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The delivery of accurate diagnoses is crucial in healthcare and represents
the gateway to appropriate and timely treatment. Although recent large
language models (LLMs) have demonstrated impressive capabilities in
few-shot or zero-shot learning, their effectiveness in clinical diagnosis
remains unproven. Here we present MedFound, a generalist medical
language model with 176 billion parameters, pre-trained on alarge-scale
corpus derived from diverse medical text and real-world clinical records.
We further fine-tuned MedFound to learn physicians’ inferential diagnosis
with aself-bootstrapping strategy-based chain-of-thought approach

and introduced a unified preference alignment framework to align it with
standard clinical practice. Extensive experiments demonstrate that our
medical LLM outperforms other baseline LLMs and specialized models
inin-distribution (common diseases), out-of-distribution (external
validation) and long-tailed distribution (rare diseases) scenarios across
eight specialties. Further ablation studies indicate the effectiveness of
key components in our medical LLM training approach. We conducted
acomprehensive evaluation of the clinical applicability of LLMs for
diagnosisinvolving artificial intelligence (Al) versus physician comparison,
Al-assistance study and human evaluation framework. Our proposed
framework incorporates eight clinical evaluation metrics, covering

capabilities such as medical record summarization, diagnostic reasoning
and risk management. Our findings demonstrate the model’s feasibility in
assisting physicians with disease diagnosis as part of the clinical workflow.

Thedelivery of accurate diagnoses playsacrucialroleinthe field of health-
careand represents afundamentalskill for all physicians" The diagnostic
processtypicallyinvolves the identification of adisease through extended
reasoning processes of analyzing symptoms, signs and results of investi-
gations to formulate a diagnosis as well as differential diagnoses. Despite
extensive medical training, diagnosisis proneto errors, with an estimated
20%rate of misdiagnosis at the primary care level®, which contributes to
approximately 17% of alladverse events in medical practice*. For decades,

considerable effortshave been made to enhance the accuracy and acces-
sibility of disease diagnosis, including traditional rule-based clinical
decision support systems (CDSSs)® and machine learning techniques
that extract structured features to develop clinical predictive models.
However, the dependency onstructured inputs and specialized training
is complex and resource intensive. A substantial gap remains between
the development of major medical predictive algorithms and their actual
clinical deployment in diverse healthcare settings®.
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In recent years, the emergence of pre-trained language models
(PLMs) has substantially advanced the natural language processing
(NLP) domain. These models are first pre-trained on large-scale corpora
viaself-supervised learning tasks (for example, masked language mod-
eling for BERT” and auto-regressive language modeling for GPT®) and
then fine-tuned on specific downstream tasks. Further studies suggest
that whenthe modelssize, dataset size and computational resources are
sufficiently large, large language models (LLMs) can exhibit emerging
few-shotand zero-shot properties across multiple NLP tasks. The recent
advancement of PLMs and LLMs has attracted interest in using these
pre-trained language models tailored to the biomedical domain, such
as ClinicalBERT’, NYUTron', GatorTron" and BioGPT". These models
have demonstrated the potential to transform task-specific paradigms
and address the ‘last-mile’ challenge in medical predictive analytics,
enabling the development of versatile clinical applications.

Despite the potential of LLM technology in biomedicine, exploita-
tion of its utility remains at a preliminary stage. Most studies focus on
use-case reports of LLMs in medicine, particularly ChatGPT". Thereis
currently alack of well-designed, publicly available LLMs specifically
tailored for real-world clinical contexts. Although a small fraction of
work hasinvestigated incorporating clinical knowledge into LLMs for
tasks such as medical question-answering or dialogue®, their capabili-
ties in clinical diagnostic reasoning have not been fully developed or
examined. Additionally, generative LLMs can hallucinate or fabricate
facts, which could be harmful if clinicians rely on their recommended
diagnosis. Thus, it becomes paramount to employ alignment tech-
niques to ensure that these models align with the objective of clinical
diagnosticknowledge as well as to ‘follow the user’sinstructions help-
fully and safely™. Current evaluations of the LLM models typically rely
onautomated evaluations based on limited benchmarks, underscoring
the need for amore comprehensive assessment of LLM-based toolsin
real-world clinical settings.

To address the challenges, our approach makes several contribu-
tions (Fig. 1). First, we present MedFound, a large-scale medical LLM
(176 billion parameters) that is efficiently pre-trained on a diverse
medical corpus derived from medical literature as well as 8.7 million
real-world electronic health records (EHRs), allowing us to encode
domain-specific knowledge to the model. Furthermore, we propose
a two-phase approach to adapt MedFound as a diagnostic general-
ist, resulting in a refined version, called MedFound-DX-PA. We first
introduce a self-bootstrapping strategy-based chain-of-thought
(COT) fine-tuning that enables the LLM to automatically generate
diagnostic rationales and reasoning like physician experts”. Subse-
quently, to address the challenges of aligning the LLM’s outputs with
clinical requirements'®, we present a unified preference alignment
(PA) framework. This framework incorporates (1) diagnostic hierarchy
preferences as guided by the hierarchical diagnostic structure of the
International Classification of Diseases (ICD)-10 tree and (2) helpful-
ness preferences guided by expert annotation. A further ablation study
demonstrated the impact of components in our proposed training
approachonthe LLM’s performance.

We conducted a comprehensive evaluation to assess the diag-
nostic performance of MedFound-DX-PA during implementation.
First, we established a benchmark study using actual clinical records
fromthree scenarios across specialties, includingin-distribution (ID),
out-of-distribution (OOD) and long-tailed disease distribution settings.
Theresults demonstrate that MedFound-DX-PA outperformed existing
models across multiple dimensions, particularly in diagnosing rare
diseases that have been overlooked in previous research. Additionally,
we conducted a series of prospective clinical studies, including an
artificial intelligence (Al) versus specialist comparison and a further
Al-assistance study within the workflow. We also introduced a human
evaluation framework, called CLEVER (CLinical EValuation for Effective
Reasoningin Diagnosis), which uses eight metrics toinvestigate the fea-
sibility and limitations of current LLMsin real-world medical scenarios.

These studies demonstrate the potential of our proposed LLM as a
generalist medical Al (GMAI) in the field of medical diagnostics.

Results

Overview of the proposed LLM and dataset characteristics

In this study, we present MedFound, a pre-trained LLM tailored for
medical applications, and MedFound-DX-PA, specifically trained for
diagnostic analysis applications. To develop and evaluate our mod-
els, we constructed three data collections—MedCorpus, MedDX-FT
and MedDX-Bench—where MedCorpus and MedDX-FT were used for
training, and MedDX-Bench was used for evaluation (Supplementary
Table 1). The training process consisted of three stages: pre-training,
fine-tuning and alignment (Fig. 1a and Extended Data Figs.1-4).

Inthe first stage, we continued pre-training on a general-domain
LLM, BLOOM-176B, resulting in MedFound. To develop MedFound, we
curated alarge-scale medical corpus dataset, MedCorpus, comprising
atotal of 6.3 billion text tokens from four datasets: MedText, PubMed
Central Case Report (PMC-CR), MIMIC-IlI-Note and MedDX-Note.
These datasets are derived from diverse clinical representative sources:
medical textbooks and clinical guidelines, patient case reports from
literature, open-access clinical records and proprietary datasets of
real-world EHRs from hospital systems (as detailed in Methods). Con-
sequently, pre-training on MedCorpus enabled MedFound to encode
extensive medical knowledge and practical experience, establishing
it as a foundation tool for a broad range of applications within the
medical field.

Inthe second stage, we fine-tuned MedFound to imitate the diag-
nostic reasoning process of physicians, resulting inMedFound-DX. We
curated adataset named MedDX-FT with medical records and related
diagnostic rationale demonstrations for fine-tuning. Physicians were
asked tomanually craftademonstration of their clinical reasoning pro-
cessto diagnose agiven patient case based on actual medical records.
Theannotationinterfaceisillustrated in Extended Data Fig. 2a. Based
on the seed set of manual demonstrations and 109,364 EHR notes,
we employed a self-bootstrapping strategy to enhance the ability of
the LLM to automatically generate high-quality diagnostic rationales
(intermediate reasoning steps) for each EHR without extensive expert
labor.

In the third stage, we further optimized the model’s real-world
clinical utility by employing a unified PA framework, whichintegrates
‘diagnostic hierarchy preferences’ and ‘helpfulness preferences’.
For the ‘diagnostic hierarchy preference’, we leveraged the hierar-
chical structure of the ICD-10 tree to guide the LLM to align with the
well-established disease knowledge and diagnostic processes. For the
‘helpfulness preference’, the LLM directly aligns with expert feedback
by assessing the helpfulness of agiven diagnostic rationale (Extended
Data Fig. 2b), thus ensuring consistency with human values'®. Both
preference sets were optimized using Direct Preference Optimization
(DPO)", asimple reinforcement learning-free algorithm that simplifies
the preference learning pipeline.

During the evaluation stage, we curated MedDX-Bench, a bench-
mark consisting of three clinical datasets—MedDX-Test, MedDX-OOD
and MedDX-Rare—to comprehensively assess the diagnostic capa-
bilities of the LLM across real-world clinical settings (Fig. 1b). The
MedDX-Test dataset was an ID evaluation to evaluate the diagnostic
performance of MedFound-DX-PA across specialties, comprising 11,662
medical records from the same distribution as the training dataset. The
MedDX-O0D and MedDX-Rare datasets were constructed as external
validation sets, sourced from a distinct geographic region in Hubei
Province, China, for OOD evaluation. The MedDX-OOD dataset com-
prises 23,917 records of common diseases also present in MedDX-FT,
whereas the MedDX-Rare dataset includes 20,257 records spanning
2,105 rare diseases that are in long-tailed distribution. The evaluation
datasets encompass EHRs from daily diagnostic workflows, including
chief complaints, present history, physical examinations, laboratory
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Fig.1|Schematicillustration of the development and evaluation of our
diagnostic generalist. a, The development of MedFound and MedFound-
DX-PA. We pre-trained a176-billion-parameter MedFound on a large medical
corpus consisting of PMC-CR, MIMIC-IlI-Note, MedDX-Note and MedText. We
fine-tuned MedFound with diagnostic rationales and aligned it with diagnostic
hierarchy preference and helpfulness preference, resultingin MedFound-DX-PA.
b, Diagnostic performance benchmarking in real-world scenarios. We conducted

evaluationsin ID, OOD and long-tailed disease distribution settings, covering
diseases across eight specialties, including pulmonology, gastroenterology,
urology, cardiology, immunology, psychiatry, neurology and endocrinology.

¢, Clinical evaluation of the Al system. We conducted evaluations with physicians,
including a comparison study, an Al-assistance study and a qualitative study
under ahuman evaluation framework.

tests and radiological imaging reports. These three datasets present
achallenge to assess the generalizability under conditions of varying
disease diversity.

Performance of the LLMs on common diseases across
specialties

First, we evaluated the performance of MedFound-DX-PA for diag-
nosing common diseases across specialties in both ID and OOD set-
tings. We conducted comparisons with the leading LLMs, including
the open-access MEDITRON-70B?°, Clinical Camel-70B* and Llama
3-70B*and the closed-source GPT-40%*. Both MEDITRON-70B and Clini-
cal Camel-70B are medical pre-trained LLMs and have demonstrated

superior performance in medical tasks. Llama3-70B, amember of the
popular open-access Llama family, has shown excellent performance
across various domain-specific tasks. GPT-40 is the latest version of
ChatGPT, which is reported to have a broader knowledge base and
enhanced problem-solving abilities, showing promise in diagnostic
tasks. Details about these LLMs can be found in Supplementary Table 2.
Allopen-access models were fine-tuned and employed self-consistency
(SC) decoding to evaluate their diagnostic capacity.

