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The delivery of accurate diagnoses is crucial in healthcare and represents 
the gateway to appropriate and timely treatment. Although recent large 
language models (LLMs) have demonstrated impressive capabilities in 
few-shot or zero-shot learning, their effectiveness in clinical diagnosis 
remains unproven. Here we present MedFound, a generalist medical 
language model with 176 billion parameters, pre-trained on a large-scale 
corpus derived from diverse medical text and real-world clinical records. 
We further fine-tuned MedFound to learn physicians’ inferential diagnosis 
with a self-bootstrapping strategy-based chain-of-thought approach 
and introduced a unified preference alignment framework to align it with 
standard clinical practice. Extensive experiments demonstrate that our 
medical LLM outperforms other baseline LLMs and specialized models 
in in-distribution (common diseases), out-of-distribution (external 
validation) and long-tailed distribution (rare diseases) scenarios across 
eight specialties. Further ablation studies indicate the effectiveness of 
key components in our medical LLM training approach. We conducted 
a comprehensive evaluation of the clinical applicability of LLMs for 
diagnosis involving artificial intelligence (AI) versus physician comparison, 
AI-assistance study and human evaluation framework. Our proposed 
framework incorporates eight clinical evaluation metrics, covering 
capabilities such as medical record summarization, diagnostic reasoning 
and risk management. Our findings demonstrate the model’s feasibility in 
assisting physicians with disease diagnosis as part of the clinical workflow.

The delivery of accurate diagnoses plays a crucial role in the field of health-
care and represents a fundamental skill for all physicians1,2. The diagnostic 
process typically involves the identification of a disease through extended 
reasoning processes of analyzing symptoms, signs and results of investi-
gations to formulate a diagnosis as well as differential diagnoses. Despite 
extensive medical training, diagnosis is prone to errors, with an estimated 
20% rate of misdiagnosis at the primary care level3, which contributes to 
approximately 17% of all adverse events in medical practice4. For decades, 

considerable efforts have been made to enhance the accuracy and acces-
sibility of disease diagnosis, including traditional rule-based clinical 
decision support systems (CDSSs)5 and machine learning techniques 
that extract structured features to develop clinical predictive models. 
However, the dependency on structured inputs and specialized training 
is complex and resource intensive. A substantial gap remains between 
the development of major medical predictive algorithms and their actual 
clinical deployment in diverse healthcare settings6.
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These studies demonstrate the potential of our proposed LLM as a 
generalist medical AI (GMAI) in the field of medical diagnostics.

Results
Overview of the proposed LLM and dataset characteristics
In this study, we present MedFound, a pre-trained LLM tailored for 
medical applications, and MedFound-DX-PA, specifically trained for 
diagnostic analysis applications. To develop and evaluate our mod-
els, we constructed three data collections—MedCorpus, MedDX-FT 
and MedDX-Bench—where MedCorpus and MedDX-FT were used for 
training, and MedDX-Bench was used for evaluation (Supplementary 
Table 1). The training process consisted of three stages: pre-training, 
fine-tuning and alignment (Fig. 1a and Extended Data Figs. 1–4).

In the first stage, we continued pre-training on a general-domain 
LLM, BLOOM-176B, resulting in MedFound. To develop MedFound, we 
curated a large-scale medical corpus dataset, MedCorpus, comprising 
a total of 6.3 billion text tokens from four datasets: MedText, PubMed 
Central Case Report (PMC-CR), MIMIC-III-Note and MedDX-Note. 
These datasets are derived from diverse clinical representative sources: 
medical textbooks and clinical guidelines, patient case reports from 
literature, open-access clinical records and proprietary datasets of 
real-world EHRs from hospital systems (as detailed in Methods). Con-
sequently, pre-training on MedCorpus enabled MedFound to encode 
extensive medical knowledge and practical experience, establishing 
it as a foundation tool for a broad range of applications within the 
medical field.

In the second stage, we fine-tuned MedFound to imitate the diag-
nostic reasoning process of physicians, resulting in MedFound-DX. We 
curated a dataset named MedDX-FT with medical records and related 
diagnostic rationale demonstrations for fine-tuning. Physicians were 
asked to manually craft a demonstration of their clinical reasoning pro-
cess to diagnose a given patient case based on actual medical records. 
The annotation interface is illustrated in Extended Data Fig. 2a. Based 
on the seed set of manual demonstrations and 109,364 EHR notes, 
we employed a self-bootstrapping strategy to enhance the ability of 
the LLM to automatically generate high-quality diagnostic rationales 
(intermediate reasoning steps) for each EHR without extensive expert 
labor.

In the third stage, we further optimized the model’s real-world 
clinical utility by employing a unified PA framework, which integrates 
‘diagnostic hierarchy preferences’ and ‘helpfulness preferences’. 
For the ‘diagnostic hierarchy preference’, we leveraged the hierar-
chical structure of the ICD-10 tree to guide the LLM to align with the 
well-established disease knowledge and diagnostic processes. For the 
‘helpfulness preference’, the LLM directly aligns with expert feedback 
by assessing the helpfulness of a given diagnostic rationale (Extended 
Data Fig. 2b), thus ensuring consistency with human values16. Both 
preference sets were optimized using Direct Preference Optimization 
(DPO)19, a simple reinforcement learning-free algorithm that simplifies 
the preference learning pipeline.

During the evaluation stage, we curated MedDX-Bench, a bench-
mark consisting of three clinical datasets—MedDX-Test, MedDX-OOD 
and MedDX-Rare—to comprehensively assess the diagnostic capa-
bilities of the LLM across real-world clinical settings (Fig. 1b). The 
MedDX-Test dataset was an ID evaluation to evaluate the diagnostic 
performance of MedFound-DX-PA across specialties, comprising 11,662 
medical records from the same distribution as the training dataset. The 
MedDX-OOD and MedDX-Rare datasets were constructed as external 
validation sets, sourced from a distinct geographic region in Hubei 
Province, China, for OOD evaluation. The MedDX-OOD dataset com-
prises 23,917 records of common diseases also present in MedDX-FT, 
whereas the MedDX-Rare dataset includes 20,257 records spanning 
2,105 rare diseases that are in long-tailed distribution. The evaluation 
datasets encompass EHRs from daily diagnostic workflows, including 
chief complaints, present history, physical examinations, laboratory 

In recent years, the emergence of pre-trained language models 
(PLMs) has substantially advanced the natural language processing 
(NLP) domain. These models are first pre-trained on large-scale corpora 
via self-supervised learning tasks (for example, masked language mod-
eling for BERT7 and auto-regressive language modeling for GPT8) and 
then fine-tuned on specific downstream tasks. Further studies suggest 
that when the model size, dataset size and computational resources are 
sufficiently large, large language models (LLMs) can exhibit emerging 
few-shot and zero-shot properties across multiple NLP tasks. The recent 
advancement of PLMs and LLMs has attracted interest in using these 
pre-trained language models tailored to the biomedical domain, such 
as ClinicalBERT9, NYUTron10, GatorTron11 and BioGPT12. These models 
have demonstrated the potential to transform task-specific paradigms 
and address the ‘last-mile’ challenge in medical predictive analytics, 
enabling the development of versatile clinical applications.

