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Second opinion needed: communicating uncertainty in medical
machine learning
Benjamin Kompa 1, Jasper Snoek2 and Andrew L. Beam 1,3✉

There is great excitement that medical artificial intelligence (AI) based on machine learning (ML) can be used to improve decision
making at the patient level in a variety of healthcare settings. However, the quantification and communication of uncertainty for
individual predictions is often neglected even though uncertainty estimates could lead to more principled decision-making and
enable machine learning models to automatically or semi-automatically abstain on samples for which there is high uncertainty. In
this article, we provide an overview of different approaches to uncertainty quantification and abstention for machine learning and
highlight how these techniques could improve the safety and reliability of current ML systems being used in healthcare settings.
Effective quantification and communication of uncertainty could help to engender trust with healthcare workers, while providing
safeguards against known failure modes of current machine learning approaches. As machine learning becomes further integrated
into healthcare environments, the ability to say “I’m not sure” or “I don’t know” when uncertain is a necessary capability to enable
safe clinical deployment.
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INTRODUCTION
There has been enormous progress towards the goal of medical
artificial intelligence (AI) through the use of machine learning,
resulting in a new set of capabilities on a wide variety of medical
applications1–3. As these advancements translate into real-world
clinical decision tools, many are taking stock of what capabilities
these systems presently lack4, especially in light of some mixed
results from prospective validation efforts3,5,6. While there are
many possibilities, this article advocates that uncertainty quanti-
fication should be near the top of this list. This capability is both
easily stated and easily understood: medical ML should have the
ability to say “I don’t know” and potentially abstain from
providing a diagnosis or prediction when there is a large amount
of uncertainty for a given patient. With this ability, additional
human expertise can be sought or additional data can be
collected to reduce the uncertainty to make a more informed
diagnosis.
Indeed, communicating uncertainty and seeking a second

opinion from colleagues when confronted with an unusual clinical
case is a natural reflex for human physicians. However,
quantification and communication of uncertainty is not routinely
considered in the current literature, but is critically important in
healthcare applications. For instance, four of the most widely cited
medical ML models published since 2016 do not have a
mechanism for abstention when uncertain7–10 and do not report
sample level metrics such as calibration, echoing what has been
observed in systematic meta-analyses11. This more cautious
approach to medical ML will allow safer clinical deployment and
help engender trust with the human healthcare workers who use
this technology, since they will have the ability to know when the
model is and is not confident in the diagnostic information it is
providing.
In healthcare applications, machine learning models are trained

using patient data to provide an estimate of a patient’s current
clinical state (diagnosis) or future clinical state (prediction). Though

diagnostic and prognostic classification models estimate the same
statistical quantity (i.e., the conditional probability of a clinical
state or event), diagnosis and prognosis differ greatly in their
interpretation and use cases12. To complicate matters further, it is
common in the machine learning literature to refer to any point
estimate (i.e., the model or algorithm’s “best guess”) of this type as
a “prediction”13. There are also at least two types of uncertainty
quantification worth considering. The first, and most straightfor-
ward, is to consider the point-estimate of the conditional
probability provided by the model as an indication of the model’s
confidence: extremely low or extremely high probabilities indicate
high confidence while probabilities near 0.5 indicate a lack of
confidence. If these models are also calibrated, then the predicted
probability of an outcome corresponds to the observed empirical
frequency. Model calibration is well studied in the traditional
medical stats and epidemiology literature14–18. A second kind of
uncertainty acknowledges that the point-estimate itself could be
unreliable and seeks to estimate the dispersion or stability of this
point estimate. Estimating this is kind of uncertainty for
complicated machine learning models can be quite challenging
and is an active area of research. For the purposes of this
discussion, we will use the term predictive uncertainty to refer to
the stability of a point estimate provided by the model to better
align with the larger machine learning literature. We will also
discuss how the point estimate itself (i.e., the conditional
probability) can be used as a reasonable measure of uncertainty
in certain scenarios. Finally, not all healthcare events are binary or
categorical, but we will mostly restrict the discussion to
classification tasks while acknowledging that these ideas apply
equally well to regression scenarios.

