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MEDICAL PROGRESS

DECISION ANALYSIS

STeEPHEN G. Pauker, M.D., anD JeroMmE P. Kassirer, M.D.

EXCELLENT clinical judgment requires optimal
decision making. Many of the decisions that phy-
sicians make in their practices involve little uncertain-
ty and little risk: these rote or routine choices need no
special contemplation because they are “tried and
true” practices. But for each routine problem there are
several for which no easy solution is at hand. To deal
with these, the tough problems, a physician can search
for a properly designed, double-blind controlled study
that examined patients of the same age, sex, and race
and with the same conditions in the same stage; use
an algorithm developed for such patients; use the
problem-oriented approach to data gathering and
hope that the solution to the problem will emerge; or
ask for the help of one or more consultants. The frus-
trations encountered with all these approaches are fa-
miliar to all.

For 15 years we and others have been developing
and applying decision analysis to difficult clinical
problems,!-® and after experience with several hun-
dred such analyses tailored to individual patients,” we
are convinced that this quantitative approach war-
rants careful consideration as a tool for making deci-
sions not only for individual patients but also for
classes of clinical problems. This actively evolving
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field provides insights not available from clinical stud-
ies or expert opinion.

In this review we provide a few examples of some
advances in the methods and the application of deci-
sion analysis. We consider both the advantages of the
method and its limitations and offer our thoughts
about the extent of the dissemination of decision anal-
ysis in medicine.

BavYEs’ RUuLE

The modern physician is inundated by data — both
clinical information that has been obtained intention-
ally and unanticipated results of screening tests and
imaging procedures. In most circumstances, clinical
information does not establish diagnoses with certain-
ty; instead, each finding allows the physician to revise
the probability of various diagnostic alternatives. In
this sequential, iterative process, three sets of prob-
abilities are defined: (1) the probabilities of the diag-
noses before the presence of a new finding is revealed
(prior probabilities); (2) the probabilities that a given
finding can be observed in each disorder diagnosed
(conditional probabilities); and (3) the probabilities
of the diagnoses afler the presence of a new finding is
revealed (posterior or revised probabilities). The terms
“prior” and “posterior” are defined with respect to a
given diagnostic finding. In the sequential diagnostic
process, the posterior probabilities for one finding be-
come the prior probabilities for the next. Thus, the
diagnostic implications of a given test result vary from
patient to patient, depending on the presence of other
findings.
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A mathematical combination of prior and condi-
tional probabilities produces posterior probabilities.
The relation among the three sets of probabilities —
Bayes’ rule — has been understood for two centuries,
but this formulation has been applied to clinical rea-
soning only in the past several decades. Initial appli-
cations of Bayes’ rule presented the physician with an
equation* or with a computer program®'? that had
the characteristics of a “black box.” Other popular
alternatives to the formal equation have been intro-
duced, including nomograms!3-15 and tables.'® Unfor-
tunately, these latter approaches are practical only
when a single disease is considered to be either present
or absent and when the test result can be considered to
be binary — i.e., either positive or negative. Recently,
two different tabular formulations of Bayes’ rule have
appeared: a two-by-two table,>!7 best used for calcu-
lating measures of test performance in a given study,
and a posterior-probability calculator, designed to
provide the interpretation of test information in a giv-
en clinical setting.'®!® The latter technique can be
used when several alternative diagnoses are possible
and when test results lie along a continuum — e.g.,

serum enzyme levels. The calculation is performed -

easily with pencil and paper or with a handheld calcu-
lator. With the almost ubiquitous availability of per-
sonal computers and spreadsheet programs, templates
for this calculation are easily created. Table 1 demon-
strates the use of a spreadsheet to interpret the results
of preoperative dipyridamole—thallium perfusion scan-
ning in a 67-year-old man with peripheral vascular
disease. This formulation of Bayes’ rule uses a table
with five columns: Column A, a list of mutually exclu-
sive and exhaustive diagnoses; Column B, the prior
probability of each diagnosis; Column C, the condi-
tional probability of the observed finding, given each
diagnosis; Column D, the product of Columns B and
C — after each product is calculated, the products are
added up; and Column E, the posterior probability,
which is calculated by dividing each product in Col-
umn D by the sum of the products. A negative dipyrid-
amole—thallium test diminishes the likelihood of criti-
cal coronary disease in this patient from 10 percent to
less than 2 percent (Table 1), but almost half of com-
parable patients with such a test result will nonethe-
less have clinically important disease.