Despite the potential of LLM technology in biomedicine, exploita-
tion of its utility remains at a preliminary stage. Most studies focus on 
use-case reports of LLMs in medicine, particularly ChatGPT13. There is 
currently a lack of well-designed, publicly available LLMs specifically 
tailored for real-world clinical contexts. Although a small fraction of 
work has investigated incorporating clinical knowledge into LLMs for 
tasks such as medical question-answering14 or dialogue15, their capabili-
ties in clinical diagnostic reasoning have not been fully developed or 
examined. Additionally, generative LLMs can hallucinate or fabricate 
facts, which could be harmful if clinicians rely on their recommended 
diagnosis. Thus, it becomes paramount to employ alignment tech-
niques to ensure that these models align with the objective of clinical 
diagnostic knowledge as well as to ‘follow the user’s instructions help-
fully and safely’16. Current evaluations of the LLM models typically rely 
on automated evaluations based on limited benchmarks, underscoring 
the need for a more comprehensive assessment of LLM-based tools in 
real-world clinical settings.

To address the challenges, our approach makes several contribu-
tions (Fig. 1). First, we present MedFound, a large-scale medical LLM 
(176 billion parameters) that is efficiently pre-trained on a diverse 
medical corpus derived from medical literature as well as 8.7 million 
real-world electronic health records (EHRs), allowing us to encode 
domain-specific knowledge to the model. Furthermore, we propose 
a two-phase approach to adapt MedFound as a diagnostic general-
ist, resulting in a refined version, called MedFound-DX-PA. We first 
introduce a self-bootstrapping strategy-based chain-of-thought 
(COT) fine-tuning that enables the LLM to automatically generate 
diagnostic rationales and reasoning like physician experts17. Subse-
quently, to address the challenges of aligning the LLM’s outputs with 
clinical requirements18, we present a unified preference alignment 
(PA) framework. This framework incorporates (1) diagnostic hierarchy 
preferences as guided by the hierarchical diagnostic structure of the 
International Classification of Diseases (ICD)-10 tree and (2) helpful-
ness preferences guided by expert annotation. A further ablation study 
demonstrated the impact of components in our proposed training 
approach on the LLM’s performance.

We conducted a comprehensive evaluation to assess the diag-
nostic performance of MedFound-DX-PA during implementation. 
First, we established a benchmark study using actual clinical records 
from three scenarios across specialties, including in-distribution (ID), 
out-of-distribution (OOD) and long-tailed disease distribution settings. 
The results demonstrate that MedFound-DX-PA outperformed existing 
models across multiple dimensions, particularly in diagnosing rare 
diseases that have been overlooked in previous research. Additionally, 
we conducted a series of prospective clinical studies, including an 
artificial intelligence (AI) versus specialist comparison and a further 
AI-assistance study within the workflow. We also introduced a human 
evaluation framework, called CLEVER (CLinical EValuation for Effective 
Reasoning in Diagnosis), which uses eight metrics to investigate the fea-
sibility and limitations of current LLMs in real-world medical scenarios. 
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tests and radiological imaging reports. These three datasets present 
a challenge to assess the generalizability under conditions of varying 
disease diversity.

Performance of the LLMs on common diseases across 
specialties
First, we evaluated the performance of MedFound-DX-PA for diag-
nosing common diseases across specialties in both ID and OOD set-
tings. We conducted comparisons with the leading LLMs, including 
the open-access MEDITRON-70B20, Clinical Camel-70B21 and Llama 
3-70B22 and the closed-source GPT-4o23. Both MEDITRON-70B and Clini-
cal Camel-70B are medical pre-trained LLMs and have demonstrated 

superior performance in medical tasks. Llama 3-70B, a member of the 
popular open-access Llama family, has shown excellent performance 
across various domain-specific tasks. GPT-4o is the latest version of 
ChatGPT, which is reported to have a broader knowledge base and 
enhanced problem-solving abilities, showing promise in diagnostic 
tasks. Details about these LLMs can be found in Supplementary Table 2. 
All open-access models were fine-tuned and employed self-consistency 
(SC) decoding to evaluate their diagnostic capacity.

In the ID setting evaluation, we constructed the MedDX-Test data-
set, which encompasses common fine-grained diseases represent-
ing 99% of the population across eight specialties. For example, we 
evaluated the model’s ability to diagnose autoimmune thyroiditis  
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Fig. 1 | Schematic illustration of the development and evaluation of our 
diagnostic generalist. a, The development of MedFound and MedFound-
DX-PA. We pre-trained a 176-billion-parameter MedFound on a large medical 
corpus consisting of PMC-CR, MIMIC-III-Note, MedDX-Note and MedText. We 
fine-tuned MedFound with diagnostic rationales and aligned it with diagnostic 
hierarchy preference and helpfulness preference, resulting in MedFound-DX-PA. 
b, Diagnostic performance benchmarking in real-world scenarios. We conducted 

evaluations in ID, OOD and long-tailed disease distribution settings, covering 
diseases across eight specialties, including pulmonology, gastroenterology, 
urology, cardiology, immunology, psychiatry, neurology and endocrinology.  
c, Clinical evaluation of the AI system. We conducted evaluations with physicians, 
including a comparison study, an AI-assistance study and a qualitative study 
under a human evaluation framework.
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(a specific type of thyroid disorder) rather than simply categorizing it 
as a general thyroid disease. For average performance across all spe-
cialties, our model demonstrated superior performance, achieving a 
diagnostic Top-3 average accuracy of 84.2% (95% confidence interval 
(CI): 83.5%, 84.8%) (Fig. 2a). This represents a substantial improve-
ment over the other four models, with average accuracies ranging 
from 64.8% (95% CI: 63.9%, 65.6%; Clinical Camel-70B) to 56.8% (95% 
CI: 55.9%, 57.7%; MEDITRON-70B). Among these, GPT-4o achieved a 
diagnostic accuracy of 62.0% (95% CI: 61.1%, 62.8%), slightly lower than 
the next-best-performing model, Clinical Camel-70B. We stratified the 
results by specialty (for example, cardiology, neurology and endocri-
nology) to provide detailed insights into the LLM-based diagnostic 
generalist (Fig. 2b). Our MedFound consistently outperformed other 
LLMs, with accuracies ranging from 82.4% to 89.6%. We also evaluated 
the models using Top-1 accuracy, macro accuracy, receiver operating 
characteristic area under the curve (ROC-AUC) and precision-recall area 
under the curve (PR-AUC) metrics, with results similarly indicating the 
superior performance of MedFound-DX-PA (Extended Data Fig. 5 and 
Supplementary Table 3).