IntheID setting evaluation, we constructed the MedDX-Test data-
set, which encompasses common fine-grained diseases represent-
ing 99% of the population across eight specialties. For example, we
evaluated the model’s ability to diagnose autoimmune thyroiditis
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(aspecific type of thyroid disorder) rather than simply categorizing it
as ageneral thyroid disease. For average performance across all spe-
cialties, our model demonstrated superior performance, achieving a
diagnostic Top-3 average accuracy of 84.2% (95% confidence interval
(CI): 83.5%, 84.8%) (Fig. 2a). This represents a substantial improve-
ment over the other four models, with average accuracies ranging
from 64.8% (95% Cl: 63.9%, 65.6%; Clinical Camel-70B) to 56.8% (95%
Cl: 55.9%, 57.7%; MEDITRON-70B). Among these, GPT-40 achieved a
diagnosticaccuracy of 62.0% (95% Cl: 61.1%, 62.8%), slightly lower than
the next-best-performing model, Clinical Camel-70B. We stratified the
results by specialty (for example, cardiology, neurology and endocri-
nology) to provide detailed insights into the LLM-based diagnostic
generalist (Fig. 2b). Our MedFound consistently outperformed other
LLMs, withaccuracies ranging from 82.4% to 89.6%. We also evaluated
the models using Top-1accuracy, macro accuracy, receiver operating
characteristicareaunder the curve (ROC-AUC) and precision-recall area
under the curve (PR-AUC) metrics, with results similarly indicating the
superior performance of MedFound-DX-PA (Extended Data Fig. 5 and
Supplementary Table 3).

Furthermore, we evaluated the generalizability of our model on
the MedDX-OOD dataset, an OOD setting where cases were collected
fromexternal real-world environments. Figure 2c,d presents the aver-
age and the stratified performance across each specialty, respectively.
MedFound-DX-PA significantly outperformed the baseline models in
all specialties (all P< 0.001). The results demonstrate the generaliz-
ability of our model as a diagnostic generalist across a variety of clinical
diseases, especially in fine-grained disease diagnosis.

We also extended our diagnostic generalist to specialty scenar-
ios that require specific knowledge of a particular medical field. We
assigned the role of diseases specialist to the LLM-based generalist
by prompting it for specialty-specific settings (as detailed in Meth-
ods). Our model achieved Top-3 accuracies ranging from 87.9% (95%
Cl: 87.2%, 89.6%) t0 93.9% (95% CI: 92.6%, 95.9%) on the MedDX-Test
dataset and 85.8% (95% Cl: 83.4%, 88.6%) to 90.2% (95% Cl: 88.7%,
93.5%) on the MedDX-OOD dataset (Fig. 2e,f), demonstrating that our
model can be adaptive to meet the precision requirements of these
specialty settings. We also compared our MedFound with existing
specialized decision support tools on multi-class, disease-specific
tasks using open-access datasets (Supplementary Table 4). The results
indicate that our model’s performance is similar to or exceeds that of
the specialized tools.

Performance of the LLMs on rare diseases

We expanded our experiments to examine the performance of the LLMs
indiagnosing rare diseases characterized by long-tailed distributions™.
Previous models have shown effectiveness in identifying common
diseases®, but their performance tends to decline in classifying rarer
diseases in few-shot or zero-shot scenarios. As illustrated in Fig. 3a,
the distribution of diseases reveals a long-tailed distribution, with
common diseases covering 99% of the population and the remaining
1% comprising a wide variety of less common diseases. To evaluate
the adaptability of the LLMs in diagnosing a broad spectrum of condi-
tions, we used azero-shot learning setting on the MedDX-Rare dataset,
whichincludes 2,105 rare diseases derived from long-tailed distribu-
tion across eight specialties (Fig. 3b and Extended Data Fig. 6a). Bar
plots in Fig. 3cillustrate the Top-3 accuracy of MedFound-DX-PA for
each fine-grained rare disease within each specialty, and radar plots
show the overall performance of each specialty across diseases (as
detailed in Methods). MedFound-DX-PA excelled across all special-
ties, ranging from 77.4% (95% Cl: 76.8%, 78.0%) to 84.4% (95% C1: 83.9%,
84.9%), with an average of 80.7% (95% Cl: 80.1%, 81.2%) (Fig.3c). GPT-40
achieved the second-best performance, ranging from 57.2% (95% Cl:
56.5%, 57.9%) to 63.1% (95% CI: 62.4%, 63.8%), with an average of 59.1%
(95% Cl: 58.4%,59.8%). This trend was also observed in the Top-1 macro
accuracy (Extended DataFig. 6b).

The average performance of LLMs was further assessed using
Top-3 micro accuracy, which considers individuals equally over
each specialty to mitigate the impact of classes with small sample
sizes, as shown in Fig. 3d. The second-best LLM, GPT-40, achieved a
moderate performance, ranging from 77.4% (95% CI: 76.9%, 78.0%) to
85.8% (95% ClI: 85.3%, 86.2%), with an average of 82.1% (95% Cl: 81.6%,
82.7%). In comparison, MedFound-DX-PA excelled across all special-
ties, showing a substantial performance improvement, ranging from
87.4% (95% Cl: 87.0%, 87.9%) to 93.0% (95% CI: 92.7%, 93.4%), with an
average of 89.2% (95% Cl: 88.8%, 89.6%). Additional metrics, such as
ROC-AUC and PR-AUC, also demonstrated the superior performance of
MedFound-DX-PA compared to other LLMs (Extended Data Fig. 6¢c and
Supplementary Table 3). To further investigate the model’s diagnostic
performance in long-tailed disease distributions involving varying
prevalence, we categorized them into ultra-rare (<0.1% prevalence)
andrare (0.1-1% prevalence) groups® (Extended Data Fig. 6d and Sup-
plementary Table 5). The results demonstrate that MedFound-DX-PA
performed consistently well between these two groups. This can be
attributed to MedFound-DX-PA’s generative ability and its comprehen-
sive understanding of the diagnostic structure, which offers flexibility
inadapting to fine-grained rare diseases.

Performance comparison between the LLM versus physicians
Here, we compare the diagnostic capacities of our LLM-based diag-
nostic system with those of human physicians in endocrinology and
pulmonology. Eighteen physicians were recruited, including nine
endocrinologists and nine pulmonary physicians, and were further
categorized by clinical experience into three groups: Junior (n=3),
Intermediate (n = 3) and Senior (n = 3). Each physician was allocated 150
cases to diagnose. Extended Data Fig. 3aillustrates the interface used
by the physicians for this evaluation task. Performance was measured
against the gold-standard diagnoses established by an expert panel.
In pulmonology, MedFound-DX-PA achieved a diagnostic accuracy of
72.6%, surpassing junior physicians (60.0%) and intermediate physi-
cians (67.7%) but slightly lower than that of senior physicians (76.2%)
(Fig.4a).Similarly, inendocrinology, the Al'saccuracy (74.7%) exceeded
that of junior physicians (69.4%) and intermediate physicians (72.5%)
and was similar to that of senior physicians (75.2%) (Fig. 4b). These
results demonstrate that our LLM-based diagnostic generalist outper-
formedjunior andintermediate physiciansinboth specialties and was
similar to senior physicians.

Performance of the LLM-assisted diagnosis within workflows

We further explored the LLM’s potential role in enhancing diagnostic
performance of physicians in the clinical workflow. When provided with
EHR notes (with diagnoses removed), junior andintermediate physicians
from the two specialties performed their initial diagnosis. Two weeks
later, they referenced the Al-generated content to formulate their second
diagnosis (Extended Data Fig. 3b). In pulmonology, Al assistance sub-
stantially enhanced the accuracy of junior and intermediate physicians,
by 11.9% and 4.4%, respectively, with performance approaching that of
the Al system but remaining slightly below that of senior physicians
(Fig.4a).Forinstance, for acase shownin Fig. 5a, the physician initially
diagnosed ‘acute bronchitis’ based on the patient’s present medical
history and C-reactive protein levels from laboratory tests. Then, with
the assistance of Al-generated content, which emphasized the patient’s
history of recurrent bronchitis, the physician revised the diagnosis to
the accurate diagnosis of ‘acute exacerbation of chronic bronchitis’.

In endocrinology, the accuracy of both junior and intermediate
endocrinologist groups substantially increased to 74.0% (anincrease
of4.6%) and 78.8% (anincrease of 6.3%), respectively, after Al assistance
(Fig. 4b). Notably, intermediate endocrinologists with Al assistance
outperformed senior endocrinologists, indicating the potential of Al
to enhance diagnostic accuracy beyond most experienced physicians
(P<0.05).Forinstance, asillustrated in Fig. 5b, the initial diagnosis of
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Fig. 2| Performance of the LLMs for diagnosis of common diseases across
various specialties. a-d, Comparison of Top-3 accuracy among MEDITRON-
70B, Llama 3-70B, Clinical Camel-70B, GPT-40 and our MedFound-DX-PA, for
diagnostic tasks in generalist settings. The results are shown in ID settings
(n=11,662) (aand b) and OOD settings (n =23,917) (cand d) across eight

GPT-40 M MedFound-DX-PA

specialties. aand c represent the overall performance, and b and d represent the
performance stratified by specialty. e,f, Comparison of Top-3 accuracy among
the LLMs in specialist-specific ID and OOD settings across eight specialties. Bar
graphsindicate the mean + 95% Cls.

subclinical hypothyroidismwas made whenthe physician observed ele-
vated levels of thyroid-stimulating hormone in the patient’s laboratory
tests. During re-evaluation with Al assistance, the model highlighted
previously overlooked elevated anti-thyroid peroxidase antibody
levels, indicating a possible underlying autoimmune thyroid disorder.
Consequently, the physician revised the diagnosis to ‘autoimmune
thyroiditis’. These results suggest that physicians can benefit from the
LLM model’s assistance by highlighting important clinical data, thus
enhancing healthcare delivery.

Human evaluation framework for Al's diagnostic capabilities

Previous evaluation metrics focus mostly on measures such as accu-
racy or natural language generation scores (for example, BLEU or
ROUGE), which fail to capture the clinical quality of inferential diag-
nostic process. Toaddress thisissue, we proposed a systematic evalu-
ation framework for Alin real-world diagnosis, established through a
process of literature review and consultations with expert physicians.
The framework CLEVER categorizes the capabilities of the LLM-based

systeminto eight clinical evaluation metrics, providinginsightsinto the
strengths and limitations of LLMs in aligning with medical standards
(asdetailed inthe Methods). For the assessment, six senior physicians
were recruited from the previous two specialties, using a Likert scale
rating system ranging from1to 5 (Fig. 4c and Extended Data Fig. 4).
In ‘Medical case comprehension’, the expert panels evaluated
the ability of the LLM to understand and interpret medical cases,
such as assessing whether its content contains information required
for diagnosis with completeness and correctness. Our proposed
MedFound-DX-PA achieved a score of 4.02 in ‘Medical case compre-
hension’, surpassing 3.77 of the unaligned LLM model significantly
(P<0.05). A similar trend was also observed in ‘Clinical reasoning’,
which was used to evaluate whether the LLM’s inferential diagnosis
aligned with the diagnostic reasoning process of physicians in clini-
cal practice. MedFound-DX-PA demonstrated superior performance,
with a score of 4.07, surpassing the unaligned models at 3.63 signifi-
cantly (P< 0.01).In‘Medical guidelines and consensus’, physicians were
asked to assess whether the LLM’s generation aligned with established
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accuracy of MedFound-DX-PA for individual diseases within each specialty.

d, The Top-3 micro accuracy over individuals among the LLMs for diagnosing rare
diseases across eight specialties. Bar graphs indicate the mean + 95% Cls.

medical guidelines and consensus. MedFound-DX-PA achieved a Likert
score of 3.83, whereas the unaligned model achieved a score of 3.62
(P=0.18). These results indicate that our model can capture relevant
medical evidence and incorporate diagnostic reasoning, potentially
offering enhanced clinical decision-making support.