This simple technique can help the physician avoid
the common reasoning error of neglecting the base
rate.222 In fact, because of the availability of proba-
bilistic data in the medical literature and because
clinicians are taught to quote and rely on the litera-
ture, this type of reasoning error is quite prevalent.
Such errors are most likely to arise when the diagnos-

_ Pis X Prindlais
Pyidlfina = P ’
> i1 Pais i X Pindlais i

where Pg;s ; denotes the prior probability of disease i, Prnqlgis ; the conditional
probability of the finding in patients with disease i, and Pg; ;o the posterior
probability of disease i, given the presence of the finding. The particular disease,
among the i possible diseases, is denoted as dis.
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Table 1. Spreadsheet Template Using Bayes’ Rule to Interpret a
Negative Thallium Test.*

C — CONDITIONAL E — POSTERIOR
PROBABILITY OF D — PRODUCT  PROBABILITY

A — DIAGNosIS:
CORONARY ARTERY B — PRIOR

DiSEASE PROBABILITY NEGATIVE SCAN (B xC) (100 X D/Sum)
percent percent percent
Critical 10 5 50 1.6
Noncritical 70 20 1400 43.6
Negligible 20 88 1760 54.8
3210
*This template can be easily built on any dard spreadsheet program and is available on

request to the authors.

tic test provides an unexpected result; the unwary
clinician may rely too heavily on a highly “accurate”
diagnostic test, neglecting the critical influence of
disease prevalence.

DEecisioN TREES

Decision analysis, a derivative of operations re-
search and game theory, involves identifying all avail-
able choices and the potential outcomes of each and
structuring a model of the decision, usually in the
form of a decision tree. Such a tree consists of nodes,
which describe choices, chances, and outcomes. The
tree is used to represent the strategies available to the
physician and to calculate the likelihood that each
outcome will occur if a particular strategy is employed.
The relative worth of each outcome is also described
numerically, as a utility, on an explicitly defined scale
— e.g., a life expectancy of 17 years or a score of 50 on
a scale on which immediate death is defined as 0 and
normal life expectancy in good health is defined as
100. The utility of a chance node is calculated as the
weighted average of the utilities of its possible out-
comes, where the weights are the probabilities that
each outcome will occur. For example, a chance node
describing a 5 percent chance of immediate death
(with a life expectancy of 0), a 20 percent chance
of survival with disabling angina (with a life expectan-
cy of 7 years), and a 75 percent chance of survival
free of angina (with a life expectancy of 15 years)
would represent a life expectancy of 12.65 years, i.e.,
(5% X 0) + (20% X 7) + (75% X 15). The utility of
a decision node is the maximum of the utilities of
its component strategies, since the rational decision
maker should choose the alternative that, on average,
provides the highest value. Even when objective data
are not available from the literature or from local ex-
perience, probabilities and utilities nevertheless must
be quantified to preserve the logic of the decision proc-
ess and to make optimal use of whatever data are
available.

STRUCTURING PROBLEMS WITH SUBTREES

A decision-analysis model is used to provide insight
about real-world problems. Because the real world of
clinical medicine is complex, such models often must
be rather complex. The insights and conclusions that a
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decision model provides can be helpful only if the
model represents the clinical problem with sufficient
fidelity. To create realistic models, the analyst needs a
notation that is compact and that helps avoid certain
mistakes. These seemingly contradictory demands can
be resolved because most decision trees contain many
repetitive structures. Even when management plans
are vastly different, the prognosis is often described by
the same series of chance events but with different
frequencies of occurrence. These homologous struc-
tures can often be represented by a common tree
fragment, called a subtree, that can be shared among
different strategies and events. Figure 1 shows a rather
complex decision tree representing alternative strate-
gies for treating a patient whose thyroid was irradiated
in childhood. Figure 2 shows the same model with
subtree notation. Not only is the representation in Fig-
ure 2 readily understood, but it emphasizes analogies
among events. When a common subtree appears in
different places within a decision model, the like-
lihoods and the values of the outcomes may differ. For
example, the probability of a benign lesion with a
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defect on a scan is somewhat lower than the probabil-
ity of a benign lesion in a palpable nodule. On the
other hand, the chance of recurrence of a cancer in a
palpable nodule is 10 times higher than the chance of
recurrence of a cancer found on scanning. Thus, the
features of a subtree are often represented as varia-
bles, which assume different values when the same
subtree is used in different contexts.