Furthermore, we evaluated the generalizability of our model on 
the MedDX-OOD dataset, an OOD setting where cases were collected 
from external real-world environments. Figure 2c,d presents the aver-
age and the stratified performance across each specialty, respectively. 
MedFound-DX-PA significantly outperformed the baseline models in 
all specialties (all P < 0.001). The results demonstrate the generaliz-
ability of our model as a diagnostic generalist across a variety of clinical 
diseases, especially in fine-grained disease diagnosis.

We also extended our diagnostic generalist to specialty scenar-
ios that require specific knowledge of a particular medical field. We 
assigned the role of diseases specialist to the LLM-based generalist 
by prompting it for specialty-specific settings (as detailed in Meth-
ods). Our model achieved Top-3 accuracies ranging from 87.9% (95% 
CI: 87.2%, 89.6%) to 93.9% (95% CI: 92.6%, 95.9%) on the MedDX-Test 
dataset and 85.8% (95% CI: 83.4%, 88.6%) to 90.2% (95% CI: 88.7%, 
93.5%) on the MedDX-OOD dataset (Fig. 2e,f), demonstrating that our 
model can be adaptive to meet the precision requirements of these 
specialty settings. We also compared our MedFound with existing 
specialized decision support tools on multi-class, disease-specific 
tasks using open-access datasets (Supplementary Table 4). The results 
indicate that our model’s performance is similar to or exceeds that of 
the specialized tools.

Performance of the LLMs on rare diseases
We expanded our experiments to examine the performance of the LLMs 
in diagnosing rare diseases characterized by long-tailed distributions24. 
Previous models have shown effectiveness in identifying common 
diseases25, but their performance tends to decline in classifying rarer 
diseases in few-shot or zero-shot scenarios. As illustrated in Fig. 3a, 
the distribution of diseases reveals a long-tailed distribution, with 
common diseases covering 99% of the population and the remaining 
1% comprising a wide variety of less common diseases. To evaluate 
the adaptability of the LLMs in diagnosing a broad spectrum of condi-
tions, we used a zero-shot learning setting on the MedDX-Rare dataset, 
which includes 2,105 rare diseases derived from long-tailed distribu-
tion across eight specialties (Fig. 3b and Extended Data Fig. 6a). Bar 
plots in Fig. 3c illustrate the Top-3 accuracy of MedFound-DX-PA for 
each fine-grained rare disease within each specialty, and radar plots 
show the overall performance of each specialty across diseases (as 
detailed in Methods). MedFound-DX-PA excelled across all special-
ties, ranging from 77.4% (95% CI: 76.8%, 78.0%) to 84.4% (95% CI: 83.9%, 
84.9%), with an average of 80.7% (95% CI: 80.1%, 81.2%) (Fig. 3c). GPT-4o 
achieved the second-best performance, ranging from 57.2% (95% CI: 
56.5%, 57.9%) to 63.1% (95% CI: 62.4%, 63.8%), with an average of 59.1% 
(95% CI: 58.4%, 59.8%). This trend was also observed in the Top-1 macro 
accuracy (Extended Data Fig. 6b).

The average performance of LLMs was further assessed using 
Top-3 micro accuracy, which considers individuals equally over 
each specialty to mitigate the impact of classes with small sample 
sizes, as shown in Fig. 3d. The second-best LLM, GPT-4o, achieved a 
moderate performance, ranging from 77.4% (95% CI: 76.9%, 78.0%) to 
85.8% (95% CI: 85.3%, 86.2%), with an average of 82.1% (95% CI: 81.6%, 
82.7%). In comparison, MedFound-DX-PA excelled across all special-
ties, showing a substantial performance improvement, ranging from 
87.4% (95% CI: 87.0%, 87.9%) to 93.0% (95% CI: 92.7%, 93.4%), with an 
average of 89.2% (95% CI: 88.8%, 89.6%). Additional metrics, such as 
ROC-AUC and PR-AUC, also demonstrated the superior performance of 
MedFound-DX-PA compared to other LLMs (Extended Data Fig. 6c and 
Supplementary Table 3). To further investigate the model’s diagnostic 
performance in long-tailed disease distributions involving varying 
prevalence, we categorized them into ultra-rare (≤0.1% prevalence) 
and rare (0.1–1% prevalence) groups26 (Extended Data Fig. 6d and Sup-
plementary Table 5). The results demonstrate that MedFound-DX-PA 
performed consistently well between these two groups. This can be 
attributed to MedFound-DX-PA’s generative ability and its comprehen-
sive understanding of the diagnostic structure, which offers flexibility 
in adapting to fine-grained rare diseases.

Performance comparison between the LLM versus physicians
Here, we compare the diagnostic capacities of our LLM-based diag-
nostic system with those of human physicians in endocrinology and 
pulmonology. Eighteen physicians were recruited, including nine 
endocrinologists and nine pulmonary physicians, and were further 
categorized by clinical experience into three groups: Junior (n = 3), 
Intermediate (n = 3) and Senior (n = 3). Each physician was allocated 150 
cases to diagnose. Extended Data Fig. 3a illustrates the interface used 
by the physicians for this evaluation task. Performance was measured 
against the gold-standard diagnoses established by an expert panel. 
In pulmonology, MedFound-DX-PA achieved a diagnostic accuracy of 
72.6%, surpassing junior physicians (60.0%) and intermediate physi-
cians (67.7%) but slightly lower than that of senior physicians (76.2%) 
(Fig. 4a). Similarly, in endocrinology, the AI’s accuracy (74.7%) exceeded 
that of junior physicians (69.4%) and intermediate physicians (72.5%) 
and was similar to that of senior physicians (75.2%) (Fig. 4b). These 
results demonstrate that our LLM-based diagnostic generalist outper-
formed junior and intermediate physicians in both specialties and was 
similar to senior physicians.

Performance of the LLM-assisted diagnosis within workflows
We further explored the LLM’s potential role in enhancing diagnostic 
performance of physicians in the clinical workflow. When provided with 
EHR notes (with diagnoses removed), junior and intermediate physicians 
from the two specialties performed their initial diagnosis. Two weeks 
later, they referenced the AI-generated content to formulate their second 
diagnosis (Extended Data Fig. 3b). In pulmonology, AI assistance sub-
stantially enhanced the accuracy of junior and intermediate physicians, 
by 11.9% and 4.4%, respectively, with performance approaching that of 
the AI system but remaining slightly below that of senior physicians 
(Fig. 4a). For instance, for a case shown in Fig. 5a, the physician initially 
diagnosed ‘acute bronchitis’ based on the patient’s present medical 
history and C-reactive protein levels from laboratory tests. Then, with 
the assistance of AI-generated content, which emphasized the patient’s 
history of recurrent bronchitis, the physician revised the diagnosis to 
the accurate diagnosis of ‘acute exacerbation of chronic bronchitis’.