We also sought to assess the efficacy of LLMsin supporting clinical
decision-making. For ‘Relevance of differential diagnosis’, physicians
assessed the LLM’s capacity to differentiate among multiple possible
conditions that could cause a patient’s symptoms. Our model achieved
ascore of 3.93, surpassing the unaligned models with 3.62 (P < 0.05).
The ‘Acceptability of diagnosis’ is used to rate whether the diagnosis
is acceptable or reliable for clinical use. In this category, our model
achieved a score of 4.21, significantly outperforming the unaligned
models at 3.72 (P < 0.001). These findings demonstrate the potential
clinical feasibility of our diagnostic generalist.

LLMs in critical clinical scenarios are expected to avoid generat-
ing inaccurate or misleading information (‘Unfaithful content’) or
demonstrate varying levels of stereotypes related to gender, culture
and race (‘Bias and unfairness’). Also, it is crucial that the generated
content of an LLM does not containany incorrect or harmful evidence,
which could potentially lead to misdiagnosis or mislead physicians
about possible medical accidents (‘Possibility of harm’). We examined
the model’s risk control capability by assessing ‘Unfaithful content’,
‘Bias and unfairness’ and ‘Possibility of harm’. Our model demon-
strated superior performance, with scores of 4.11, 4.14 and 4.03 in the
three metrics, respectively, surpassing the unaligned model at 3.66
(P<0.01), 3.82 (P<0.05) and 3.66 (P < 0.01), with significance. The
results indicate that LLM-based systems can be optimized through
alignment with human values, thus enhancing their trustworthiness
and clinical applicability.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-03416-6

a Pulmonology b Endocrinology
95 4 95 4
MedFound-DX MedFound-DX
90 1 Physician 90 7 Physician
85 | M Physician + MedFound-DX 85 | M Physician + MedFound-DX
80 1 80 - 78.8
> 76.2 >
o o 4.7 75.2
75 | 4 747 74.0 9.2
< 726 71.9 721 g 725
3 70 67.7 8 701 694
< <
65 - 65 -
60 - 60.0 60 -
55 - 55 4
50 T T 50 T T
Al Junior Intermediate Senior Al Junior Intermediate Senior
c Medical case Medical guideline Relevance of
comprehension _ Clinical reasoning 5 - and consensus _differential diagnosis
* *k NS *
)
< 41 44 49 49
(s}
3 | | |
bl
[}
= 3 A 3 3 A 3
-
24" 2 . : 2 . : 2 . :
Acceptability
s of diagnosis s Unfaithful content 5 Bias and unfairness s Possibility of harm
*k%k *% * *%
© |
= 4 44 44 | 4 A
(s}
g |
£
g
= 3 1 3 1 31 39
2 - 2 . ; 2 . ; 2 . ;
S s 3+ s s s 3+ s
& % S ¥ & ¥ S %
< Q & Q <& N & Q
& & N & > & S &
3 N 3 N 3 N 3 &
& © & S & O L ©
S N N N

Fig. 4 | Performance evaluation between the Al system and human physicians
for diagnosis. a,b, Performance comparison of diagnostic reasoning given by
MedFound-DX-PA and human physicians in pulmonology (a) and endocrinology
(b) (n=900). Bars represent the diagnostic accuracy of the Al system (orange),
human physicians (light blue) and physicians assisted by MedFound-DX-PA (dark
blue). The gray dashed line represents the performance of MedFound-DX-PA.

¢, Human evaluation between MedFound-DX and MedFound-DX-PA across eight
dimensions, including metrics of ‘Medical case comprehension’ (P=0.032),

‘Clinical reasoning’ (P=0.006), ‘Medical guideline and consensus’ (P=0.180),
‘Relevance of differential diagnosis’ (P = 0.036), ‘Acceptability of diagnosis’
(P<0.001), ‘Unfaithful content’ (P=0.002), ‘Bias and unfairness’ (P = 0.015)
and ‘Possibility of harm’ (P=0.009). Bar graphs indicate the mean + 95% Cls for
MedFound-DX (light orange) and MedFound-DX-PA (dark orange). Statistical
analyses were performed using a two-sided ¢-test. ***P < 0.001, **P< 0.01,
*P<0.05,NS (notsignificant) P> 0.05.

Impact of training components on the performance of LLMs
To explore the impact of key components of our proposed approach
onthediagnostic performance of LLMs, we conducted experiments
using MedFound and the latest leading LLMs, including Clinical
Camel-70B, Llama-3-70B and MEDITRON-70B, using MedDX-Bench.
We firstinvestigated the inherent diagnostic capabilities of LLMs by
adapting MED-Prompt, which familiarizes LLMs with the medical tasks
and allows them to adapt to diagnostic tasks without any additional
training. The results show that MedFound (without SC) achieved
superior performance, with micro accuracy improvements of 14.4%,
11.9% and 11.1% compared to the average performance of other LLMs
onMedDX-Test, MedDX-O0OD and MedDX-Rare, respectively (Fig. 6a).
For example, MedFound achieved accuracy of 37.2% (95% CI: 36.3%,
38.1%), outperforming the second-best LLM with performance of
30.8% (95% Cl: 29.9%, 31.6%; Clinical Camel-70B) on MedDX-Test.
Similar results were also observed with other evaluation metrics,
such as macro accuracy, detailed in Supplementary Table 6. This
suggests that MedFound is a more effective pre-trained model for
diagnostic tasks, probably due to its comprehensive pre-training on
MedCorpus, which enabled it to encode extensive medical knowledge
and practical clinical cases.

In addition to evaluating the inherent diagnostic capabilities
of the pre-trained LLMs, we further investigated the impact of COT
fine-tuning on enhancing the diagnostic accuracy of LLMs through
additional training on domain-specific data. As shown in Fig. 6b and
Supplementary Table 7, all models demonstrated improved perfor-
mance on the MedDX-Bench tasks after fine-tuning, with average
microaccuraciesincreasing by 14.9%,15.9% and12.7% on MedDX-Test,
MedDX-O0D and MedDX-Rare, respectively. After the COT fine-tuning,
we employed SC decoding technique to further enhance the model’s
reasoning performance by reducing variability and aligning its outputs
with domain-specific requirements. As shown in Extended Data Fig. 7
and Supplementary Table 3, all LLMs showed improvements by employ-
ing SC, with gainsinmicro accuracies for MedDX-Test, MedDX-OOD and
MedDX-Rare by 12.1%, 11.1% and 7.6%, respectively. In conclusion, our
proposed pre-training-fine-tuning approach substantially enhances
the performance of LLMs on medical tasks, especially for challenging
cases, such as rare diseases.

Discussion
In this study, we developed MedFound-DX-PA, a large-scale medical
assistant for general diagnosis to approximate clinician expertise
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Case: Gender: Male, Age: 64. Chief Complaint: Fever accompanied by cough for 4 days. History of Present Illness: The patient has experienced
fever with cough for four days. Despite undergoing anti-infection treatment, the patient continues to exhibit coughing, with no significant
improvement in symptoms. Past medical history: a history of bronchitis. Radiologic examinations: Chest CT Scan: increased lung markings, with
localized areas of increased translucency. There are a few linear and nodular areas of increased density in both lungs with clear boundaries. The
examination suggests chronic bronchitis and pulmonary emphysema. Laboratory testing: C-reactive protein (CRP) 24.65 mg/L (reference 0~10).

Physician’s initial diagnosis: Acute Bronchitis.

Model's diagnostic rationale:

+  The chief complaint is fever accompanied by cough for four days. The history of present illness indicates no significant improvement after anti-
infection treatment, with a past medical history of bronchitis. From this information, it can be inferred that the patient may have a respiratory
infection or inflammation. The physical examination is unremarkable, providing no additional clues.

+  Combining the above information, the possible diagnoses include respiratory infection or inflammation.

«  Further, based on the analysis of laboratory tests and radiologic reports: The C-reactive protein (CRP) test result is 24.65 mg/L, exceeding the
normal reference range, indicating an inflammatory response. CRP is an acute-phase protein, commonly elevated in diseases such as
inflammation and infection. Chest CT scan reveals increased and disorganized lung markings, localized areas of increased translucency, and
a few linear and nodular areas of increased density with clear boundaries. These findings are associated with chronic bronchitis and
emphysema.

Other possible diagnoses: Respiratory infection: Given the patient’s chief complaint and history of present illness, there is a possibility of
respiratory infection. Respiratory infections can be caused by a variety of pathogens, including viruses and bacteria. Emphysema: According
to the CT scan results, there is a possibility of emphysema. Emphysema is a chronic obstructive pulmonary disease characterized by airway
obstruction and loss of lung tissue elasticity, leading to increased lung volume.

+ Therefore, the most likely diagnosis is an acute exacerbation of chronic bronchitis.

Physician’s revised diagnosis: Acute Exacerbation of Chronic Bronchitis.

Case: Gender: Female, Age: 42. Chief Complaint: Abnormality detected in thyroid. History of Present Illness: The patient was found
"heterogeneous echotexture" on thyroid ultrasound in 2016. Thyroid function tests were normal, and no treatment was administered. There were
no fatigue. Physical Examination: No exophthalmos. No tenderness in thyroid. Laboratory Test: Thyroid-stimulating hormone: 6.072

nlU/mL (Reference range: 0.35~5.5); Thyroid peroxidase antibody: >10000 IU/ml (Reference range: <100); Thyroglobulin antibody: 50.4 U/ml
(reference range: <60); Free thyroxine: 14.20 pmol/L (reference range: 11.5~22.7); Free triiodothyronine: 4.17 pmol/L (reference range: 3.5~6.5);

Parathyroid hormone: 46.40 pg/ml (reference range: 14.5~87.1).

Physician’s initial diagnosis: Subclinical Hypothyroidism.

Model’s diagnostic rationale:

«  The chief complaint is the discovery of thyroid abnormalities. The history of present illness mentions the findings of “heterogeneous
echotexture” on thyroid ultrasound in 2016, with normal thyroid function tests and no treatment administered. Physical examination shows no
tenderness. This suggests the presence of thyroid abnormalities without apparent symptoms. There is no mention of any thyroid-related

diseases or surgical history in the past medical history.

« Taking the above information into account, possible diagnoses include thyroid nodules, thyroiditis, etc.

«  Furthermore, based on laboratory tests :The laboratory test shows normal levels of free thyroxine and free triiodothyronine, but elevated levels
of thyroid peroxidase antibody, suggesting the possibility of autoimmune thyroid disease. Thyroid peroxidase antibody is a marker of
autoimmune thyroid diseases, and its elevation may be related to thyroid dysfunction. The parathyroid hormone result shows parathyroid
hormone levels within the normal range, ruling out the possibility of parathyroid dysfunction.