Subtree notation emphasizes relations among fac-
tors in a decision model. For example, when consider-
ing whether or not to perform surgery in a patient
with unstable coronary disease, the analyst might be
tempted to consider as separate variables the likeli-
hoods of survival with and without such therapy,
estimating likelihood from either a single report in
the literature or several reports. In fact, survival
in both circumstances often reflects the underlying
state of the patient: patients with more severe coro-
nary disease or poorer ventricular function survive
less well under either plan. Thus, these two fac-
tors are linked, either to each other or to a common
underlying factor. For example, if the efficacy of by-

No scan defect 0.86
No surgical morbidity 0.987
Scan-Surgery Benign 0.64 ypoparathyroid 0.012
s-A—" s¢c—"
Surgical mortality 0.0009
Scan defect 0.14 No surgical Cure  0.985
Irradiated SB—" . morbidity 0.987
adult patient Non-fatal 1.0
with no Recurrence 0.015,
nalpable
thyroid
nodularity ] Hypopara- Cure  0.985
thyroid 0.012
Caneer ﬁ» Non-fatal 1.0
C . N’ ——
sC so Recurrence 0.015,
S-E'—"Wratal 0.0
Surgical mortality 0.0009
Nothing palpable 0.987
Benign 0.95
Nodule No surgical morbidity 0.978
becomes
palpable  0.013 | Hypoparathyroid 0.02
NS¢ — %
Surgical mortality 0.002
Never palpable 0.88
No scan- No surgical Cure 09
reexamine morbidity 0.978 Non-fatal 0.9
NS-D—%
Occult R e 0.1
Cancer 0.0 ecurrencs
NS-B8' — NS-E Fatal 0.1
Cure 09
Becomes Hypopara-
palpable  0.12 thyroid 0.02 Non-fatal 0.9
NS.C' —* NS-D'—# 7 Recurrence 0.1
Fatal 0.1
Surgical mortality  0.002

Figure 1. Decision Tree for Treating an Adult Who Received Thyroid Irradiation during Childhood (Reproduced from Stockwell et Al., 23
with the Permission of the Publisher).

The decision, represented by the node (open square) at left, is between obtaining a thyroid scan, with surgery if a defect is found, and not
obtaining a scan, with a plan to reexamine the patient for palpable thyroid nodules. Each chance event is represented by a node shown
as a solid circle. A nodule or a defect may represent either benign disease or cancer, surgery may be complicated by hypoparathyroidism
or death, and a cancer may or may not recur. This tree contains 17 chance nodes and 23 outcomes. S denotes scan, and NS no scan.
The numbers on each branch are probabilities.
The New England Journal of Medicine
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Figure 2. Subtree Representation for Child-
hood Thyroid Irradiation.
This tree is equivalent to the one shown in
Figure 1, but contains only six chance
nodes and seven outcomes.

Vol. 316 No. 5 DECISION ANALYSIS — PAUKER AND KASSIRER
No Defect
0.86
Scan — Surgery
No Morbidity Benign
Cure
Defect ®
0.14
] Surgery Hypoparathyroid Cancer
Non-Fatal
Becomes Palpable
0.0184 Recur
Surgical Mortality Fatal
No Scan
Re-examine
Never Palpable
0.9816

the disease is really more likely?”
“What if the test is actually less ac-
curate?” “What if the risk of sur-
gery is greater?” Such questions are
answered by performing sensitivity

analyses — varying the values as-
signed to one or several variables in
a systematic fashion and repeating
the calculations to determine wheth-
er the optimal decision changes.
The simplest sensitivity analysis
involves changing the value of

pass surgery in lowering the annual mortality rate
from coronary artery disease is denoted by e, and
the mortality rate among patients with coronary ar-
tery disease (CAD) by ucap, then the annual mor-
tality rate among patients in whom surgery is suc-
cessful can be expressed as pcap X (1 — e). Because
subtree notation encourages the analyst to look for
symmetries in a decision problem and to express prob-
abilities and values symbolically, it provides a new
language and technique for expressing and examin-
ing such relations.