In endocrinology, the accuracy of both junior and intermediate 
endocrinologist groups substantially increased to 74.0% (an increase 
of 4.6%) and 78.8% (an increase of 6.3%), respectively, after AI assistance 
(Fig. 4b). Notably, intermediate endocrinologists with AI assistance 
outperformed senior endocrinologists, indicating the potential of AI 
to enhance diagnostic accuracy beyond most experienced physicians 
(P < 0.05). For instance, as illustrated in Fig. 5b, the initial diagnosis of 
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subclinical hypothyroidism was made when the physician observed ele-
vated levels of thyroid-stimulating hormone in the patient’s laboratory 
tests. During re-evaluation with AI assistance, the model highlighted 
previously overlooked elevated anti-thyroid peroxidase antibody 
levels, indicating a possible underlying autoimmune thyroid disorder. 
Consequently, the physician revised the diagnosis to ‘autoimmune 
thyroiditis’. These results suggest that physicians can benefit from the 
LLM model’s assistance by highlighting important clinical data, thus 
enhancing healthcare delivery.

Human evaluation framework for AI’s diagnostic capabilities
Previous evaluation metrics focus mostly on measures such as accu-
racy or natural language generation scores (for example, BLEU or 
ROUGE), which fail to capture the clinical quality of inferential diag-
nostic process. To address this issue, we proposed a systematic evalu-
ation framework for AI in real-world diagnosis, established through a 
process of literature review and consultations with expert physicians. 
The framework CLEVER categorizes the capabilities of the LLM-based 

system into eight clinical evaluation metrics, providing insights into the 
strengths and limitations of LLMs in aligning with medical standards 
(as detailed in the Methods). For the assessment, six senior physicians 
were recruited from the previous two specialties, using a Likert scale 
rating system ranging from 1 to 5 (Fig. 4c and Extended Data Fig. 4).

In ‘Medical case comprehension’, the expert panels evaluated 
the ability of the LLM to understand and interpret medical cases, 
such as assessing whether its content contains information required 
for diagnosis with completeness and correctness. Our proposed 
MedFound-DX-PA achieved a score of 4.02 in ‘Medical case compre-
hension’, surpassing 3.77 of the unaligned LLM model significantly 
(P < 0.05). A similar trend was also observed in ‘Clinical reasoning’, 
which was used to evaluate whether the LLM’s inferential diagnosis 
aligned with the diagnostic reasoning process of physicians in clini-
cal practice. MedFound-DX-PA demonstrated superior performance, 
with a score of 4.07, surpassing the unaligned models at 3.63 signifi-
cantly (P < 0.01). In ‘Medical guidelines and consensus’, physicians were 
asked to assess whether the LLM’s generation aligned with established 
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Fig. 2 | Performance of the LLMs for diagnosis of common diseases across 
various specialties. a–d, Comparison of Top-3 accuracy among MEDITRON-
70B, Llama 3-70B, Clinical Camel-70B, GPT-4o and our MedFound-DX-PA, for 
diagnostic tasks in generalist settings. The results are shown in ID settings 
(n = 11,662) (a and b) and OOD settings (n = 23,917) (c and d) across eight 

specialties. a and c represent the overall performance, and b and d represent the 
performance stratified by specialty. e,f, Comparison of Top-3 accuracy among 
the LLMs in specialist-specific ID and OOD settings across eight specialties. Bar 
graphs indicate the mean ± 95% CIs.
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medical guidelines and consensus. MedFound-DX-PA achieved a Likert 
score of 3.83, whereas the unaligned model achieved a score of 3.62 
(P = 0.18). These results indicate that our model can capture relevant 
medical evidence and incorporate diagnostic reasoning, potentially 
offering enhanced clinical decision-making support.

We also sought to assess the efficacy of LLMs in supporting clinical 
decision-making. For ‘Relevance of differential diagnosis’, physicians 
assessed the LLM’s capacity to differentiate among multiple possible 
conditions that could cause a patient’s symptoms. Our model achieved 
a score of 3.93, surpassing the unaligned models with 3.62 (P < 0.05). 
The ‘Acceptability of diagnosis’ is used to rate whether the diagnosis 
is acceptable or reliable for clinical use. In this category, our model 
achieved a score of 4.21, significantly outperforming the unaligned 
models at 3.72 (P < 0.001). These findings demonstrate the potential 
clinical feasibility of our diagnostic generalist.

LLMs in critical clinical scenarios are expected to avoid generat-
ing inaccurate or misleading information (‘Unfaithful content’) or 
demonstrate varying levels of stereotypes related to gender, culture 
and race (‘Bias and unfairness’). Also, it is crucial that the generated 
content of an LLM does not contain any incorrect or harmful evidence, 
which could potentially lead to misdiagnosis or mislead physicians 
about possible medical accidents (‘Possibility of harm’). We examined 
the model’s risk control capability by assessing ‘Unfaithful content’, 
‘Bias and unfairness’ and ‘Possibility of harm’. Our model demon-
strated superior performance, with scores of 4.11, 4.14 and 4.03 in the 
three metrics, respectively, surpassing the unaligned model at 3.66 
(P < 0.01), 3.82 (P < 0.05) and 3.66 (P < 0.01), with significance. The 
results indicate that LLM-based systems can be optimized through 
alignment with human values, thus enhancing their trustworthiness 
and clinical applicability.
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Fig. 3 | Performance of the LLMs for diagnosis of rare diseases across various 
specialties. a, Distribution of disease prevalence. The x axis indicates a range 
of diseases from common to rare. The y axis represents the population size 
of individuals affected by each disease. The curve is divided into two regions. 
The blue region represents common diseases (cumulative prevalence ≥99%), 
and the green region represents rare diseases (cumulative prevalence <1%). 
b, Distribution of disease number across eight specialties (n = 20,257). The 
blue bar represents the number of common diseases, and the green blue bar 