WHAT IS UNCERTAINTY QUANTIFICATION?
The quantification and communication of uncertainty from
predictive models is relatively common in everyday life. For
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instance, weather forecasts provide excellent examples of
uncertainty estimates. Hurricane forecasts provide not only the
most likely point of landfall, but also provide a “cone of
uncertainty” across other likely points of impact and future
trajectories of the storm. Using this information, officials can make
more informed preparations and prepare safer evacuation plans.
In contrast, most of the ML systems in the recent medical

literature neglect predictive uncertainty. This is analogous to a
hurricane forecast only providing the single, most likely point of
landfall, which would make storm preparations extremely difficult.
This example illustrates the crucial point: a model that provides
predictive uncertainty information allows for better decision
making and planning.
To illustrate predictive uncertainty in a classification setting, we

bootstrapped the predicted risk of heart disease for two patients
on the basis of clinical features such as age, sex, smoking status,
cholesterol, blood pressure, etc19, and the distribution of these
scores is displayed in Fig. 1. The mean risk estimated using the full
dataset for each patient is indicated by the vertical line at 55 and
65%, respectively. It is clear graphically that the predictive
uncertainty for these two patients is quite different, as the
distribution of likely scores for patient 1 is much more dispersed
than the distribution for patient 2. One way to quantify the
predictive uncertainty would be to calculate the standard
deviation of these empirical distributions, which are 7.6% and
15.3% for patient 1 and patient 2, respectively. Using this
information, we could flag patient 2 as needing more information
before making a clinical decision.

WHAT ARE THE SOURCES OF UNCERTAINTY?
Predictive uncertainty stems from multiple sources of missing
information, bias, and noise20,21. First, there can be noise in data
measurement and this has recently become known as aleatoric
uncertainty in the machine learning literature. This type of
uncertainty is irreducible and can not be resolved by collecting
more data. Additionally, there is uncertainty in the estimated
model parameters and indeed over which model to even select in
the first place. These last two factors contribute to epistemic
uncertainty20,21

There is also the strong possibility of dataset shift when
deploying a model in practice. Dataset shift can take many
forms22,23. In general, it consists of changes in the distributions of
either Y, the data labels, or X, the data features, between the
training and testing datasets. For instance, covariate shift is when
the distributions of the training dataset features and testing

dataset features differ but the conditional distribution of the data
labels given the input data is equivalent for both datasets22. Label
shift is the opposite effect, when data label distributions differ but
the conditional distributions of the input features given the label
are the same22. There are additional dataset shift effects that can
be quite subtle but important to consider in practice. Dataset shift
is an important component of predictive uncertainty in practice.
Ovadia et al.24 performed an extensive benchmark of the effects of
dataset shift on deep learning methods’ uncertainty estimates and
this study is described in more detail below.

WHAT ARE SOME WAYS TO CALCULATE PREDICTIVE
UNCERTAINTY?
Calculating predictive uncertainty for a new observation depends
heavily on the underlying model. Despite the variety of models
available, many different uncertainty quantification techniques
capture the same notion: the distance of the new observation to
observations it has previously seen. In order to learn the
parameters of a model, researchers leverage a training dataset.
Then, a test dataset is used to evaluate performance on unseen
data. Just as a patient with a unique presentation will cause
uncertainty in a physician’s diagnosis, a test point far from training
data should result in a higher amount of predictive uncertainty.
Over the next section, we survey several methods to calculate
predictive uncertainty. These include prediction intervals, con-
formal sets, Monte Carlo dropout, ensembling, and several
Bayesian methods including Gaussian processes.
One classic way to provide predictive uncertainty for linear

regression is through a 95% prediction interval, which can be
calculated by25:
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where y
_