Occasionally, using subtree notation can suggest
additional strategies. For example, certain treatments
are traditionally given only after a diagnosis is consid-
ered to have been confirmed. As an alternative, the
decision analyst might consider whether such therapy
might be given “empirically” — before a diagnosis has
been established definitively. In our experience, em-
pirical therapy is a viable alternative when one is con-
sidering issues such as steroids for idiopathic nephrot-
ic syndrome,?**> amphotericin for unexplained fever
in a patient receiving immunosuppressants,?® or radi-
ation for a new pulmonary nodule in an octogenarian
with anorexia.?’

PRESENTING SENSITIVITY ANALYSES

The full benefit of the effort required to design and
implement a decision tree is not obtained if the model
is used simply to determine the optimal management
strategy. One of the principal benefits of a decision
model is the capacity to ask “What if?” — “What if

Figure 3. One-Way Sensitivity Analysis (Reproduced from Barza
and Pauker,?® with the Permission of the Publisher).

This analysis examined whether or not to administer vidarabine or
perform a brain biopsy in a patient with suspected herpes simplex
encephalitis (HSE). The variable being examined is the probabil-
ity that the patient has the disease (horizontal axis); the expected
utilities are shown on the vertical axis. Each strategy under analy-
sis corresponds to a single line. The vertical lines at 3 percent, 10
percent, and 42 percent indicate diagnostic and therapeutic
thresholds at which the optimal strategy changes.

a single variable and recalculating
the expected utility of each strate-
gy. Such a univariate examination of the model is
called a one-way sensitivity analysis. It can be pre-
sented as a table of values or, often more informative-
ly, as a graph. An example of such a graph, shown in
Figure 3, reveals an interesting and frequent phenom-
enon — namely, that strategy lines may intersect.
These intersections are called decision thresholds?%%:
if a given variable (in this case, the probability of
herpes simplex encephalitis) has a value less than a
threshold value, then one action is optimal (in this
case, brain biopsy); if the variable has a value greater
than a threshold, then another action is optimal (in
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this case, empirical drug therapy). In fact, the thresh-
old values summarize the results of the one-way sensi-
tivity analysis. Threshold values can tell the analyst
whether a change in a given variable would change the
optimal decision, but they do not indicate how much
would be gained or lost by choosing a given strategy.
That insight requires knowledge of the expected utili-
ties of each strategy and the differences among them.
Such differences are readily identified by examining
Figure 3.

Of course, one-way sensitivity analyses provide
only limited insight because they examine only changes
in a single variable; the other variables are held to
base-line values. The clinician, on the other hand,
must sometimes explore the best strategy for a com-
bination of factors — e.g., what if both the risk as-
sociated with lung biopsy and the probability of pneu-
mocystis pneumonia are increased in a particular
patient? Such complex yet important questions can be
addressed by performing two-way sensitivity analy-
sis — varying the values of two variables independ-
ently over broad ranges and determining the best
strategy for all combinations. The calculational de-
mands of such an analysis are only the first hurdle;
once performed, the analysis must be presented in
a format that provides the physician with clinical
insight.

Two somewhat different formats have been devel-
oped for summarizing such analyses. The one shown
in Figure 4 demonstrates how thresholds and expected
utilities vary, and is useful in displaying the differences
between options. Such formats, however, can only
compare two strategies. A more compact and under-
standable representation is shown in Figure 5, in
which every combination of the two variables corre-
sponds t0 a unique point on the graph. In the left
panel, the graph is divided into two regions that speci-
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fy which strategy is optimal for each combination of
values. If the point lies within the shaded area, admin-
istering amphotericin empirically is optimal; if the
point lies within the unshaded area, avoiding ampho-
tericin administration is optimal. In contrast to the
representation in Figures 3 and 4, however, the graphs
in Figure 5 do not indicate how strongly one strategy
should be preferred over another.

A format similar to the one in the left panel of Fig-
ure 5 can be used to summarize the results of a so-
called three-way sensitivity analysis, in which three
clinically relevant factors are varied simultaneously
and independently, shown in the middle and right
panels of Figure 5. In both these panels, a family of
curves depicts how the optimal strategy for each com-
bination of the first two variables might be altered by
changes in a third, independent factor. For example,
in the middle panel the region bounded by the curves
P = 0.1 and P = 0.3 represents the circumstances in
which the optimal strategy would be to administer
amphotericin if the probability of fungal infection was
greater than 0.3, but to withhold such therapy if the
probability was less than 0.1.