represents rare diseases. c, Performance comparison of Top-3 macro accuracy 
among MEDITRON-70B, Llama 3-70B, Clinical Camel-70B, GPT-4o and our 
MedFound-DX-PA, for diagnosing rare diseases across eight specialties. Radar 
maps show the Top-3 macro accuracy of LLMs on each specialty’s performance 
by aggregating at the octiles of disease prevalence. Bar graphs indicate the Top-3 
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d, The Top-3 micro accuracy over individuals among the LLMs for diagnosing rare 
diseases across eight specialties. Bar graphs indicate the mean ± 95% CIs.
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Impact of training components on the performance of LLMs
To explore the impact of key components of our proposed approach 
on the diagnostic performance of LLMs, we conducted experiments 
using MedFound and the latest leading LLMs, including Clinical 
Camel-70B, Llama-3-70B and MEDITRON-70B, using MedDX-Bench. 
We first investigated the inherent diagnostic capabilities of LLMs by 
adapting MED-Prompt, which familiarizes LLMs with the medical tasks 
and allows them to adapt to diagnostic tasks without any additional 
training. The results show that MedFound (without SC) achieved 
superior performance, with micro accuracy improvements of 14.4%, 
11.9% and 11.1% compared to the average performance of other LLMs 
on MedDX-Test, MedDX-OOD and MedDX-Rare, respectively (Fig. 6a). 
For example, MedFound achieved accuracy of 37.2% (95% CI: 36.3%, 
38.1%), outperforming the second-best LLM with performance of 
30.8% (95% CI: 29.9%, 31.6%; Clinical Camel-70B) on MedDX-Test. 
Similar results were also observed with other evaluation metrics, 
such as macro accuracy, detailed in Supplementary Table 6. This 
suggests that MedFound is a more effective pre-trained model for 
diagnostic tasks, probably due to its comprehensive pre-training on 
MedCorpus, which enabled it to encode extensive medical knowledge 
and practical clinical cases.

In addition to evaluating the inherent diagnostic capabilities 
of the pre-trained LLMs, we further investigated the impact of COT 
fine-tuning on enhancing the diagnostic accuracy of LLMs through 
additional training on domain-specific data. As shown in Fig. 6b and 
Supplementary Table 7, all models demonstrated improved perfor-
mance on the MedDX-Bench tasks after fine-tuning, with average 
micro accuracies increasing by 14.9%, 15.9% and 12.7% on MedDX-Test, 
MedDX-OOD and MedDX-Rare, respectively. After the COT fine-tuning, 
we employed SC decoding technique to further enhance the model’s 
reasoning performance by reducing variability and aligning its outputs 
with domain-specific requirements. As shown in Extended Data Fig. 7 
and Supplementary Table 3, all LLMs showed improvements by employ-
ing SC, with gains in micro accuracies for MedDX-Test, MedDX-OOD and 
MedDX-Rare by 12.1%, 11.1% and 7.6%, respectively. In conclusion, our 
proposed pre-training–fine-tuning approach substantially enhances 
the performance of LLMs on medical tasks, especially for challenging 
cases, such as rare diseases.

Discussion
In this study, we developed MedFound-DX-PA, a large-scale medical 
assistant for general diagnosis to approximate clinician expertise 
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across various healthcare scenarios. When evaluated on MedDX-Bench, 
MedFound-DX-PA demonstrateed superior diagnostic performance 
across specialties and conditions, including ID and OOD settings 
for common diseases, as well as for rare diseases. Furthermore, we 
conducted comparison studies involving MedFound-DX-PA versus 
specialists and an AI-assistance study, which indicate its potential to 
enhance the diagnostic capability of junior or intermediate physicians. 
Additionally, the human evaluation study of LLMs demonstrates that 
our MedFound-DX-PA has potential as a generalist for integration into 
clinical workflows.

Disease diagnosis is crucial for everyday clinical tasks and is prone 
to errors, which may lead to adverse outcomes or treatment that is 
withheld or delayed. Previous AI-assisted diagnostic tools include 
rule-based CDSSs, machine learning on structured features in EHR and 

PLMs. However, their applicability is limited by their specific training 
data and model size, necessitating specialty-specific models that are 
inefficient.

Recent advancements demonstrate the potential of LLMs that 
can interpret and generate text effectively with minimal or no spe-
cific fine-tuning, facilitating versatile applications such as interactive 
decision support and patient chatbots27. However, there are consid-
erable challenges in applying LLMs to the clinical setting. Existing 
LLMs often fail to capture the vast range of medical knowledge and 
scenarios. Furthermore, the output of generative language models 
may contain factual errors, logic inconsistencies and problems with 
coherence28. For example, ChatGPT has been found lacking in depth 
and insight29, which produces overly generalized answers that lack 
medical expertise. To bridge this gap, we introduce MedFound, which 

Case: Gender: Male, Age: 64. Chief Complaint: Fever accompanied by cough for 4 days. History of Present Illness: The patient has experienced
fever with cough for four days. Despite undergoing antiinfection treatment, the patient continues to exhibit coughing, with no significant
improvement in symptoms. Past medical history: a history of bronchitis. Radiologic examinations: Chest CT Scan: increased lung markings, with
localized areas of increased translucency. There are a few linear and nodular areas of increased density in both lungs with clear boundaries. The
examination suggests chronic bronchitis and pulmonary emphysema. Laboratory testing: Creactive protein (CRP) 24.65 mg/L (reference 0~10).

Physician’s initial diagnosis: Acute Bronchitis.

Model’s diagnostic rationale:
• The chief complaint is fever accompanied by cough for four days. The history of present illness indicates no significant improvement after anti

infection treatment, with a past medical history of bronchitis. From this information, it can be inferred that the patient may have a respiratory
infection or inflammation. The physical examination is unremarkable, providing no additional clues.

• Combining the above information, the possible diagnoses include respiratory infection or inflammation.
• Further, based on the analysis of laboratory tests and radiologic reports: The Creactive protein (CRP) test result is 24.65 mg/L, exceeding the

normal reference range, indicating an inflammatory response. CRP is an acutephase protein, commonly elevated in diseases such as
inflammation and infection. Chest CT scan reveals increased and disorganized lung markings, localized areas of increased translucency, and
a few linear and nodular areas of increased density with clear boundaries. These findings are associated with chronic bronchitis and
emphysema.

• Other possible diagnoses: Respiratory infection: Given the patient‘s chief complaint and history of present illness, there is a possibility of
respiratory infection. Respiratory infections can be caused by a variety of pathogens, including viruses and bacteria. Emphysema: According
to the CT scan results, there is a possibility of emphysema. Emphysema is a chronic obstructive pulmonary disease characterized by airway
obstruction and loss of lung tissue elasticity, leading to increased lung volume.

• Therefore, the most likely diagnosis is an acute exacerbation of chronic bronchitis.

Physician’s revised diagnosis: Acute Exacerbation of Chronic Bronchitis.

a

b

Case: Gender: Female, Age: 42. Chief Complaint: Abnormality detected in thyroid. History of Present Illness: The patient was found
"heterogeneous echotexture" on thyroid ultrasound in 2016. Thyroid function tests were normal, and no treatment was administered. There were
no fatigue. Physical Examination: No exophthalmos. No tenderness in thyroid. Laboratory Test: Thyroidstimulating hormone: 6.072
µIU/mL (Reference range: 0.35~5.5); Thyroid peroxidase antibody: >10000 IU/ml (Reference range: <100); Thyroglobulin antibody: 50.4 U/ml
(reference range: <60); Free thyroxine: 14.20 pmol/L (reference range: 11.5~22.7); Free triiodothyronine: 4.17 pmol/L (reference range: 3.5~6.5);
Parathyroid hormone: 46.40 pg/ml (reference range: 14.5~87.1).