is the predicted y from the linear regression model, t* is
the critical value from the t-distribution, n is the size of the training
set, sy is the standard deviation of the residuals, and x is the
sample mean and sx is the sample standard deviation, respec-
tively. The distance from the training data is captured by the
ðxnþ1 � xÞ2 term. This is the squared distance of our new sample
xn+ 1 from the mean of the training data. With this formulation,
the true y for xn+ 1 will fall in this range 95% of the time, on
average, after many repeated studies. Unfortunately, the assump-
tions needed for these coverage guarantees are violated by more
complicated machine learning models and are not easily extended
to classification models.
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Fig. 1 Predictive uncertainty for the risk of heart disease in two patients. These distributions of risks over models were generated by
randomly bootstrapping 1000 datasets from the Heart Disease UCI dataset19 and training logistic regression models on each dataset. These
distributions are the range of risks from this class of model assigned to these patients when they occurred in the test set, and the mean risk
from the full dataset are shown as vertical lines. Despite the fact that both patients have similar mean risks for heart disease, we may be more
inclined to trust the predictions for patient 1 given the lower amount of uncertainty associated with that prediction.
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However, with an approach known as conformal inference26, it’s
possible to obtain exact marginal coverage guarantees per sample
for virtually any standard machine learning model in both
regression and classification settings. This is improved over the
guarantees from the above prediction intervals since rather than
averaging over many collections of data, marginal guarantees are
satisfied in finite samples. More precisely, if we let C(xn+ 1) be the
conformal set of predictions for a sample xn+ 1, then having a
marginal coverage guarantee would mean:

P ynþ1 2 C xnþ1ð Þð Þ ¼ 1� α (2)

So the true label yn+ 1 is in the predicted set with probability 1
−α averaged over the entire dataset. Note that conformal
inference allows us to leverage (potentially uncalibrated) point
estimates from a machine learning classifier and produce
conformal sets with the desired coverage properties. Predictive
uncertainty in this case would be the size of the conformal set: if
the set contains both the healthy and disease class we may trust
the prediction on this particular sample less.
Ideally, there could be distribution free conditional guarantees

which would be true for any given sample xn+ 1; however, this is
not possible in general27. Conditional guarantees would mean:

P ynþ1 2 C xnþ1ð Þjxnþ1 ¼ xð Þ ¼ 1� α (3)

Then the true label is in the predicted set with probability 1−α
for this specific data point. The difference between marginal and
conditional coverage is like giving a patient an average 5-year
survival rate for those affected with their cancer versus given a
predicted 5-year survival rate for that specific patient based on
their personal clinical features. Unfortunately, general conditional
guarantees are not possible in conformal inference27.
Conformal inference relies on the notion of distance from the

training data through a “nonconformity score”. An example
nonconformity score for classification tasks could be 1 minus
the predicted probability of the positive class. New test points and
their accompanying model predictions have a nonconformity
score calculated and compared to the empirical distribution of the
nonconformity scores of a held-out portion of the training data. In
this way, model predictions are accepted or rejected into the
conformal prediction set or interval. Conformal inference also is
not generally robust to dataset shift. However, recent work by
Barber et al. extends conformal inference guarantees to the
setting of covariate shift28.
For neural networks and deep learning methods, some simple

methods to calculate conditional uncertainty estimates include
Monte Carlo (MC) Dropout29 and ensembling30–32. MC Dropout
consists of randomly removing hidden unit outputs at train and/or
test time in a neural network. Outputs in the neural network
architecture are set to 0 with probability p according to a Bernoulli
distribution29. A prediction is made by randomly sampling
different configurations and then averaging across these different
dropout realizations. MC Dropout was initially introduced as an ad
hoc modification to neural networks20, but since then have been
shown to be an approximation of Bayesian variational inference
under a certain set of assumptions29. Ensembling is a flexible
method that can be applied to a variety of machine learning
models33. For neural networks, ensemble methods require training
multiple networks on the same data then combining predictions
from these networks, resembling bootstrap procedures from the
statistical literature. In ensembles of M deep neural networks,
predictions from the different models are averaged30. Predictive
uncertainty from both MC Dropout and ensembling can be
summarized by calculating the standard deviation (or similar
metric of dispersion) from the collection of predictions provided
by each approach. Both methods are easy to add to existing
neural network models and provide good uncertainty estimates
on out of distribution data24.