AUTOMATION

As should be evident from the discussions of tree
representation and sensitivity analysis, clinical appli-
cations of decision analysis impose substantial cal-
culational burdens. If even a moderately complex
problem is examined manually, even with the help
of a calculator, the analyst must devote many hours
to multiplications and additions. In fact, the ques-
tions that an analyst wishes to ask of a decision-
tree model are severely limited by the time required
to calculate the answers. If a sensitivity analysis re-
quires 20 or 30 hours of computation, even the
most ardent analyst may turn to other tasks.

Over the past several years, many
microcomputer programs, devel-

@ '5r x :ies':“;: oped in thgemcdical arena32-3% and
z g ’/5’; Endometrial elsewhere,. have becqme availa-
g > /,/\’a‘s&m Cancer ble, allowing the e;x_penenced ana-
& Q 1.0 - due o lyst to explore decision-tree models
a9 Estrogens efficiently. These programs are cum-
w3 bersome to use, however; they re-
L dos| ________ quire substantial time to learn; and
i o they cannot teach the inexperienced
zZa physician how to design and inter-
3 00 pret a decision tree or identify or

Z o% 20% 40% 60% 80% 100% avoid errors in a model.

EFFICACY OF ESTROGEN IN REDUCING FRACTURES
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Figure 4. Two-Way Sensitivity Analysis (Reproduced from Hillner et Al.,%* with the

Permission of the Publisher).

This analysis examined whether or not to administer estrogens to postmenopausal
women to prevent osteoporosis. The efficacy of postmenopausal estrogens in reduc-
ing fractures is shown on the horizontal axis, and the benefit of estrogen therapy (i.e.,
the difference between the calculated expected utilities of two strategies) is shown on
the vertical axis. Each line corresponds to a different relative risk of endometrial cancer

induced by estrogen therapy.

Some major criticisms of deci-
sion analysis have focused on the
assignment of utilities to various
outcome states. Early models used
arbitrary scales®*; it was difficult
to understand the meaning of the
scales and to determine whether
small differences had any clinical
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Figure 5. Two-Way and Three-Way Sensitivity Analyses (Reproduced from Gottlieb
and Pauker,2® with the Permission of the Publisher).

This analysis examined whether or not to administer amphotericin to an immunosup-
pressed patient with persistent fever. The toxicity of amphotericin is shown on the
horizontal axis, and its efficacy on the vertical axis.

The left panel contains a two-way sensitivity analysis, and the middie and right panels
contain three-way sensitivity analyses in which each line corresponds to a different
value of a third variable. In the middle panel, the probability of fungal infection (P) has
been varied from its base-line value of 30 percent: the lower the probability of fungal
infection, the smaller the set of circumstances in which empirical amphotericin is
indicated — i.e., the smaller the region above the curve. In the right panel, the mortality
rate for fungal infection (F) is varied from the base-line assumption of 95 percent.
Again, the lower the risk of fungal infection, the smaller the set of circumstances in
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When an average rate is known,
life expectancy or average survival
can be approximated by the recip-
rocal of the rate. For example, the
life expectancy of a 70-year-old man
with three-vessel coronary artery dis-
ease and Dukes’ stage B carcinoma
of the colon can be approximated
by adding together the average mor-
tality rate among patients of his age,
sex, and race (pasr) and the inde-
pendent excess mortality rates asso-
ciated with these diseases (mcap
and fcolonca)- As shown in Table 2,
this technique can approximate life
expectancy under various manage-
ment strategies that might be speci-
fied in a decision tree. One must be
careful, however, to notice that the
disease-specific mortality rates are
excess rates and not crude rates.

Quality of Life

Increased participation by pa-
tients in making decisions about
their medical care requires not only

which empirical therapy is indicated.

importance. Recently, clinical decision analysts have
begun to use meaningful utility scales — e.g., quality-
adjusted life expectancy.?’ Several techniques have
also been developed for helping patients assess their
attitudes toward alternative health outcomes and to
express these attitudes quantitatively so that their
preferences can be explicitly incorporated into deci-
sion analyses.