+  Other possible diagnoses: Thyroid nodules: Thyroid nodules are common benign lesions of the thyroid gland. The formation of thyroid nodules
may be associated with thyroid dysfunction and thyroiditis. Subacute thyroiditis: Subacute thyroiditis is a disease caused by inflammation of
the thyroid gland, which may lead to thyroid dysfunction and thyroid enlargement. It could cause tenderness in thyroid.

Therefore, the most likely diagnosis is autoimmune thyroid disease.

Physician’s revised diagnosis: Autoimmune Thyroiditis.

Fig. 5| Examples of Al-assisted diagnosis evaluation. a,b, Examples of
diagnostic rationales generated by the MedFound-DX-PA model to assist
physicians in their diagnostic process. a, Case used in the evaluation with
pulmonary physicians. b, Case used in the evaluation with endocrinologists.

Each case includes the patient’s symptoms, medical history and examinations.
Physicians made an initial diagnosis upon their first review of the clinical notes
and re-diagnosed after considering the diagnostic rationale provided by Al
assistance.

across various healthcare scenarios. When evaluated on MedDX-Bench,
MedFound-DX-PA demonstrateed superior diagnostic performance
across specialties and conditions, including ID and OOD settings
for common diseases, as well as for rare diseases. Furthermore, we
conducted comparison studies involving MedFound-DX-PA versus
specialists and an Al-assistance study, which indicate its potential to
enhance the diagnostic capability of junior orintermediate physicians.
Additionally, the human evaluation study of LLMs demonstrates that
our MedFound-DX-PA has potential as ageneralist for integrationinto
clinical workflows.

Disease diagnosisis crucial for everyday clinical tasks andis prone
to errors, which may lead to adverse outcomes or treatment that is
withheld or delayed. Previous Al-assisted diagnostic tools include
rule-based CDSSs, machine learning onstructured featuresinEHR and

PLMs. However, their applicability is limited by their specific training
data and model size, necessitating specialty-specific models that are
inefficient.

Recent advancements demonstrate the potential of LLMs that
can interpret and generate text effectively with minimal or no spe-
cificfine-tuning, facilitating versatile applications such asinteractive
decision support and patient chatbots”. However, there are consid-
erable challenges in applying LLMs to the clinical setting. Existing
LLMs often fail to capture the vast range of medical knowledge and
scenarios. Furthermore, the output of generative language models
may contain factual errors, logic inconsistencies and problems with
coherence®, For example, ChatGPT has been found lacking in depth
and insight”, which produces overly generalized answers that lack
medical expertise. To bridge this gap, we introduce MedFound, which
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Fig. 6 | Performance analysis of LLM training components for various
diagnostic tasks. a, Comparison of accuracy among various pre-trained LLMs
via MED-Prompt for diagnostic tasks on MedDX-Test (ID testing on common
diseases) (left) (n=11,662), MedDX-OOD (OOD testing on common diseases)
(middle) (n=23,917) and MedDX-Rare (OOD testing on rare diseases) (right)
(n=20,257). The error bars represent the 95% Cls. b, Impact analysis of COT

fine-tuning on the accuracy of various LLMs for diagnostic tasks on MedDX-Test
(ID testing on common diseases) (left), MedDX-OOD (OOD testing on common
diseases) (middle) and MedDX-Rare (OOD testing on rare diseases) (right).

The short horizontal line shows the mean performance of a set of models.

The percentage increases shown are the improvements gained through COT
fine-tuning.

is, to our knowledge, the largest open-access medical LLM, with 176
billion parameters pre-trained on a diverse range of medical corpora.
Second, we fine-tuned MedFound by employing self-bootstrapping
based COT fine-tuning to boost the reasoning capabilities of medical
LLMs. The self-bootstrapping approach uses promptsto guidethe LLM
inautomatically generatinglarge-scale rationales with only hundreds
of annotations, thus reducing the cost of expert annotation. Subse-
quently, weintroduced a unified PA framework, aligning MedFound-DX
with both ICD-10 diagnostic preference and clinician-evaluated help-
fulness preference, ensuring trustworthiness and safety in critical
medical tasks.

Although previous studies highlighted the performance of
classification-based decision support tools in specific specialties, we
sought tocompare these tools withan LLM-based diagnostic generalist
inreal clinical scenarios. We included three representative classifica-
tionmodels: atraditionalmachinelearning approach using hierarchical
classification (hierarchical random forest (HRF)*°); a pre-trained lan-
guage model tailored for the medical domain using amasked language
modeling strategy (Med-BERT®); and a variant of our MedFound as a
pre-trained backbone for a classifier (MedFound-CLS), as detailed in
Methods. The results indicate that MedFound-DX-PA outperformed
the second-best model MedFound-CLS by 17.8% on the MedDX-Test and
by 35.7% on the MedDX-OOD datasets, highlighting the superiority of
generative models over classification approaches in diagnostic tasks,
particularly in OOD scenarios (Extended Data Fig. 8). Furthermore,
although existing specialized decision support tools demonstrate
certain effectiveness in specific specialties”, they are limited to identi-
fying pre-defined coarse-grained disease categories or often struggle
withzero-shotscenarios, where they must diagnose diseases that they
have never explicitly been trained to recognize. In contrast, medical
LLMs offer a promising solution in diagnosing rare diseases within
few-shot and zero-shot settings. Our model effectively handles rare
conditions by reasoning over new input samples in a manner akin to
human experts (Figs. 3 and 5). This zero-shot approach using founda-
tionmodels may open up possibilities for broader medical applications

that were previously challenging to address. Another advantage of our
diagnostic generalist modelis its ability to generate diagnostic reason-
ing, making the model’s output transparent and increasing physicians’
trustin Al-driven diagnostic tools.

Additionally, we conducted acomprehensive clinical validation of
the LLM-based diagnostic system within practical clinical scenarios. In
the study, we established abenchmark using real-world EHR dataacross
various specialties in diagnosing arange of diseases from common to
rare. When compared to other LLMs, MedFound-DX-PA demonstrated
superior performance across different distributions, highlighting
the model’s accurate and robust capacities as a generalist. To evalu-
ate the LLM-based model’s generated contents more thoroughly, we
developed a clinician evaluation framework, covering a wide array
of aspects. Given that ensuring safety is crucial for practical clinical
scenarios, our human evaluation framework assesses various safety
considerations, such as unfaithful content, bias, unfairness and the
possibility of harm. We also conducted a privacy risk assessment>
that demonstrated that our model has a low risk of information leak-
age (Supplementary Fig. 1). As shown in Fig. 4a,b, the results demon-
strated that our model considerably improves physician performance,
underscoring the potential role of LLMs inaugmenting the diagnostic
capabilities of physicians within clinical workflows. Furthermore, we
observed that some physicians could not surpass the original Al even
with Al assistance. This phenomenon has also been observed in previ-
ousstudies (for example, mammography cancer detection®” and chest
X-ray interpretation®). Research suggests that human-Al collaboration
faces challenges related to human mental models of the Al, which prob-
ably depend ontheir degree of familiarity with the Al or the reliance on
proposed decisions®***. This also highlights the need to further study
theimpact of Alaids on human cognition and observed performance.

The LLM-based diagnostic generalist has the potential to assist phy-
siciansacross various stagesin clinical workflows, includinginformation
gathering, datasummarizationandinterpretation, diagnostic reason-
ing and formulating final diagnoses® %, First, our MedFound-DX-PA
cangenerate diagnostic reasoning that covers awide range of common
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or rare diseases across specialties. This makes it particularly useful in
clinical scenarios requiring extensive medical knowledge of diseases
such as pre-diagnostic triaging and prioritization or serving as a con-
sultation ‘co-pilot’. For example, during pre-diagnostic assessments,
MedFound-DX-PA can synthesize patient symptoms, recommend fur-
ther diagnostic testing or direct patients to appropriate specialties. For
primary care physicianswho encounter abroad range of diseasesin daily
clinical work®, they can initiate referrals based on MedFound-DX-PA
prompts to access more specialized expertise, such as cardiology or
neurology. For complex and multisystem diseases, MedFound-DX-PA
could offer multidisciplinary consultation support, promoting amore
holisticapproach to patient care compared to task-specific tools. Addi-
tionally, the diagnostic generalist system could facilitate telemedicine
by overcoming challenges inresource-limited settings*** by alleviating
physician workload through automated integration between clinical
assessments.

In addition, our diagnostic generalist can also efficiently adapt
to specialty scenarios or specific diseases with minimal prompting,
offering superior performance and interpretability compared to
existing specialized models. We envision that MedFound-DX-PA can
facilitate Al-assisted consultations by providing specialist expertise
to less experienced physicians, enhancing differential diagnosis or
aidingin the refinement of final diagnoses. For example, the system
caninterpretlaboratory or radiological results*?, identify abnormali-
ties and summarize critical evidence from a specialist’s diagnostic
assessments, as demonstrated in Fig. 5. In the subsequent differential
diagnosis phase, MedFound-DX-PA will enhance the quality of diag-
nostic care by consideringall available evidence, offering diagnostic
rationales and proposing differential diagnoses to the physician.
Physicians who participated in our study also demonstrated improved
diagnostic accuracy by incorporating this Al system into their clini-
cal practice.

Although our model has demonstrated impressive diagnostic
performance, several challenges remain. First, our medical LLM cur-
rently focuses on language interaction, and its capabilities could
be extended by integrating with medical multimodal data through
vision-language models (VLMs). VLMs have shown promise in fields
such as pathology, radiology and echocardiography**°, These
advancements are powered by LLMs, which provide extensive domain
knowledge and reasoning capabilities*, enabling VLMs to perform
zero-shotimage-to-text generation based on natural language instruc-
tions, unlocking emerging capabilities such as visual knowledge
reasoning and visual conversation. In the future, integrating VLMs
could enable MedFound-DX-PA to adopt a more comprehensive,
multimodal approach to diagnosis and patient care, opening new
possibilities for Al-assisted healthcare. Furthermore, to enhance
the human-computer collaboration for the integration of Al into
routine clinical workflows, future work will focus on refining LLM
models, such as LLM agents*®, to better adapt to individual physicians,
thereby enhancing the personalization of diagnostic support. The
evaluation interaction between the model assisting physicians and
the feedback from physicians can also refine the model, known as
human-in-the-loop*, enabling the LLM system to evolve continuous
improvement in a manner that aligns more closely with the practi-
cal needs of clinical environments. These future directions will be
instrumentalin enhancing the practical integration of Alinto clinical
workflows and maximizing its potential to benefit healthcare practices
or the diagnostic training of primary care.

Online content
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ries, source data, extended data, supplementary information, acknowl-
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Methods

Datasets

Inthisstudy, we curated three datasetstodevelopandevaluate MedFound-
DX-PA, from pre-training, fine-tuning and evaluation (Supplementary
Table1). For pre-training, we created MedCorpus, a large-scale collection
of free text from four sources: PMC-CR, MIMIC-1lI-Note, MedDX-Note
and MedText. For fine-tuning, we used the MedDX-FT dataset, which
comprises EHRs with diagnoses, diagnostic rationale demonstrations
and helpfulness annotations. Among those, MedDX-Note and MedDX-FT
include EHRs sourced from the China Consortium for Disease Diagnosis
Investigation (CC-DXI). It enrolled multiple hospitals across Beijing,
Sichuan Province and Guangdong Province in China: Peking University
Third Hospital, Peking University First Hospital, West China Hospital
of Sichuan University and Shenzhen University-affiliated South China
Hospital. The study was conducted under a waiver of written informed
consent approved by the institutional review board (IRB). IRB and eth-
ics committee approvals were obtained in all locations. EHR data were
de-identified to remove any patient-related information.