Physician’s initial diagnosis: Subclinical Hypothyroidism.

Model’s diagnostic rationale:
• The chief complaint is the discovery of thyroid abnormalities. The history of present illness mentions the findings of “heterogeneous

echotexture” on thyroid ultrasound in 2016, with normal thyroid function tests and no treatment administered. Physical examination shows no
tenderness. This suggests the presence of thyroid abnormalities without apparent symptoms. There is no mention of any thyroidrelated
diseases or surgical history in the past medical history.

• Taking the above information into account, possible diagnoses include thyroid nodules, thyroiditis, etc.
• Furthermore, based on laboratory tests :The laboratory test shows normal levels of free thyroxine and free triiodothyronine, but elevated levels

of thyroid peroxidase antibody, suggesting the possibility of autoimmune thyroid disease. Thyroid peroxidase antibody is a marker of
autoimmune thyroid diseases, and its elevation may be related to thyroid dysfunction. The parathyroid hormone result shows parathyroid
hormone levels within the normal range, ruling out the possibility of parathyroid dysfunction.

• Other possible diagnoses: Thyroid nodules: Thyroid nodules are common benign lesions of the thyroid gland. The formation of thyroid nodules
may be associated with thyroid dysfunction and thyroiditis. Subacute thyroiditis: Subacute thyroiditis is a disease caused by inflammation of
the thyroid gland, which may lead to thyroid dysfunction and thyroid enlargement. It could cause tenderness in thyroid.

• Therefore, the most likely diagnosis is autoimmune thyroid disease.

Physician’s revised diagnosis: Autoimmune Thyroiditis.

Fig. 5 | Examples of AI-assisted diagnosis evaluation. a,b, Examples of 
diagnostic rationales generated by the MedFound-DX-PA model to assist 
physicians in their diagnostic process. a, Case used in the evaluation with 
pulmonary physicians. b, Case used in the evaluation with endocrinologists. 

Each case includes the patient’s symptoms, medical history and examinations. 
Physicians made an initial diagnosis upon their first review of the clinical notes 
and re-diagnosed after considering the diagnostic rationale provided by AI 
assistance.
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is, to our knowledge, the largest open-access medical LLM, with 176 
billion parameters pre-trained on a diverse range of medical corpora. 
Second, we fine-tuned MedFound by employing self-bootstrapping 
based COT fine-tuning to boost the reasoning capabilities of medical 
LLMs. The self-bootstrapping approach uses prompts to guide the LLM 
in automatically generating large-scale rationales with only hundreds 
of annotations, thus reducing the cost of expert annotation. Subse-
quently, we introduced a unified PA framework, aligning MedFound-DX 
with both ICD-10 diagnostic preference and clinician-evaluated help-
fulness preference, ensuring trustworthiness and safety in critical 
medical tasks.

Although previous studies highlighted the performance of 
classification-based decision support tools in specific specialties, we 
sought to compare these tools with an LLM-based diagnostic generalist 
in real clinical scenarios. We included three representative classifica-
tion models: a traditional machine learning approach using hierarchical 
classification (hierarchical random forest (HRF)30); a pre-trained lan-
guage model tailored for the medical domain using a masked language 
modeling strategy (Med-BERT9); and a variant of our MedFound as a 
pre-trained backbone for a classifier (MedFound-CLS), as detailed in 
Methods. The results indicate that MedFound-DX-PA outperformed 
the second-best model MedFound-CLS by 17.8% on the MedDX-Test and 
by 35.7% on the MedDX-OOD datasets, highlighting the superiority of 
generative models over classification approaches in diagnostic tasks, 
particularly in OOD scenarios (Extended Data Fig. 8). Furthermore, 
although existing specialized decision support tools demonstrate 
certain effectiveness in specific specialties25, they are limited to identi-
fying pre-defined coarse-grained disease categories or often struggle 
with zero-shot scenarios, where they must diagnose diseases that they 
have never explicitly been trained to recognize. In contrast, medical 
LLMs offer a promising solution in diagnosing rare diseases within 
few-shot and zero-shot settings. Our model effectively handles rare 
conditions by reasoning over new input samples in a manner akin to 
human experts (Figs. 3 and 5). This zero-shot approach using founda-
tion models may open up possibilities for broader medical applications 

that were previously challenging to address. Another advantage of our 
diagnostic generalist model is its ability to generate diagnostic reason-
ing, making the model’s output transparent and increasing physicians’ 
trust in AI-driven diagnostic tools.

Additionally, we conducted a comprehensive clinical validation of 
the LLM-based diagnostic system within practical clinical scenarios. In 
the study, we established a benchmark using real-world EHR data across 
various specialties in diagnosing a range of diseases from common to 
rare. When compared to other LLMs, MedFound-DX-PA demonstrated 
superior performance across different distributions, highlighting 
the model’s accurate and robust capacities as a generalist. To evalu-
ate the LLM-based model’s generated contents more thoroughly, we 
developed a clinician evaluation framework, covering a wide array 
of aspects. Given that ensuring safety is crucial for practical clinical 
scenarios, our human evaluation framework assesses various safety 
considerations, such as unfaithful content, bias, unfairness and the 
possibility of harm. We also conducted a privacy risk assessment31 
that demonstrated that our model has a low risk of information leak-
age (Supplementary Fig. 1). As shown in Fig. 4a,b, the results demon-
strated that our model considerably improves physician performance, 
underscoring the potential role of LLMs in augmenting the diagnostic 
capabilities of physicians within clinical workflows. Furthermore, we 
observed that some physicians could not surpass the original AI even 
with AI assistance. This phenomenon has also been observed in previ-
ous studies (for example, mammography cancer detection32 and chest 
X-ray interpretation33). Research suggests that human–AI collaboration 
faces challenges related to human mental models of the AI, which prob-
ably depend on their degree of familiarity with the AI or the reliance on 
proposed decisions34,35. This also highlights the need to further study 
the impact of AI aids on human cognition and observed performance.