Life Expectancy

The literature typically summarizes the prognosis
of patients with a single disease process — i.e., a select
and fairly “clean” population or, at best, average pa-
tients. The clinician, however, cares for individual
patients, who often differ in important ways from pa-
tients described in the literature — e.g., in age or
coexisting diseases. Thus, one of the clinician’s central
tasks is to identify the experience reported in the lit-
erature and tailor it to the individual patient. Such
“massaging” of data is always somewhat arbitrary
and empirical, but it is an essential part of traditional,
implicit decision making. For quantitative decision
making, an approximation of life expectancy has been
developed to provide a mechanism for calculating and
understanding how independent mortality risks oper-
ate.3® According to this method (the declining exponen-
tial approximation of life expectancy), the mortality
rate is viewed as the exponent in a declining exponen-
tial curve, similar to a drug half-life in the familiar
single-compartment model of pharmacokinetics. In-
dependent “forces of mortality” can be combined by
addition, yielding an overall mortality rate.

that they be informed about alter-

natives and given the opportunity
to express their wishes but also that they be guided in
assessing their attitudes; these results need to be incor-
porated into the decision-making process.?® When us-
ing decision analysis, the physician’s role as a decision
maker (as opposed to being the decision maker) is not
abdicated to the patient; instead, patient and physi-
cian work as a team. The physician’s expertise clearly
consists of knowledge of the medical facts; the pa-
tient’s expertise often consists of conceptualizing the
effects of a potential outcome on him and his family.

Table 2. Calculation of Life Expectancy.

Step ACTION ResuLT
1 Life expectancy of 70-year-old man 8 yr
2 Reciprocal of Result 1 yields pwasg* 0.125/yr
3 Excess mortalityt for coronary disease 0.080/yr
4 Excess mortality for colon cancer 0.090/yr
5 Total average mortality (sum of Results 2 through 4) 0.295/yr
6 Reciprocal of Result 5 yields life expectancy 3.39yr

If surgery has 50% efficacy, then

7 Excess mortality of coronary disease 0.040/yr
8 Total average mortality (sum of Results 2, 4, and 7) 0.255/yr
9 Reciprocal of Result 8 yields life expectancy 3.92yr
*p s denots g lity among patients of the same age, sex, and race as the patient

under evaluation.

11f the point survival at a given time is known, then the average mortality rate for a period can
be calculated with the equation pcrge = —(1/n) In Sy, where S, is the probability of surviving
n years. For example, if a series reports that the five-year survival among 56-year-old men
with three-vessel coronary artery disease is 55 percent, then the crude mortality rate would be
—(1/5) In 0.55, or 0.12 per year. The excess mortality rate is defined as the force of mortality
over and above the rate among average patients of the same age, sex, and race. In this case, the
series described 56-year-old men, whose life expectancy is approximately 25 years; thus, pasg
is 1/25 year, or 0.04 per year. The excess mortality rate for three-vessel coronary artery disease
treated medically is then 0.12 per year minus 0.04 per year, or 0.08 per year.
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Several approaches are available to help patients
understand the dynamics of a decision and to help
them formulate ideas about the relative merits of its
outcomes. With most techniques, the patient is pre-
sented with a limited set of scenarios and is asked to
choose between pairs of alternatives. For example, a
prospective parent, informed in advance of the medi-
cal terms, might be asked*’ whether a pregnancy in
which there is a 20 percent risk that the fetus has
trisomy 21 should be aborted or carried to term. By
presenting a sequence of such choices in which the
probability of an outcome in one scenario is varied —
e.g., from 20 percent to 50 percent to 80 percent — the
physician can help assess in what circumstances the
patient would be indifferent to choosing between two
scenarios — i.e., when both scenarios would be per-
ceived as equally bad. That point of indifference can
then be used to create a utility scale. Presenting a
sequence of scenarios involving chance events is called
the lottery technique.

Another common technique for assessing attitudes
is the time trade-off approach,*! in which the patient
is asked to consider two scenarios that differ not in the
probabilities of their outcomes but in their duration.
For example, a patient with carcinoma of the larynx
might be asked,*? “Would you rather live for 8 years
with normal speech or live for 10 years after a laryn-
gectomy?” The duration of life with normal speech is
varied in a sequence of questions until the patient
recognizes his or her indifference point, which can
then be used to create a utility scale.

