the case for expected value in a traditional deci-
sion analysis, we take the strategy with the highest net benefit,
irrespective of the size of the difference. Hence for men who
would accept a biopsy if their risk of prostate cancer was 20%
or more, but not if their risk was less than 20%, the optimal
strategy is to calculate their probability of cancer from a logistic
model using free-to-total ratio as the predictor and then biopsy
those with predicted risk from the model of 20% or more.

7. DECISION CURVE ANALYSIS

As pointed out earlier, different men will weigh differently
the relative benefits of finding a prostate cancer compared to an
unnecessary biopsy. Accordingly, we can vary pt , calculate net
benefit at each pt , and then plot net benefit on the y axis against
threshold probability on the x axis. This gives what is known as
a decision curve (Vickers and Elkin 2006).

The decision curve for free-to-total PSA is shown in Figure 3.
To interpret the decision curve, we need an estimate of the range
of threshold probabilities in typical patients. We can obtain such
an estimate from clinicians: a typical response is that few men
would opt for biopsy if they were told they had a risk of prostate
cancer less than 10%; on the other hand, it is hard to imagine
that a man taking a PSA test would want at least a 50:50 chance
of cancer before agreeing to biopsy. Figure 4 shows the decision
curve for free-to-total PSA ratio in our reasonable range of 10–
40%. Net benefit is superior to biopsying all or no men across
the whole range. We can therefore conclude that using free-to-
total PSA ratio to determine biopsy in men with elevated PSA
will improve clinical outcomes irrespective of any differences
in patient and physician preferences.

Note that decision curve analysis does not require that pa-

Figure 3. Decision curve analysis for free-to-total PSA ratio in men with elevated PSA. Gray line: biopsy all men. Thin black line: use free-
to-total PSA ratio to determine who to biopsy. Thick black line: biopsy no man.
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Figure 4. Decision curve analysis for free-to-total PSA ratio in men with elevated PSA, showing the critical range of threshold probabilities,
10–40%. Gray line: biopsy all men. Thin black line: use free-to-total PSA ratio to determine who to biopsy. Thick black line: biopsy no man.

tients be asked about their threshold probability, indeed, our
conclusions are independent of the mode of decision making.
For example, in the case of prostate cancer biopsy, a clinician
has the following options to choosing who to biopsy:

1. Set a threshold and apply to all patients: patients above
the threshold are biopsied, patients below the threshold are
not.

2. Divide patients into high, low, and intermediate risk.
High-risk patients are biopsied; low-risk patients are not.
Whether or not to biopsy a patient at intermediate risk is

taken on a case-by-case basis, depending on the patient’s
age, co-morbidities, and personal preference.

3. Discuss biopsy with each patient and obtain a quantitative
estimate of their personal preferences. Compare this esti-
mate with their risk from the model and act accordingly.

Irrespective of how the physician decides which patients
should be biopsied, decision curve analysis shows that using
free-to-total ratio will improve decision making, as long as any
thresholds used are in the reasonable range of 10–40%. Hence
decision curve analysis can be applied to a dataset without the

Figure 5. Decision curve analysis for urokinase. Gray line: biopsy all men. Thick black line: biopsy no man. Dashed line: biopsy men on the
basis of a statistical model incorporating age and PSA level. Thin black line: biopsy men on the basis of a statistical model incorporating age,
PSA level and urokinase.
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need to obtain the sort of additional information—such as on
the benefits of treatment, or subjective patient preferences—
typically required by traditional decision analysis; all that is re-
quired is a general estimate for a reasonable range of threshold
probabilities.

Figure 5 shows a decision curve for a different marker, evalu-
ated on a different set of patients. This demonstrates two points
about decision curve analysis. First, the method can be used to
evaluate the marginal value of a molecular marker, by estimat-
ing the net benefit of a statistical model including both standard
predictors and the new marker with that of the standard predic-
tors alone. Second, decision curve analysis can determine that a
model is not of clinical value despite good accuracy. The AUC
of the model including urokinase was excellent (0.751) and yet
it clearly has minimal clinical value: in the critical range of
threshold probabilities of 10–40%, net benefit is no higher than
the strategy of biopsying all patients. This is no doubt related to
the extremely high prevalence of prostate cancer in this dataset
(∼65%).

8. CONCLUSIONS

The biostatistical literature has almost exclusively been con-
cerned with methods for evaluating the accuracy of predictive
models, diagnostic tests and molecular markers. While novel
approaches assessing ROC curves, classification tables, or cali-
bration continue to proliferate, methods that incorporate clinical
consequences are almost entirely absent from the literature. The
clinical literature is similarly marked by a near-exclusive focus
on accuracy. We recently reviewed 129 molecular marker stud-
ies in cancer, and although we found that many studies did eval-
uate whether or not a marker was accurate, not a single study
used decision analytic methods to determine whether the marker
would improve clinical outcome (Vickers et al. 2008).

Accuracy metrics clearly have their place. In the early phases
of research, assessment of accuracy can help determine whether
a test, model, or marker is sufficiently promising to warrant fur-
ther testing, and can help refine techniques before a definitive
study. As a trivial example, evidence of miscalibration might
prompt an analyst to explore the use of nonlinear terms or a
Bayesian correction factor. Moreover, it would surely be overly
pragmatic to claim that a decision-analytic approach is all that
is required, and that evaluation of accuracy does not aid our un-
derstanding of a test, model, or marker that we wish to bring to
clinical practice.

Nonetheless, I have argued here that thinking only in terms

of accuracy is limited. We need to know not only whether a di-
agnostic test, predictive model, or molecular marker is accurate,
but whether it is helpful clinically. As such, I would argue for in-
creased attention to decision-analytic techniques in the method-
ologic and clinical literature. In particular, analysts should con-
sider methods that can be based on general clinical estimates,
but which can provide insight into the consequences of using a
test, model, or marker in the clinic. These methods involve only
the most trivial of computations and are thus straightforward to
implement in biostatistical practice.

[Received January 2008. Revised June 2008.]
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