The LLM-based diagnostic generalist has the potential to assist phy-
sicians across various stages in clinical workflows, including information 
gathering, data summarization and interpretation, diagnostic reason-
ing and formulating final diagnoses36–38. First, our MedFound-DX-PA 
can generate diagnostic reasoning that covers a wide range of common 
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(n = 20,257). The error bars represent the 95% CIs. b, Impact analysis of COT 
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The percentage increases shown are the improvements gained through COT 
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or rare diseases across specialties. This makes it particularly useful in 
clinical scenarios requiring extensive medical knowledge of diseases 
such as pre-diagnostic triaging and prioritization or serving as a con-
sultation ‘co-pilot’. For example, during pre-diagnostic assessments, 
MedFound-DX-PA can synthesize patient symptoms, recommend fur-
ther diagnostic testing or direct patients to appropriate specialties. For 
primary care physicians who encounter a broad range of diseases in daily 
clinical work39, they can initiate referrals based on MedFound-DX-PA 
prompts to access more specialized expertise, such as cardiology or 
neurology. For complex and multisystem diseases, MedFound-DX-PA 
could offer multidisciplinary consultation support, promoting a more 
holistic approach to patient care compared to task-specific tools. Addi-
tionally, the diagnostic generalist system could facilitate telemedicine 
by overcoming challenges in resource-limited settings40,41 by alleviating 
physician workload through automated integration between clinical 
assessments.

In addition, our diagnostic generalist can also efficiently adapt 
to specialty scenarios or specific diseases with minimal prompting, 
offering superior performance and interpretability compared to 
existing specialized models. We envision that MedFound-DX-PA can 
facilitate AI-assisted consultations by providing specialist expertise 
to less experienced physicians, enhancing differential diagnosis or 
aiding in the refinement of final diagnoses. For example, the system 
can interpret laboratory or radiological results42, identify abnormali-
ties and summarize critical evidence from a specialist’s diagnostic 
assessments, as demonstrated in Fig. 5. In the subsequent differential 
diagnosis phase, MedFound-DX-PA will enhance the quality of diag-
nostic care by considering all available evidence, offering diagnostic 
rationales and proposing differential diagnoses to the physician. 
Physicians who participated in our study also demonstrated improved 
diagnostic accuracy by incorporating this AI system into their clini-
cal practice.

Although our model has demonstrated impressive diagnostic 
performance, several challenges remain. First, our medical LLM cur-
rently focuses on language interaction, and its capabilities could 
be extended by integrating with medical multimodal data through 
vision–language models (VLMs). VLMs have shown promise in fields 
such as pathology, radiology and echocardiography43–46. These 
advancements are powered by LLMs, which provide extensive domain 
knowledge and reasoning capabilities47, enabling VLMs to perform 
zero-shot image-to-text generation based on natural language instruc-
tions, unlocking emerging capabilities such as visual knowledge 
reasoning and visual conversation. In the future, integrating VLMs 
could enable MedFound-DX-PA to adopt a more comprehensive, 
multimodal approach to diagnosis and patient care, opening new 
possibilities for AI-assisted healthcare. Furthermore, to enhance 
the human–computer collaboration for the integration of AI into 
routine clinical workflows, future work will focus on refining LLM 
models, such as LLM agents48, to better adapt to individual physicians, 
thereby enhancing the personalization of diagnostic support. The 
evaluation interaction between the model assisting physicians and 
the feedback from physicians can also refine the model, known as 
human-in-the-loop49, enabling the LLM system to evolve continuous 
improvement in a manner that aligns more closely with the practi-
cal needs of clinical environments. These future directions will be 
instrumental in enhancing the practical integration of AI into clinical 
workflows and maximizing its potential to benefit healthcare practices 
or the diagnostic training of primary care.
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Methods
Datasets
In this study, we curated three datasets to develop and evaluate MedFound- 
DX-PA, from pre-training, fine-tuning and evaluation (Supplementary 
Table 1). For pre-training, we created MedCorpus, a large-scale collection 
of free text from four sources: PMC-CR, MIMIC-III-Note, MedDX-Note 
and MedText. For fine-tuning, we used the MedDX-FT dataset, which 
comprises EHRs with diagnoses, diagnostic rationale demonstrations 
and helpfulness annotations. Among those, MedDX-Note and MedDX-FT 
include EHRs sourced from the China Consortium for Disease Diagnosis 
Investigation (CC-DXI). It enrolled multiple hospitals across Beijing, 
Sichuan Province and Guangdong Province in China: Peking University 
Third Hospital, Peking University First Hospital, West China Hospital 
of Sichuan University and Shenzhen University-affiliated South China 
Hospital. The study was conducted under a waiver of written informed 
consent approved by the institutional review board (IRB). IRB and eth-
ics committee approvals were obtained in all locations. EHR data were 
de-identified to remove any patient-related information.

Pre-training datasets to develop MedFound. We curated MedCor-
pus, an extensive language corpus comprising a diverse collection 
of biomedical and clinical text, for the pre-training of MedFound. 
MedCorpus integrates a total of 6.3 billion tokens obtained from four 
datasets: MedText, PMC-CR, MIMIC-III-Note and MedDX-Note (Sup-
plementary Information).

MedText is composed of a diverse collection of medical text-
books, comprising 1,752 multilingual textbooks, encapsulating fun-
damental medical knowledge, terminology, concepts and practice 
guidelines. PMC-CR comprises full-text case reports from PMC50, pro-
viding detailed reports of the symptoms, signs, diagnosis, treatment 
or follow-up of individual patients, with a particular focus on unusual 
or novel occurrences of disease, and many new ideas in medicine. PMC 
is recognized as the most extensive, publicly accessible digital reposi-
tory that archives a wide range of research articles in the fields of bio-
medical and life sciences. MIMIC-III-Note and MedDX-Note are derived 
from real clinical data, covering a diverse range of diseases across 
different systems. MIMIC-III-Note is annotated from an open-access, 
large-scale clinical database, MIMIC-III, which contains EHRs from 
38,597 patients across 49,785 hospital admissions within intensive 
care units51. The MIMIC-III-Note dataset contains a diverse selection 
of typical medical texts from patient records, such as medical notes, 
prescribed medications, clinical orders and radiology reports, among 
others. MedDX-Note, a proprietary large-scale, real-world dataset, con-
tains 8.7 million EHRs sourced from the CC-DXI. The extensive dataset 
covers a spectrum of diseases and a mean age of 40.96 years with a 
standard deviation of 21.30. Each record within the dataset provides 
a comprehensive account of the medical encounters, such as medical 
history and examination reports. We conducted data pre-processing 
for the corpus, which involved the removal of special tags and charac-
ters and tokenization (details of the MedCorpus are provided in the 
Supplementary Information).