THeE MArRkovV PROCESS

Prognosis can often be described as a series of
chance events for which the patient is at risk. For
example, a patient with silent gallstones may have an
episode of acute cholecystitis in any given year.*3 If an
episode occurs and the patient requires cholecystecto-
my, the risks of surgery depend on how old the patient
is at the time. If this sequence of events were modeled
as a simple decision tree with a set of chance nodes
describing the events that might occur each year (i.e.,
acute cholecystitis, death due to surgery, or death due
to other causes), the tree would double in breadth
each year. After a mere 30 years (a reasonable time
frame for clinical events in such a patient), the tree
would contain more than 1 billion branches and would
be impossible to evaluate by hand and even cumber-
some to assess by computer.

Fortunately, a vast segment of the tree structure is
repetitive, describing the same events year after year.
In recent years it has become increasingly popular and
convenient to use state-transition, or Markov-process,
models in such decision problems.** These models de-
fine a small set of “health states” and specify the al-
lowed transitions between the states. For example, a
patient in the “silent gallstones present” health state
may, in any given year, move to the state “cholecystec-
tomy” and then to the state “post-cholecystectomy” or
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Table 3. Markov Simulation of Prognosis of Cholelithiasis.

PATIENTS
PATIENTS SURVIVING PATIENTS
PATIENT WITH SILENT CHOLECYSTECTOMY POST-CHOLE- PATIENTS
YEAR* AGE GALLSTONES THIS YEAR CYSTECTOMY  DEAD
0 30 100,000 0 0 V]
1 31 98,838 994 0 168
2 32 97,676 982 992 349
3 33 96,516 970 1,971 544
4 95,356 958 2,934 752
5 35 94,198 945 3,883 974
10 40 90,698 452 6,600 2,251
20 50 83,936 206 8,582 7,277
30 60 71,403 171 9,246 19,180
40 70 50,509 114 7,906 41,472
50 80 27,785 53 5,061 67,100
60 90 867 1 178 98,954
70 100 0 0 0 100,000
Total 3,788,787 13,571 380,022
Quality adjustment 1.0 0.9 1.0
Quality-adjusted total 3,788,787 12,213 380,022
Total quality-adjusted years for cohort 4,181,025 yr
Average quality-adjusted survival for member of cohort 41.8 yr

*Although the actual calculation was done for each year, to conserve space the table shows
only the results for years 0 through 5 and for each 10th year after year 10.

to the state “dead.” The likelihood that a patient will
move from one health state to another in any given
period is called the transition probability for such a
change. Each state of health is also assigned an incre-
mental value when a patient remains in the state for a
given period. For example, a patient who has silent
gallstones for a year might be credited with 1 quality-
adjusted year, whereas a patient who has an episode
of cholecystitis and undergoes cholecystectomy in a
given year might be credited with only 0.9 quality-
adjusted year.

The model is used by placing a hypothetical cohort
of patients in one or more states at the beginning of
the horizon of analysis (e.g., placing 100,000 patients
in the silent-gallstones state) and following their
course year by year. As shown in the simplified exam-
ple in Table 3, after a sufficiently long time horizon, all
patients will have died. The number of quality-adjust-
ed years of life in the cohort is added up and then
divided by the size of the original cohort, yielding the
expected quality-adjusted survival for a member of
the cohort. Such decision models, quite feasible with
computer support, provide important insights into
clinical disorders that evolve over time.

SoMmE EXPECTATIONS

Over the 15 years during which decision analysis
has been evolving in medicine, many of the principal
concerns of its critics*>>®! have been satisfied: the
time-consuming calculational burden has been elimi-
nated by automation®?-3%; arbitrary utilities have been
replaced by meaningful scales; and the threat to physi-

cians of a mathematical approach to medical decision
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making simply has not materialized. Despite critically
important and substantive advances in the application
of decision analysis to clinical problems, most physi-
cians faced with a difficult clinical problem do not
immediately reach for a sketch pad or a microcom-
puter to create a decision tree. Why not? First, exper-
tise in using the method is limited. Second, formal
decision analysis takes time — time to construct a
model (the tree) properly, time to gather and tailor the
data, and time to interpret the model and decide
which assumptions to test with sensitivity analysis. In
short, it is often impractical in the hectic arena of
clinical practice. Beyond these serious problems are
several that aficionados worry about: the necessarily
simplified models do not always reflect the real prob-
lems of the patient; the results are often distorted be-
cause the data available are stretched to the extreme
to fit the problem; the utilities used to reflect patients’
feelings about the quality of life associated with var-
ious outcomes are “soft” and inconstant over time;
and the methods available to examine the effect of the
data used in the analysis are still in need of consider-
able refinement.