Pre-training datasets to develop MedFound. We curated MedCor-
pus, an extensive language corpus comprising a diverse collection
of biomedical and clinical text, for the pre-training of MedFound.
MedCorpusintegrates a total of 6.3 billion tokens obtained from four
datasets: MedText, PMC-CR, MIMIC-III-Note and MedDX-Note (Sup-
plementary Information).

MedText is composed of a diverse collection of medical text-
books, comprising 1,752 multilingual textbooks, encapsulating fun-
damental medical knowledge, terminology, concepts and practice
guidelines. PMC-CR comprises full-text case reports from PMC*°, pro-
viding detailed reports of the symptoms, signs, diagnosis, treatment
or follow-up of individual patients, with a particular focus on unusual
ornovel occurrences of disease, and many new ideas inmedicine. PMC
isrecognized as the most extensive, publicly accessible digital reposi-
tory that archives a wide range of research articles in the fields of bio-
medical and life sciences. MIMIC-11I-Note and MedDX-Note are derived
from real clinical data, covering a diverse range of diseases across
different systems. MIMIC-III-Note is annotated from an open-access,
large-scale clinical database, MIMIC-III, which contains EHRs from
38,597 patients across 49,785 hospital admissions within intensive
care units®. The MIMIC-1II-Note dataset contains a diverse selection
of typical medical texts from patient records, such as medical notes,
prescribed medications, clinical orders and radiology reports, among
others.MedDX-Note, a proprietary large-scale, real-world dataset, con-
tains 8.7 million EHRs sourced from the CC-DXI. The extensive dataset
covers a spectrum of diseases and a mean age of 40.96 years with a
standard deviation of 21.30. Each record within the dataset provides
acomprehensive account of the medical encounters, such as medical
history and examination reports. We conducted data pre-processing
for the corpus, whichinvolved the removal of special tags and charac-
ters and tokenization (details of the MedCorpus are provided in the
Supplementary Information).

Fine-tuning and alignment datasets to develop MedFound-DX-PA.
To fine-tune and align our model for diagnosis, we curated a medical
record dataset and collected two types of expert annotations: diag-
nostic rationale demonstrations and helpfulness annotations. We
constructed a dataset sourced from the CC-DXI, named MedDX-FT,
comprising 109,364 cases and spanning 408 common diseases across
eight specialties: pulmonology, gastroenterology, urology, cardi-
ology, immunology, psychiatry, neurology and endocrinology. For
fine-tuning models with diagnostic reasoning rationales, we manually
curated a dataset comprising 800 diagnostic rationale demonstrations
using medical records from the MedDX-FT dataset. In each case, physi-
cians read through the entire case history and provided step-by-step
diagnostic analyses, incorporating crucial factors such as clinical

difficult to diagnose. For instance, ICD E11 (type 2 diabetes mellitus)
is the parent of several child codes, including E11.0 (type 2 diabetes
mellitus with hyperosmolarity), E11.1 (type 2 diabetes mellitus with
ketoacidosis) and E11.2 (type 2 diabetes mellitus with renal complica-
tions)*®. The hierarchical structure of the ICD facilitates the construc-
tion of more granular preferences, based on the alignment of model
outputs with ICD codes.

For the helpfulness preference construction, we constructed ascor-
ingmodel trained onan expert-annotated dataset comprising diagnostic
rationales with labels of ‘helpful’ or ‘unhelpful’. A binary classification
modelwas trained as ascoring model to assess the extent of helpfulness
for each diagnostic rationale. Preference optimization for multiple
preference objectives isaccomplished through DPO, known for its stabil-
ity performance, and computational efficiency. Compared toreinforce-
ment training, DPO offers a more stable training process”. Both
diagnostic hierarchy preference and helpfulness preference are jointly
trained. Given a medical record, multiple responses are sampled. The

objective functionis L = logo (/3 log %ﬁ log %) where xisinput
refOVw ref OVt

prompt; y, and y, denote the preferred and dispreferred responses,
respectively; m, is reference policy; myis an optimal policy with param-
eter 6;and gisaparameter controlling the deviationfromthe reference
policy m,.r. Adetailed description of the PAis provided in the Supplemen-
tary Information.

Baselines

We evaluated our approach against open-access state-of-the-art
LLMs, including Clinical Camel-70B, Llama-3-70B, MEDITRON-70B
and MMedLM 2-7B and the closed-access LLM GPT-40. These LLMs
are decoder-only generative language models. We also evaluated our
approach against classification baselines: atraditional machine learn-
ing method with HRF**°, a BERT-based pre-trained LLM (denoted as
Med-BERT®) and a classifier variant of MedFound (MedFound-CLS).
HRF employs an anatomically based hierarchical classification system
combined with classifiers for disease diagnosis analysis. In contrast,
Med-BERT is an encoder-only transformer model designed for the clini-
caldomain, and MedFound-CLS, avariant of our MedFound, served asa
pre-trained backbone for a classifier. For afair comparison, all baselines
were trained using the same training dataset as our method. Addition-
ally, we developed MedFound-7B based on BLOOM-7B, asmaller-scale
version that is more accessible for local deployment, thereby also
addressing security concerns (Extended Data Fig. 9).

Clinical study

Study design and participants. In additionto the performance assess-
mentinretrospective data, we further validated the applicability of LLMs
inreal-world medical diagnostic scenarios. We designed comprehensive
clinical studies, which include comparing the accuracy between the Al
systemand various levels of physicians, assessing the model’s effective-
nessinassistingjunior and intermediate physicians in diagnosis as well
asimplementing a human expert evaluation framework of the capability
of LLM generation contents based on a Likert scale. We recruited nine
endocrinologists and nine pulmonary physicians with various years
of clinical practice experience, including three junior physicians with
1-5yearsof clinical practice experience, three intermediate physicians
with 5-10 years of clinical practice experience and three senior physi-
cians with more than 10 years of clinical practice experience within
each specialty, respectively. This study was approved by the Peking
University Third Hospital Medical Science Research Ethics Committee
(IRBO0006761-M2023607).

Comparison of diagnostic accuracy between Al and physicians.
To evaluate the performance of our model in disease diagnosis, we
performed performance comparison between our LLM system and
physicians’ diagnoses. Here, three groups of physicians were involved,
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observations, potential ranges of diseases and diagnoses. The annota-
tioninterfaceisillustrated in Extended Data Fig. 2a. We thenemployed
a self-bootstrapping strategy to automatically generate high-quality
diagnosticrationales for each EHR, resultingin 109,364 rationales for
fine-tuning.

For the helpfulness PA of the models, we collected helpfulness
annotation. Physicians were assigned to assess whether a given diag-
nostic rationale provided assistance in making accurate diagnoses.
Helpfulness was defined as the extent to which the diagnostic rationale
presented in the response guided the annotator toward an accurate
diagnosis. The annotationinterface is shownin Extended DataFig.2b. A
total of 1,800 selected generated responses from the MedDX-FT dataset
were annotated in this manner. Overall, in 72.1% of cases, the generated
diagnostic rationales were reported to be helpful. These data were
used to fine-tune and align MedFound-DX-PA with human preferences,
aiming to enhance its generated rationales to align with professional
preferences and to provide helpful assistance in the diagnostic process.

Evaluation datasets of the diagnostic performance of LLMs. For the
evaluation of the LLM-based systemin disease diagnosis, we conducted
MedDX-Bench, a comprehensive benchmark that consists of three
datasets containing real-world EHRs: MedDX-Test and MedDX-OOD
for ID and OOD testing on common diseases and MedDX-Rare for OOD
testing onrare diseases.

Specifically, the MedDX-Test dataset, sourced from the same ori-
ginasthe developmental dataset CC-DXland mutually exclusive from
the MedDX-FT dataset, was used to evaluate the diagnostic perfor-
mance in an ID setting. It contains 11,662 medical records, covering
awide range of common diseases across various medical specialties.
MedDX-OOD and MedDX-Rare were collected from Yichang Central
People’s Hospital inHubei Province, China, ageographicregiondistinct
from the CC-DXIfor OOD evaluation. There is no overlap between the
MedDX-OOD and MedDX-Rare datasets. To extend our evaluation to
external validation sets and to test the models’ performancein varying
conditions, we introduced the MedDX-OOD and MedDX-Rare datasets.
The MedDX-O0D dataset comprises 23,917 records spanning common
diseases, serving as an OOD validation set to assess the models’ gen-
eralizability across different geographical regions. The other dataset,
MedDX-Rare, consists of 20,257 records covering 2,105 diseases that
exhibit along-tailed distribution and present a challenge under condi-
tions of rare and fine-grained diseases. All EHRs used in this study were
obtained from hospital systems with a diverse patient population from
different clinical departments and could closely mirror the process of
real-world diagnoses.

Model overview

Here we present MedFound, a pre-trained, large-scale language model
tailored for medical applications, and MedFound-DX-PA, which is fur-
ther optimized for enhanced diagnostic capabilities. First, we curated a
diverse collection of medical corporafor continued pre-trainingbased on
the BLOOM model (176 billion parameters), resulting in MedFound. This
step aims to adapt the LLM to the medical domain to boost its end-task
performances. Subsequently, we fine-tuned MedFound using a dataset
with diagnostic rationales to learn diagnostic reasoning, resulting in
MedFound-DX. Finally, we refined MedFound-DX to align withthe domain
expertise and requirements of the diagnostic profession and human
expert preferences using DPOY, resulting in MedFound-DX-PA. The
alignment process was guided by the hierarchical structure of disease
classifications according to the ICD and by human expert preferences
assessed through helpfulness scores from a helpfulness scoring model.

Pre-training for developing MedFound. Here, we leveraged the
BLOOM?®?family of LLMs, a decoder-only transformer language model,
asour base model for domain pre-training. The BLOOM training corpus
consists of 1.61 terabytes of text across multiple languages. We chose

BLOOM-176B as the base model, owing toits status as the largest open-
source language model available, with its emergent capabilities and
extensive knowledge base®. For pre-training, the model is trained via
the objective of causal language model®. Let D = {x;}denote the collec-
tion of sequences, and the sequence x;is made up of n;tokens—thatis,
X; = (W1, Ww,, ... ,wy,). The training objective is to minimize the negative
log-likelihood 3,7, 377", ~log P (w jlwy, w5, ..., w ).

Fine-tuning for diagnostic reasoning. To adapt the model for the
clinical diagnosis tasks, we fine-tuned MedFound on a dataset with
diagnostic rationales based on aself-bootstrapping approach, resulting
in MedFound-DX. In clinical diagnosis, physicians are required to
explainapatient’ssymptoms and describe their rationale for generat-
ing a diagnosis, demonstrating the complex and multi-step nature of
diagnosis reasoning®*. To incorporate this essential element for accu-
rate diagnosis, we employed COT fine-tuning® on MedFound, integrat-
ing diagnosticrationalesinto the dataset, thereby enhancing the ability
of the model to mimic human-like diagnostic thought processes. The
generated diagnosis is conditioned on this intermediate rationale,
which is expected to improve its accuracy. The language model py is
trainedto generatearesponse R = v;.,foragiveninput promptl = w;.,,
optimizing thelikelihood py (R]1) = py (1. p|w1.,n), Where nand mrepre-
sentthelengths of the response and input prompt, respectively. Thus,
the loss function is %Z;":fn"ﬂ —log pg (W;|wy, ..., Wy).