Bayesian methods to calculate predictive uncertainty estimates
generally rely on the posterior predictive distribution:

p y X;Djð Þ ¼ R
p yjX;Wð Þp WjDð ÞdW (4)

where y is the outcome of interest (i.e. heart disease status), X is
the data for a specific sample (i.e. a patient’s clinical markers), D is
the training data of the model, and W are the parameters of the
ML model. Once the posterior predictive distribution has been
estimated, predictive uncertainty is straight-forward to obtain
since one has access to the entire distribution of interest. For
neural networks and many machine learning models however,
calculating the posterior predictive distribution exactly is analyti-
cally intractable in general and requires computational approx-
imations. For instance, the integral over the model weights can be
replaced by an average over many samples of model weights
obtained from a Markov-Chain Monte Carlo simulation34.
In Bayesian neural networks, much work has gone into

improving approximations of p(W | D). Being able to estimate this
posterior well should allow for good uncertainty estimates based
on theoretical and empirical evidence24,35. Variational inference
methods36,37 are one popular class of approximations, but impose
stricter assumptions about correlations between model para-
meters than more flexible methods4,38–42. However, variational
inference is known to underestimate the posterior probability
distribution43. This could have major implications for uncertainty
estimates based on these approximations of the posterior. Yao
et al. provides a systematic comparison across ten popular
approximations44. Recent work by Wenzel et al.45 demonstrates
that fundamental unresolved challenges remain to estimating p
(W | D) in a manner that improves predictive uncertainty in
variational inference and Bayesian neural networks more
generally.
Ovadia et al. also showed in a benchmark of deep learning

models under dataset shift that variational methods were difficult
to use in practice and only had good uncertainty estimates on the
simple datasets24. They assessed many models including post-hoc
calibration of predictions, ensembles, Dropout, and variational
methods on multiple classification datasets. Models were com-
pared based on proper scoring rules24,46. Proper scoring rules are
one key way to compare uncertainty estimates across different
methods.
Gaussian processes are an alternative Bayesian method that

have natural predictive uncertainty estimates built in. A Gaussian
process defines a prior distribution over the types of functions that
could fit the training data47. After conditioning on the actual
observed training data X, Gaussian processes allow us to compute
a normal distribution at each point of the test set X*:

f

f�

� �
� N 0;

K X; Xð Þ K X; X�ð Þ
K X�; Xð Þ K X�; X�ð Þ
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(5)

f and f* are the joint normal distributions of the training and test
data, respectively47. The means of these normal distributions are
the point estimates for our test set. The variance of the normal
distributions provide a natural estimate of predictive uncertainty.
In the limit of infinite width, neural networks are equivalent to
Gaussian processes48–50.
K is the covariance function, also known as the “kernel”

function, and computes the similarity between all points in the
respective sets being evaluated. One could choose the covariance
function to be the Euclidean distance function and the kernel
directly calculates the distance between training and test points.
Common choices of kernels include periodic functions and
squared exponential functions47. Ultimately, Gaussian processes
scale poorly in the number of data points47 and have been
challenging to apply to structured problems where a good
covariance function is unknown a priori (i.e. in the case of dataset
shift)24,51.
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HOW DO WE GO FROM UNCERTAINTY ESTIMATION TO
ABSTENTION?
Uncertainty estimates naturally allow a physician to subjectively
abstain from utilizing the model’s predictions heuristically. If there
is high predictive uncertainty for a sample, the physician can
discount or even disregard the prediction. However, there are
methods that allow models to choose to abstain themselves. For
instance, conformal inference methods can return the empty set
for a classification task, which indicates that no label is sufficiently
probable.
More generally, allowing models to abstain from prediction is

known as “selective prediction.”52 Selective prediction models
generally rely on two ideas: optimizing a model with respect to a
loss function where abstention is given a specific cost or learning
to abstain such that a model achieves certain performance criteria
(e.g. X% accuracy with probability δ for some proportion of the
data)52. These “cost-based” and “bounded” objectives are reflec-
tions of each other; abstention rules from each objective can be
transformed into corresponding rules in the other objective53.
For instance, if one wanted to optimize a model with a 0-1 loss

function with an abstain option, one could write54:

L Y; Ŷ
� � ¼

0 if Ŷ ¼ Y

α if Ŷ ¼ ?
1 if Ŷ≠Y

8><
>: (6)

where Y is the ground truth label for a sample,Ŷ is the predicted
label, and 0 ≤ α ≤ 1. The ⊥ symbol indicates the model abstained
from prediction and decided to incur cost α rather than risk
predicting incorrectly and incurring cost 1. Optimizing with
respect to cost sensitive lost functions has been explored in
many settings including binary predictions55–58, multiclass pre-
diction54, class imbalance53, and deferring to experts59.
Bounded objectives often rely on learning a rejection function

that modulates whether a model will predict or abstain for a
sample. This can be formalized as:

f; gð Þ xð Þ ¼ f xð Þif g xð Þ � h

?if g xð Þ<h
	

(7)

where f is a typical model and g is a selection function that
permits f to predict if g(x) exceeds a threshold h and abstain
otherwise.
Determining a suitable selection function is the crux of these

bounded methods. Methods such as softmax response60 and
SelectiveNet52 learn a selection function based on uncertainty
estimates. These models rely on underlying estimates of
uncertainty per sample. For highly uncertain samples, the models
abstain from making a prediction. Uncertainty estimates allow
these models to have low levels of risk (i.e. mean loss, see Geifman
et al. 201760) with high probability across large proportions of the
dataset. When training a model, one can specify desired levels of
risk and with what probability that risk is expected to be met.
Deep Gamblers61 is an alternative method that leverages financial
portfolio theory to learn a selection function based on uncertainty
estimates and has shown improved performance relative to
softmax response and SelectiveNet.

WHY DO WE NEED UNCERTAINTY ESTIMATION AND
ABSTENTION?
For models that predict critical conditions (e.g. sepsis), uncertainty
estimates will be vital for triaging patients. Physicians could focus
on patients with highly certain model estimates of critical
conditions, but also further examine patients for whom the model
is uncertain with respect to their current condition. For patients
with highly uncertain predictions, additional lab values could be
requested to provide more information to the model. Additionally,

uncertainty estimates could be used to detect outliers. Patient’s
data which is not represented in the training set should cause
models to report high predictive uncertainty. For example, an
imaging model that detects the location of organs in an MRI
would have highly uncertain predictions for a patient with situs
inversus (mirrored organs). Over time, well calibrated uncertainty
models should earn the trust of physicians by allowing them to
know when to accept the model’s predictions. Furthermore,
abstention allows models to ask the downstream medical expert
to take a second look at the patient. The point of abstention is not
to obscure the model’s output, which could still be displayed to
the end user. Instead, it is a mechanism to communicate an
elevated level of uncertainty automatically and say “I don’t know”
to emphasize the need for a human to look at the issue. This is one
more way the uncertainty-equipped models can engender user-
trust.
Uncertainty estimates could also serve as a safety measure. It’s

important to understand if any dataset shift has occurred when a
model is deployed to the real world. Dataset shift could occur
when a model that was trained on data from one hospital is
validated in a different hospital62. The validation hospital might
have different typical ranges for many features included in the
model. A properly calibrated model should report high uncertainty
for input values that are outside of the typical ranges from
training data.
More insidiously, there are scenarios in which an adversarial

attack may be launched to modify the predictions of a medical
machine learning model63. With very small perturbations to model
input, adversarial attacks can arbitrarily change the model output.
Models should provide high estimates of uncertainty in their
highly confident predictions when faced with an adversarial
attack.

CONCLUSIONS
Medical ML models will be increasingly integrated into clinical
practice, and incorporation of predictive uncertainty estimates
should become a required part of this integration. With the ability
to say “I don’t know” based on predictive uncertainty estimates,
models will be able to flag physicians for a second opinion.
Though it remains an open and challenging area of research,
strides are being made in understanding the best ways to quantify
and communicate predictive uncertainty24,64. These uncertainty-
equipped models will be able to improve patient care, engender
physician trust, and guard against dataset shift or adversarial
attacks. Incorporating uncertainty estimates into medical ML
models represents an addressable next-step for these models.
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