Are these problems so immense that decision analy-
sis will be relegated to a footnote in medical history?
Not from our vantage point. Any assessment of deci-
sion analysis must be made against the “usual” ap-
proach to medical decision making; in that traditional
mode, when we encounter a difficult problem for
which no controlled study has provided a solution,
we either contemplate the decision ourselves, implicit-
ly, or we gather the opinions of consultants, hoping
to build a consensus. Whether or not consensus is
reached, the decision is usually made implicitly, a
tacit approach that may or may not consider all rea-
sonable alternatives or weigh the outcomes of compet-
ing choices appropriately. Implicit decision making
almost never identifies situations in which the choice
simply does not matter, despite the clear existence
of such situations.>? Alternative strategies of solv-
ing problems, such as the problem-oriented record,
algorithms, flow charts, and the new discipline of
clinimetrics, have not yet proved advantageous over
the traditional approach. In contrast to the tradi-
tional approach, decision analysis is explicit; it forces
us to consider all pertinent outcomes, it lays open in
stark fashion all our assumptions about a clinical
problem, including numerical representations of the
chances and values of outcomes; it forces us to con-
sider how patients feel about the quality of out-
comes; and it allows us to come to grips precisely
with the reasons why colleagues differ about actions
to be taken.

We believe that applying decision analysis to in-
dividual and generic clinical problems is worth the
effort but that it will require further investment in
methodologic research and expanded effort to teach
quantitative problem solving to a generation of stu-
dents and house officers. As we delve deeper and deep-
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er into the molecular nature of the diseases we battle,
so should we dissect the day-to-day medical decisions
that so critically influence the quality of the care
we deliver.
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MEDICAL INTELLIGENCE

GLUCOSE PHOSPHATE ISOMERASE
DEFICIENCY AS A CAUSE
OF HYDROPS FETALIS

Yappanarupt RavinoranaTH, M.B., B.S,,
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RYTHROCYTE enzymopathies are well-recog-

nized causes of hemolytic anemia in newborn in-
fants, but have rarely been implicated etiologically in
hydrops fetalis or immediate neonatal death. Death
occurred within a few hours of birth in only 4 of 260
cases recently reviewed by Matthay and Mentzer.'
One patient was deficient in glucose phosphate iso-
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merase (D-glucose-6-phosphate ketol-isomerase, E.C.
5.3.1.9),2 two others in pyruvate kinase,3* and an-
other in triosephosphate isomerase.> Hydrops fetalis
is also rare in association with the more common defi-
ciencies of glucose-6-phosphate dehydrogenase. In
two cases, severe anemia and hydrops in an infant
were attributed to maternal ingestion of oxidants
(sulfisoxazole,® fava beans, and ascorbic acid’).

This report describes a consanguineous family from
southern India in which five of six pregnancies result-
ed either in stillbirth or in early neonatal death (one
with hydrops). The sixth child was delivered early,
noted to have hydrops fetalis, and successfully treated
with exchange transfusion in the immediate postnatal
period. The hemolytic anemia was subsequently shown
to be due to glucose phosphate isomerase deficiency
and was clinically ameliorated by splenectomy at the
age of three years.

METHODS

Venous blood was anticoagulated with heparin and transported
under refrigeration by air express for processing within 24 to 48
hours. Suspensions of erythrocytes in saline were freed of leukocytes
by cellulose filtration and assayed for glucose phosphate isomerase
activity and other enzyme activities according to standard tech-
niques.®? Leukocytes were isolated by flotation in Ficoll-Paque
(Pharmacia Fine Chemicals, Piscataway, N.]J.), washed thoroughly
with isotonic saline, and lysed by ultrasonication before enzyme
assays. Electrophoresis was performed with the method of Detter
et al.,'% and thermostability at 48°C was assessed as described by
Blume et al.!!

REsuLTs

The proband was a girl delivered by cesarean sec-
tion (performed at the All India Institute for Medical
Sciences, New Delhi) at 35 weeks of gestation because
of suspected hydrops fetalis. Her birth weight was
2.25 kg, and peripheral edema, ascites, and hepato-
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