Although COT fine-tuning’® has demonstrated advantages with
LLMs, it remains challenging to acquire a substantial amount of COT
demonstrations for fine-tuning, especially within the medical domain.
Toaddressthisissue and further enhance the model’s diagnosis reason-
ing ability, we adopted a self-bootstrapping approach, following the
Self-Taught Reasoner (STaR)*. This approach helps the LLM learn to
automatically generate more coherent and precise rationales by train-
ingit based on a seed set of high-quality diagnostic rationale demon-
strations annotated by human expert™. Given a dataset D = {(x;, y))};
and a small dataset with rationale § = {x;,y;,r;};,, where x; is a medical
record with diagnosis y;, r; represents diagnostic rationale. First, we
fine-tuned a preliminary model M, based on the pre-trained model M,
with $ to learn to generate diagnostic rationale. Then, the model m,
generates diagnosis y; with diagnostic rationale r; for each sample x;
from D, resulting in D, = {(x,»,r[f,ylf)}i. We then generated diagnostic
rationale r’, where we provide the true diagnosis asa hintin aprompt—
thatis, (3;,x;)—tothe model M; and askit to generate diagnostic ration-
ale r7, resulting in D, = {(x,-,rlf’,y;)}i. We then corrected the diagnostic
rationale r;by r/'if diagnosis y;is wrong, resulting in anew dataset 2.
We then fine-tuned the model again using 2, deriving the refined
model M,.

PA for developing MedFound-DX-PA. To align MedFound-DX with
real-world diagnostic scenarios and human expert preferences, we
propose a unified PA framework. This framework incorporates two
types of preferences, including the diagnostic hierarchy preference
and the helpfulness preference, which are jointly optimized in the
model to align with the diagnostic standards, and expectations of
healthcare professionalsin clinical scenarios. The diagnostic hierarchy
preference, guided by the hierarchical structure of disease classifica-
tions defined by the ICD codes, seeks to align the model’s generation
with the standards for disease classification. The helpfulness prefer-
enceisrefined through a helpfulness scoring model trained on expert
annotations, aiming to make the model’s generation more informative,
useful and trustworthy for diagnostic purposes while minimizing the
risk of harm or misleading information. The PA process comprises two
steps: preference construction and preference optimization. For the
diagnostic hierarchy preference construction, we leverage guidance
fromtheICDtoaddresstheissues associated with setting preferences
based solely on diagnostic correctness, which canresultin sparse sig-
nals, especially in cases involving rare diseases or conditions that are
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includingjunior, intermediate and senior physicians, separately from
each specialty in pulmonary and endocrine medicine. For the com-
parison, we constructed an independent validation set comprising
300 cases, with 150 cases from each of endocrinology and pulmonol-
ogy. Each physician made diagnoses based on information provided
from the medical records, including demographics, chief complaint,
present illness, past medical history, physical examination, labora-
tory tests and radiological examination. We used the diagnoses of an
expert consensus panel comprising three senior physicians fromeach
specialty, serving as the gold standard. We then used it as a reference
toassess the accuracy of Al-generated diagnosis in comparisonto the
physiciangroups.

Assisted diagnostic accuracy with the LLM in the workflow. We
conducted astudy to examine the Al system’s potential rolein assisting
the diagnostic performance of physicians within their workflow. After
the previous initial diagnosis, each group of junior and intermediate
physicians was asked to provide a diagnosis with the assistance of the
model-generated output, including reasoning rationales and final
diagnosis suggestions. Eachjunior and intermediate physician received
150 cases. Then, the physicians formulated their final diagnosis using
the model-generated contents as reference. The re-test comparison
study was conducted at least 2 weeks later to ensure reproducibility.
We compared the diagnosticaccuracy of junior and intermediate physi-
cians after Al assistance to that of our Al system or senior physicians,
toinvestigate whether the integration of an LLM in the workflow could
enhance junior and intermediate physicians.

Human evaluation framework of the diagnostic capability of the
LLM. To gain a comprehensive understanding of the capabilities and
potential limitations of the LLM in clinical senecios, we proposed an
assessment framework named CLEVER. This frameworkis designed to
evaluate the capacity of the LLM to generate accurate and reliable diag-
noses while adhering to medical standards, covering various aspects
from medical case comprehension and clinical reasoning to diagnosis
formulation. The development of the CLEVER framework was inspired
by previous work'*’ and involved consultations with expert physicians
in the United Kingdom and China. The framework included eight key
evaluation axes and refined metrics. (1) Medical case comprehension.
The objective of this metric was to assess the LLM’s understanding
and interpretation of medical cases, including comprehension of the
record of clinical cases and crucialinformation required for diagnosis
with completeness and correctness. (2) Medical guideline and con-
sensus. The objective of this metric was to assess the LLM’s adherence
to established medical guidelines and consensus within the medical
community. (3) Clinical reasoning. The objective of this metric was
to assess the LLM’s content aligned with the diagnostics reasoning
process of physiciansin clinical practice. (4) Relevance of differential
diagnosis. The objective of this metric was to assess the LLM’s capacity
to differentiate among multiple possible conditions or diseases that
could potentially cause a patient’s symptoms. (5) Acceptability of diag-
nosis. Assessing the feasibility of the LLM’s generated diagnoses. We
asked the physicians to rate whether the diagnosis was acceptable or
reliable for clinical use. (6) Unfaithful content. Evaluating the presence
orextent of inaccurate or misleading informationinthe LLM’s output.
The physicians were asked to rate whether the LLMincluded incorrect
or fabricated content. (7) Bias and unfairness. Assessing the presence
orextenttowhich the LLM demonstrated varying levels of stereotypes
related to age, gender, culture and race. (8) Possibility of harm. Assess-
ing the presence or extent to which the generated content of the LLM
containsanyincorrect, adverse, harmful or fabricated evidence, which
could potentially lead to misdiagnosis or mislead physicians, resulting
in possible serious medical accidents/negative impacts.

Atotal of six senior physicians, comprising three senior physicians
specialized inthe pulmonary field and three senior endocrinologists,

eachwith over10 years of clinical experience, were involved in evaluat-
ing the model’s generated diagnosis and the related reasoning process.
The capabilities of the LLM with alignment versus the LLM without
alignment were assessed by each senior physician within their respec-
tive specialty. This process included a total of 180 evaluations. Each
senior physician reviewed and scored the cases based on a five-point
Likert scale. A detailed description of the metrics is provided in the
Supplementary Information.

Implementation

We applied low-rank adaptation (LoRA)®° and ZeRO++°*' with the
DeepSpeed framework to train LLMs. LoRA canreduce the number of
trainable parameters by freezing the pre-trained model weights and
injecting trainable rank decomposition matricesinto each layer of the
transformer architecture (see details in the Supplementary Informa-
tion). We found that LoRA fine-tuning, when appropriately configured,
can be more effective for large-scale LLMs (Supplementary Table 8).
Experiments demonstrated that with parameter-efficient training and
selecting domain-representative corpora, the corpus token size used
issufficient to build an efficient medical LLM (Supplementary Table 9
and Extended Data Fig. 9). We employed the vLLM® library for model
inference forits high efficiency in memory and computational resource
utilization. In our approach to generating diagnosis using LLMs, we
included two prompting techniques: MED-Prompt prompting®and SC
prompting®*. MED-Promptis a medical prompting strategy, combined
with few-shot prompting to generate predictions from pre-trained
LLMs without the need for task-specific fine-tuning. The SC strat-
egy was employed with 20 samples to balance performance and cost
(Extended Data Fig. 10). Detailed parameters of the implementation
are provided in the Supplementary Information.

Statistical analysis

We used micro accuracy and macro accuracy to evaluate diagnos-
tic performances. We calculated the mean and standard error of the
performance. To compute the Cls, we used a non-parametric boot-
strap procedure with 1,000 samples®. We also reported more met-
rics, including precision, recall, ROC-AUC and PR-AUC, using both
macro average (unweighted) and micro average (sample-weighted)
methods. The ROC-AUC scores were calculated using SC agreement
frequency®. Inclinical studies, a two-sided P value of less than 0.05 was
considered statistically significant. We use two-sided ¢-tests between
MedFound-DX and MedFound-DX-PA to show whether significant
differences exist across eight dimensions of human evaluation for
diagnostic performance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Theraw data of PMC-CR and MedText are available from https://www.
ncbi.nlm.nih.gov. The MIMIC-III-Note dataset can be found at https://
physionet.org/about/database/and requires access due to its terms of
use. MedDX-Note and MedDX-Bench are sourced from real-world clini-
calscenarios, withIRB approval obtained frominstitutions for EHR data
collection. Dueto privacy regulations, the EHRs cannot be made freely
available in a public repository. De-identified data from MedDX-Note
and MedDX-Bench can be requested through the management team by
contacting the corresponding author (G.W.), following a defined proto-
colfordatarequest approval. Generally, all such requests for access to
EHR data will beresponded to within1 month. For the reproduction of
our code and model, arepresentative test dataset from MedDX-Bench,
containing samples across specialties, is publicly available on GitHub
(https://github.com/medfound/medfound/tree/main/data/test.zip).
Data can be shared only for non-commercial use.
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Code availability

The deep learning models were developed and deployed in
Python (3.10) using PyTorch (2.1.2). The following standard model
libraries were used: numpy (1.26.4), pandas (2.2.1), transformers
(4.36.1), vllm (0.2.5), scikit-learn (1.2.1), matplotlib (3.7.1) and scipy
(1.11.3). We build upon PyTorch (2.1.2) to implement Direct Pref-
erence Optimization (DPO). Custom codes were specific to our
development environment and were used primarily for data input/
output and parallelization across computers and graphics processors.
The codes are available for scientific research and non-commercial
use on GitHub at https://github.com/medfound/medfound. The
pre-trained models are publicly available (https://huggingface.
co/medicalai/MedFound-7B, https://huggingface.co/medicalai/
MedFound-176B).
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Extended Data Fig.1| The development of the LLM-based diagnostic system. data D,. b, Unified preference alignment framework. Left, Preference alignment

a, The fine-tuning process. First, we fine-tuned M’ based on alanguage model M includes two steps: preference construction and preference optimization. Upper
to generate diagnostic rationales based on a small number of manual right, given amedical record, multiple rationales are sampled and used to
demonstrations Dy.annotated by physicians. Then, we utilized the model M’ to construct preference pair. Lower right, both diagnostic hierarchy and

generate a dataset with diagnostic rationales D;. Given amedical record asinput, helpfulness preferences are incorporated, where diagnostic hierarchy

the model M’ generated diagnostic rationale. For cases where the diagnosisin preferences are guided by the hierarchical structure of disease classifications
rationale was incorrect, we provided the model M’ with the medical records and based onICD codes and helpfulness preferences are constructed based on expert
the corresponding correct diagnosis as a reasoning cue to re-generated annotations.

diagnostic rationale. Finally, we finetuned the model M’ using the augmented
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Case Overview Annotations of Diagnostic Rationale

Patient Information
Age 55
Gender Male

Chief Complaint Recurrent cough and wheezing for 2 years, exacerbated for 1 week. The patient presents with chronic cough and wheezing, recently
worsened after exposure to cold. The physical examination findings are
Over the past 2 years, the patient has experienced recurrent coughing and expectoration following exposure to cold, with consistent with emphysema, including barrel chest, decreased vocal
episodic coughing and wheezing. During these episodes, the patient feels chest tightness and difficulty breathing, particularly reeriie s i = Jon. Addi chest CT
Present lliness History pronounced at night. About 1 week ago, after exposure to cold once again, the coughing and expectoration worsened, catee Sonio brnanilel Tieas fodinge suchiaa civonb coushand
accompanied by increased wheezing. There is no lower limbs edema, no associated chills o fever, no poor appelite, no nausea : : ; :
e verag, wheezing, recent of these physical
findings of emphysema, and CT evidence of chronic bronchitis, support
Barrel chest, decreased bilateral vocal fremitus, bilateral breath sounds, with no the diagnosis of 'acute exacerbation of COPD"

thonchus or moist rales. Diagnosis: Acute of chronic i y disease

Physical Examination

Chest CT: The examination revealed increased lung markings, with linear and nodular densities visible. Impression of the (CoPD).

examination: chronic bronchitis. Differential Diagnosis:
(1) Asthma: Asthma typically occurs at a younger age, often in childhood,
and is assoclated with allergic conditions. There is usually a family
history of asthma. The symptoms of dyspnea show diumal and seasonal
variation. Wheezing are more prominent at night and in the early
morning. Pulmonary function tests typically show reversible airflow
limitation. However, this patient's older age, lack of allergic disease
history, and clinical presentation are not consistent with asthma. Further
evaluation with pulmonary function tests and measurement of total IgE
may aid in diagnosis.
(2) Congestive heart failure (CHF): CHF is common in elderly patients
with underlying heart disease. Physical examination may reveal lower
limb edema, cardiac enlargement, gallop rhythm, and moist rales.
Laboratory tests may show elevated NT-proBNP levels, and

aphy may show ejection fraction. Chest X-ray

may reveal cardiac g and pi y edema. y
function tests may show restrictive rather than obstructive impairment.
However, this patient has no underlying heart disease, making CHF less
likely. Further ion with iography and BNP
may be warranted.

Radiological Examination

Case Overview Annotations of Helpfulness

Patient Information felpful " s nt 0 diag rationale presented in the

ido thom with

Age 55

Gender Male Whether model's output is helpful for your making diagnosis ? Please
annotate yes or no.
Chief Complaint Recurrent cough and wheezing for 2 years, exacerbated for 1 week.

Y
Over the past 2 years, the patient has experienced recurrent coughing and expectoration following exposure to cold, with ® =
episodic coughing and wheezing. During these episodes, the patient feels chest tightness and difficulty breathing, particularly ® o
Present lliness History pronounced at night. About 1 week ago, after exposure to cold once again, the coughing and expectoration worsened,
accompanied by increased wheezing. There is no lower limbs edema, no associated chills or fever, no poor appetite, no nausea
or vomiting.

Barrel chest, decreased bilateral vocal fremitus, bilateral breath sounds, with no
rhonchus or moist rales.

Physical Examination

Chest CT: The examination revealed increased lung markings, with linear and nodular densities visible. Impression of the

Raciological Examination examination: chronic bronchitis.

Al Diagnostic Rationale

Based on the patient's information, the following analysis is made:

The patient presents with recurrent cough and wheezing for 2 years, which mainly caused by respiratory and circulation system diseases. There is no lower limb
edema, and no nausea or vomiting, showing the patient is less likely to have circulatory system diseases and digestive system diseases. His medical history
indicates worsening symptoms after exposure to cold, which may indicate sensitivity of the airways to envi changes. It is with COPD
characteristics.

Taking all this into consideration, the primary diagnosis is chronic obstructive pulmonary disease (COPD).

Furthermore, he has taken physical examination revealing barrel chest, decreased bilateral vocal fremitus, hyperresonance on percussion, and decreased breath
sounds. These fingdings possibly due to airway obstruction and are typical clinical of COPD, suggesting the ility of chronic obstructive
pulmonary disease (COPD). What's more, the patient is a 55-year-old male, showing that he is at a higher risk for chronic obstructive pulmonary disease
(COPD) in this age group. Chest CT reveals increased lung markings, with linear and nodular densities visible. These imaging features which are commonly
reported in chronic bronchitis are present.

Although smoking history and the pulmonary function test were not provided, the of COPD is with the chronic observed in the
chest CT.

The recent exacerbation of symptoms for 1 week leads to the diagnosis of acute exacerbation of COPD.

Thus, the most probable diagnosis is acute of chronic Pt y disease (COPD).

Differential Diagnosis:

(1) Asthma: Asthma is also a consideration with symptoms of cough and wheezing. Asthma often presents with episodic dyspnea, wheezing, and cough. Asthma
often exacerbates at night, presenting with wheezing sound on auscultation, which is not consistent with this patient's manifestation. Moreover, the patient is an
older man with no clear history of allergic diseases. Asthma typically occurs at a younger age and is associated with allergic conditions. As a result, asthma is
less likely than chronic obstructive pulmonary disease. Pulmonary function tests can be performed to confirm the diagnosis.

(2) Congestive Heart Failure (CHF): CHF can also manifest similarly with symptoms of cough and wheezing. CHF are often with underlying cardiac diseases. This
patient shows no related past medical history, which is not consistent with CHF. CHF typically has dyspnea, decreased urine output, lower limb edema, and sign
of bilateral moist rales, which are not present in this patient. It makes CHF less likely. Electrocardiogram, echocardiography, and BNP, etc., can be performed to
confirm the diagnosis.

Extended Data Fig. 2| The user interface of annotation. a, The user interface allows physicians to annotate diagnostic rationale. b, The user interface allows
physicians to annotate the given diagnostic rationale by a label of helpful or not.
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Case Overview Physician’s Diagnosis

Patient Information P d s 0s, with emphasis on

Age 55

Diagnosis /Seconda
Gender Male iag: Primary, ry
Acute exacerbation of chronic

Chief Complaint Recurrent cough and wheezing for 2 years, exacerbated for 1 week.
e = ol = obstructive pulmonary disease

Primary
Over the past 2 years, the patient has experienced recurrent coughing and expectoration following exposure to cold, with
episodic coughing and wheezing. During these episodes, the patient feels chest tightness and difficulty breathing, particularly Chronic obstructive pulmonary Secondery
Present liness History pronounced at night. About 1 week ago, after exposure to cold once again, the coughing and expectoration worsened disease
accompanied by increased wheezing. There is no lower limbs edema, no associated chills or fever, no poor appetite, no nausea
or vomiting, Bronchlectasis Secondary

Barrel chest, decreased bilateral vocal fremitus, ion, bilateral breath sounds, with no
rhonchus or moist rales.

Physical Examination

Diagnosis
Chest CT: The examination revealed increased lung markings, with linear and nodular densities visible. Impression of the S
‘examination: chronic bronchitis. B 5. You could enter the
0 to find the

Radiological Examination

Case Overview Al-assistance Diagnosis

Patient Information

Age 55
Primary/Secondary
Gender Male
Acute exacerbation of chronic

Chief Complaint Recurrent cough and wheezing for 2 years, exacerbated for 1 week a0 pilkineny dostie

Primary
Over the past 2 years, the patient has experienced recurrent coughing and expectoration following exposure to cold, with _
episodic coughing and wheezing. During these episodes, the patient feels chest tightness and difficulty breathing, particularly Chronic obstructive pulmonary Secondary
Present lliness History pronounced at night. About 1 week ago, after exposure to cold once again, the coughing and expectoration worsened, disease
accompanied by increased wheezing. There is no lower limbs edema, no associated chills or fever, no poor appelite, no nausea

or vomiting. Bronchiectasis Secondary

Barrel chest, decreased bilateral vocal fremitus, bilateral breath sounds, with no
rhonchus or moist rales.

Physical Examination
Diagnosis
Chest CT: The examination revealed increased lung markings, with linear and nodular densities visible. Impression of the

Radiological Examinetion’ examination: chronic bronchitis. Ploase provido

Al Diagnostic Rationale

Based on the patient's information, the following analysis is made:

The patient presents with recurrent cough and wheezing for 2 years, which mainly caused by respiratory and circulation system diseases. There is no lower limb
edema, and no nausea or vomiting, showing the patient is less likely to have circulatory system diseases and digestive system diseases. His medical history
indicates worsening symptoms after exposure to cold, which may indicate sensitivity of the airways to changes. It is consi: with COPD
characteristics.

Taking all this into consideration, the primary diagnosis is chronic obstructive pulmonary disease (COPD)

Furthermore, he has taken physical examination revealing barrel chest, decreased bilateral vocal fremitus, hype on p ion, and breath
sounds. These fingdings possibly due to airway obstruction and are typical clinical manif ions of COPD, the possibility of chronic i
pulmonary disease (COPD). What's more, the patient is a 55-year-old male, showing that he is at a higher risk for chronic obstructive pulmonary disease
(COPD) in this age group. Chest CT reveals increased lung markings, with linear and nodular densities visible. These imaging features which are commonly
reported in chronic bronchitis are present.

Although smoking history and the pulmonary function test were not provided, the possibility of COPD is si with the chronic itis observed in the
chest CT.

The recent exacerbation of symptoms for 1 week leads to the diagnosis of acute exacerbation of COPD.

Thus, the most probable diagnosis is acute of chronic ive pi y disease (COPD).

Differential Diagnosis:

(1) Asthma: Asthma is also a consideration with symptoms of cough and wheezing. Asthma often presents with episodic dyspnea, wheezing, and cough. Asthma
often exacerbates at night, presenting with wheezing sound on auscultation, which is not consistent with this patient's manifestation. Moreover, the patient is
an older man with no clear history of allergic diseases. Asthma typically occurs at a younger age and is associated with allergic conditions. As a result, asthma
is less likely than chronic obstructive pulmonary disease. Pulmonary function tests can be performed to confirm the diagnosis.

(2) Congestive Heart Failure (CHF): CHF can also manifest similarly with symptoms of cough and wheezing. CHF are often with underlying cardiac diseases.
This patient shows no related past medical history, which is not consistent with CHF. CH typically has dyspnea, decreased urine output, lower limb edema, and
sign of bilateral moist rales, which are not present in this patient. It makes CHF less likely. E! echocardi and BNP, etc., can be
performed to confirm the diagnosis.

Extended Data Fig. 3| The user interface of clinical evaluation for comparison with physicians. a, The user interface allows physicians to make diagnosis.
user interface allows physicians to make diagnosis with Al-assistance.
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Case Overview

Patient Information

Age 55
Gender Male

Chief Complaint Recurrent cough and wheezing for 2 years, exacerbated for 1 week
Over the past 2 years, the patient has experienced recurrent coughing and expectoration following exposure to cold, with
episodic coughing and wheezing. During these episodes, the patient feels chest tightness and difficulty breathing, particularly
pronounced at night. About 1 week ago, after exposure to cold once again, the coughing and expectoration worsened,
accompanied by increased wheezing. There is no lower limbs edema, no associated chills or fever, no poor appetite, no nausea
or vomiting.

Present lliness History

Barrel chest, decreased bilateral vocal fremitus, hyperresonance on percussion, decreased bilateral breath sounds, with no

HisoR E e rhonchus or moist rales.

Chest CT: The examination revealed increased lung markings, with linear and nodular densities visible. Impression of the

B examination: chronic bronchifis.

Al Diagnostic Rationale

Based on the patient's information, the following analysis is made:
The patient presents with recurrent cough and wheezing for 2 years, which mainly caused by respiratory and circulation system diseases. There is no lower limb
edema, and no nausea or vomiting, showing the patient is less likely to have circulatory system diseases and digestive system diseases. His medical history
indicates worsening symptoms after exposure to cold, which may indicate sensitivity of the airways to environmental changes. It is consistent with COPD
characteristics.

Taking all this into consideration, the primary diagnosis is chronic obstructive pulmonary disease (COPD)

Furthermore, he has taken physical examination revealing barrel chest, decreased bilateral vocal fremitus, hyperresonance on percussion, and decreased breath
sounds. These fingdings possibly due to airway obstruction and are typical clinical manifestations of COPD, suggesting the possibility of chronic obstructive
pulmonary disease (COPD). What's more, the patient is a 55-year-old male, showing that he is at a higher risk for chronic obstructive pulmonary disease
(COPD) in this age group. Chest CT reveals increased lung markings, with linear and nodular densities visible. These imaging features which are commonly
reported In chronic bronchitis are present.

Although smoking history and the pulmonary function test were not provided, the possibility of COPD is significant with the chronic bronchitis observed in the
chest CT.

The recent exacerbation of symptoms for 1 week leads to the diagnosis of acute exacerbation of COPD.

Thus, the most probable diagnosis is acute exacerbation of chronic obstructive pulmonary disease (COPD).

Differential Diagnosis:

(1) Asthma: Asthma is also a consideration with symptoms of cough and wheezing. Asthma often presents with episodic dyspnea, wheezing, and cough. Asthma
often exacerbates at night, presenting with wheezing sound on auscuitation, which is not consistent with this patient's manifestation. Moreover, the patient is an
older man with no clear history of allergic diseases. Asthma typically occurs at a younger age and Is associated with allergic conditions. As a result, asthma is
less likely than chronic obstructive pulmonary disease. Pulmonary function tests can be performed to confirm the diagnosis.

(2) Congestive Heart Failure (CHF): CHF can also manifest similarly with symptoms of cough and wheezing. CHF are often with underlying cardiac diseases. This
patient shows no related past medical history, which is not consistent with CHF. CHF typically has dyspnea, decreased urine output, lower limb edema, and sign
of bilateral moist rales, which are not present in this patient. It makes CHF less likely. Electrocardiogram, echocardiography, and BNP, etc., can be performed to
confirm the diagnosis.

Human Evaluation

Medical case comprehension — Whether the LLM could precisely
understand and summarize the necessary information without any
diagnostic evidence omitted, while avoiding the inclusion of irrelevant
information.

@ 1 point: Lost almost all evidence for correct summary of the condition,
making correct diagnosis impossible

@ 2 point: Lost most of the evidence for correct summary of the condition,
significantly affecting making correct diagnosis.

3 point: Lost some evidence for correct summary of the condition,
affecting making correct diagnosis to a certain extent

4 point: Aimost no evidence lost for correct summary of the condition,
with minimal impact on making correct diagnosis

5 point: Providing complete evidence for a correct summary of the
condition.

Medical guideline and consensus — Whether the LLM's generated diagnosis
conforms to the requirements of medical guidelines, consensus or
established clinical practice.

@ 1 point: The diagnosis and recommendations do not conform to medical
guidelines, consensus, and clinical practice at all.

@ 2 point: The diagnosis and recommendations could reflect some
medical guidelines, consensus and clinical practice but is incomplete.

3 point: The diagnosis and recommendations generally conform to
medical guidelines, consensus, and clinical practice

4 point: The diagnosis and recommendations align well with medical
guidelines, consensus, and clinical practice.

5 point: The diagnosis and recommendations are fully in line with
medical guidelines, consensus, and clinical practice.

Clinical reasoning -~ Whether the LLM's inferential diagnosis involves the
utilization of reasoning and critical analysis to formulate accurate
diagnoses.

@ 1 point: The diagnosis displays a substantial misunderstanding of
clinical reasoning and lacks detailed or in-depth analysis.

Extended Data Fig. 4| The user interface of clinical evaluation for diagnostic performance with ahuman evaluation framework. The user interface allows
physicians to evaluate Al-model’s rationale, with eight metrics on a Likert-scale of 1to 5.
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Extended Data Fig. 6 | Top-1accuracy of the LLMs for diagnosis of rare
diseases. a, The distribution of diseases in the MedDX-Rare dataset. The
horizontal axis represents the diseases ranked by the number of samples
illustrating the long-tail distribution, and the vertical axis represents the number
of samples. b, Performance comparison of macro accuracy between Meditron-
70B (light green), Llama 3-70B (medium green), Clinical Camel-70B (dark green),
GPT-40 (orange) and our MedFound-DX-PA (blue) across eight specialties:
pulmonology, gastroenterology, urology, cardiology, immunology, psychiatry,
neurology, and endocrinology (n =20,257). Bar graphs indicate the MedFound-
DX-PA’s Top-laccuracy for individual diseases within each specialty. Each
specialty’s performance on individual diseases is aggregated at the octiles of

disease prevalence for averaged performance evaluation. ¢, The micro accuracy
over individuals between Meditron-70B (light green), Llama 3-70B (medium
green), Clinical Camel-70B (dark green), GPT-40 (orange) and our MedFound-
DX-PA (blue), for diagnosing rare diseases across eight specialties: pulmonology,
gastroenterology, urology, cardiology, immunology, psychiatry, neurology, and
endocrinology. Bar graphs indicate the mean + 95% confidence intervals.d, The
micro accuracy of MedFound-DX-PA for diagnosing rare diseases stratified by
cumulative prevalence, including ultra-rare diseases (prevalence < 0.1%) (n =378)
and rare diseases (prevalence between 0.1% and 1%) (n =1,727). The x-axis
represents the accuracy (mean + 95% confidence intervals).
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Extended Data Fig. 7 | Performance comparison of LLMs with or without
self-consistency strategy for various diagnostic accuracy. Impact analysis of
self-consistency strategy on the accuracy of various LLMs, Meditron-70B (light
green), Llama 3-70B (medium green), Clinical Camel-70B (dark green), and our
MedFound-DX-PA (blue), for diagnostic tasks on MedDX-Test (in-distribution

testing on common diseases) (left), MedDX-OOD (out-of-distribution testing on
common diseases) (middle), and MedDX-Rare (out-of-distribution testing on
rare diseases) (right). The short horizontal line shows the mean performance of
asetof models. The percentage increases shown are the improvements gained
through self-consistency strategy.
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classification models (HRF, Med-BERT, MedFound-CLS) and text generation
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mean+95% CI.

Nature Medicine


http://www.nature.com/naturemedicine

Article

https://doi.org/10.1038/s41591-024-03416-6

—— MedFound-7B (prompting)

Pulmonology Gastroenterology
0.45 4
0.30 1
- 0.40 A
[S]
o
5 0.25 1 0.35 1
Q
<
0.20 - 0.30 1
0.25 1
Psychiatry
- 0.40 4 N’H
>
[S]
o
3 0.30 1 0.30 1
Q
< |\ »~  L____ i L
0.20 4
0.20 A
0.0 0.5 1.0 0.0 0.5 1.0

Training corpus proportion Training corpus proportion

Extended Data Fig. 9 | Performance analysis of MedFound-7B and MedFound-
176B model, pre-trained on corpora of varying sizes. The performance

of MedFound (orange) and MedFound-7B (blue) pre-trained on increasing
proportions of the MedCorpus dataset for diagnostic tasks across eight
specialties: pulmonology, gastroenterology, urology, cardiology, immunology,
psychiatry, neurology, and endocrinology. The x-axis indicates the proportion
of total data used for pre-training the LLM. The y-axis represents the accuracy

of diagnoses. The horizontal dashed line corresponds to the mean performance
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ofthe LLMs over the last three data points. To examined the effects of corpus
size for LLM pretraining, we utilized MedFound and MedFound-7B with the
MED-Prompt strategy, evaluated on MedDX-Test. We observed consistent
performance improvements as the training corpus ratio increased up to 70%.
The improvements plateaued when further increasing the data size beyond
this threshold, indicating that the current corpus meets the requirements for
effective training.
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A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
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Only common tests should be described solely by name; describe more complex techniques in the Methods section.
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|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Scripts for data collection and preparation were written in Python (3.10) using numpy (1.26.4), pandas (2.2.1).

Data analysis The tranining and evaluation framework used were implemented using Python (3.10), PyTorch (2.1.2), transformers (4.36.1), and others. We
build upon the PyTorch to implement Direct Preference Optimization (DPO). The following Python libraries were used for analysis: scikit-learn
(1.2.1), matplotlib (3.7.1), and scipy(1.11.3). The codes are available for scientific research and non-commercial use on GitHub at https://
github.com/medfound/medfound. The pre-trained models are publicly available on HuggingFace (https://huggingface.co/medicalai/
MedFound-7B, https://huggingface.co/medicalai/MedFound-176B).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The raw data of the PMC-CR and MedText is available from the website (https://www.ncbi.nlm.nih.gov). MIMIC-lII-Note dataset can be found at https://
physionet.org/about/database/ and requires access due to its terms of use. MedDX-Note and MedDX-Bench are sourced from real-world clinical scenarios, with
institutional review board (IRB) approval obtained from institutions for EHR data collection. Due to privacy regulations, the EHRs cannot be made freely available in
a public repository. De-identified data from the MedDX-Note and MedDX-Bench can be requested through the management team by contacting the corresponding
author (G.W.), following a defined protocol for data request approval. Generally, all such requests for access to EHR data will be responded to within onemonth.
For the reproduction of our code and model, a representative test dataset from MedDX-Bench, containing samples across specialties, is publicly available on GitHub
(https://github.com/medfound/medfound/tree/main/data/test.zip). Data can only be shared for non-commercial use.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We did not perform sex and gender analysis.

Reporting on race, ethnicity, or = We did not perform race, ethnicity, or other socially relevant groupings analysis.
other socially relevant

groupings

Population characteristics The population for training and internal validation has a mean age of 40.96 with a standard deviation of 21.30. The
population for external validations has a mean age of 44.99 and a standard deviation of 20.98.

Recruitment Electronic health records were sourced from MIMIC and CC-DXI (China Consortium for Disease Diagnosis Investigation). The
data are representative for the generalized population with no selection biases.

Ethics oversight Institutional review board and ethics committee approvals were obtained in all locations. The study was approved by the

Ethics Committee of Peking University Third Hospital (IRBOO006761-M2023607).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size For pretraining, we curated a corpus comprising a total of 6.3 billion tokens obtained from medical literature as well as 8.7 million electronic
health records. For fintuning and alignment, the dataset was constructed comprising 109,364 cases. Three datasets were used for evaluation,
comprising 11,662, 23,917, and 20,257 cases, respectively. Sample size was determined by the data availability. No additional statistical
method for sample size estimation was used.

Data exclusions  For pretraining data, no additional data exclusions were performed after data curation. For finetuning data, we excluded data that miss
diagnosis label.

Replication Replication is not relevant. We used independent validation cohorts to test the model, and the models achieved similar performances in the
external validation sets.

Randomization  Samples were randomly allocated to the training and testing sets.

Blinding During the data processing, all data was first de-identified to remove any patient related information.
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Clinical data

Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration  The study was approved by Peking University Third Hospital Medical Science Research Ethics Committee (IRBO0006761-M2023607).

Study protocol We have provided the full clinical protocol in the manuscript.
Data collection An independent validation set was constructed comprising 300 cases, with 150 cases each from endocrinology and pulmonology.
Qutcomes The diagnoses of expert consensus panel were used as reference to assess the diagnostic accuracy.
Plants
Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If

plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atithentication-proceduresforeach-seed-stock-tised-ornovel-genotype-generated—Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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