Fine-tuning and alignment datasets to develop MedFound-DX-PA. 
To fine-tune and align our model for diagnosis, we curated a medical 
record dataset and collected two types of expert annotations: diag-
nostic rationale demonstrations and helpfulness annotations. We 
constructed a dataset sourced from the CC-DXI, named MedDX-FT, 
comprising 109,364 cases and spanning 408 common diseases across 
eight specialties: pulmonology, gastroenterology, urology, cardi-
ology, immunology, psychiatry, neurology and endocrinology. For 
fine-tuning models with diagnostic reasoning rationales, we manually 
curated a dataset comprising 800 diagnostic rationale demonstrations 
using medical records from the MedDX-FT dataset. In each case, physi-
cians read through the entire case history and provided step-by-step 
diagnostic analyses, incorporating crucial factors such as clinical 

difficult to diagnose. For instance, ICD E11 (type 2 diabetes mellitus) 
is the parent of several child codes, including E11.0 (type 2 diabetes 
mellitus with hyperosmolarity), E11.1 (type 2 diabetes mellitus with 
ketoacidosis) and E11.2 (type 2 diabetes mellitus with renal complica-
tions)58. The hierarchical structure of the ICD facilitates the construc-
tion of more granular preferences, based on the alignment of model 
outputs with ICD codes.

For the helpfulness preference construction, we constructed a scor-
ing model trained on an expert-annotated dataset comprising diagnostic 
rationales with labels of ‘helpful’ or ‘unhelpful’. A binary classification 
model was trained as a scoring model to assess the extent of helpfulness 
for each diagnostic rationale. Preference optimization for multiple 
preference objectives is accomplished through DPO, known for its stabil-
ity performance, and computational efficiency. Compared to reinforce-
ment training, DPO offers a more stable training process19. Both 
diagnostic hierarchy preference and helpfulness preference are jointly 
trained. Given a medical record, multiple responses are sampled. The 
objective function is L = logσ (β log πθ( yw |x)

πref(yw |x)
−β log πθ(yl |x)

πref(yl |x)
) , where x is input 

prompt; yw and yl  denote the preferred and dispreferred responses, 
respectively; πref  is reference policy; πθ is an optimal policy with param-
eter θ; and β is a parameter controlling the deviation from the reference 
policy πref . A detailed description of the PA is provided in the Supplemen-
tary Information.

Baselines
We evaluated our approach against open-access state-of-the-art 
LLMs, including Clinical Camel-70B, Llama-3-70B, MEDITRON-70B 
and MMedLM 2-7B and the closed-access LLM GPT-4o. These LLMs 
are decoder-only generative language models. We also evaluated our 
approach against classification baselines: a traditional machine learn-
ing method with HRF25,30, a BERT-based pre-trained LLM (denoted as 
Med-BERT9) and a classifier variant of MedFound (MedFound-CLS). 
HRF employs an anatomically based hierarchical classification system 
combined with classifiers for disease diagnosis analysis. In contrast, 
Med-BERT is an encoder-only transformer model designed for the clini-
cal domain, and MedFound-CLS, a variant of our MedFound, served as a 
pre-trained backbone for a classifier. For a fair comparison, all baselines 
were trained using the same training dataset as our method. Addition-
ally, we developed MedFound-7B based on BLOOM-7B, a smaller-scale 
version that is more accessible for local deployment, thereby also 
addressing security concerns (Extended Data Fig. 9).

Clinical study
Study design and participants. In addition to the performance assess-
ment in retrospective data, we further validated the applicability of LLMs 
in real-world medical diagnostic scenarios. We designed comprehensive 
clinical studies, which include comparing the accuracy between the AI 
system and various levels of physicians, assessing the model’s effective-
ness in assisting junior and intermediate physicians in diagnosis as well 
as implementing a human expert evaluation framework of the capability 
of LLM generation contents based on a Likert scale. We recruited nine 
endocrinologists and nine pulmonary physicians with various years 
of clinical practice experience, including three junior physicians with 
1–5 years of clinical practice experience, three intermediate physicians 
with 5–10 years of clinical practice experience and three senior physi-
cians with more than 10 years of clinical practice experience within 
each specialty, respectively. This study was approved by the Peking 
University Third Hospital Medical Science Research Ethics Committee 
(IRB00006761-M2023607).

Comparison of diagnostic accuracy between AI and physicians. 
To evaluate the performance of our model in disease diagnosis, we 
performed performance comparison between our LLM system and 
physicians’ diagnoses. Here, three groups of physicians were involved, 

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-024-03416-6

observations, potential ranges of diseases and diagnoses. The annota-
tion interface is illustrated in Extended Data Fig. 2a. We then employed 
a self-bootstrapping strategy to automatically generate high-quality 
diagnostic rationales for each EHR, resulting in 109,364 rationales for 
fine-tuning.

For the helpfulness PA of the models, we collected helpfulness 
annotation. Physicians were assigned to assess whether a given diag-
nostic rationale provided assistance in making accurate diagnoses. 
Helpfulness was defined as the extent to which the diagnostic rationale 
presented in the response guided the annotator toward an accurate 
diagnosis. The annotation interface is shown in Extended Data Fig. 2b. A 
total of 1,800 selected generated responses from the MedDX-FT dataset 
were annotated in this manner. Overall, in 72.1% of cases, the generated 
diagnostic rationales were reported to be helpful. These data were 
used to fine-tune and align MedFound-DX-PA with human preferences, 
aiming to enhance its generated rationales to align with professional 
preferences and to provide helpful assistance in the diagnostic process.

Evaluation datasets of the diagnostic performance of LLMs. For the 
evaluation of the LLM-based system in disease diagnosis, we conducted 
MedDX-Bench, a comprehensive benchmark that consists of three 
datasets containing real-world EHRs: MedDX-Test and MedDX-OOD 
for ID and OOD testing on common diseases and MedDX-Rare for OOD 
testing on rare diseases.

Specifically, the MedDX-Test dataset, sourced from the same ori-
gin as the developmental dataset CC-DXI and mutually exclusive from 
the MedDX-FT dataset, was used to evaluate the diagnostic perfor-
mance in an ID setting. It contains 11,662 medical records, covering 
a wide range of common diseases across various medical specialties. 
MedDX-OOD and MedDX-Rare were collected from Yichang Central 
People’s Hospital in Hubei Province, China, a geographic region distinct 
from the CC-DXI for OOD evaluation. There is no overlap between the 
MedDX-OOD and MedDX-Rare datasets. To extend our evaluation to 
external validation sets and to test the models’ performance in varying 
conditions, we introduced the MedDX-OOD and MedDX-Rare datasets. 
The MedDX-OOD dataset comprises 23,917 records spanning common 
diseases, serving as an OOD validation set to assess the models’ gen-
eralizability across different geographical regions. The other dataset, 
MedDX-Rare, consists of 20,257 records covering 2,105 diseases that 
exhibit a long-tailed distribution and present a challenge under condi-
tions of rare and fine-grained diseases. All EHRs used in this study were 
obtained from hospital systems with a diverse patient population from 
different clinical departments and could closely mirror the process of 
real-world diagnoses.

Model overview
Here we present MedFound, a pre-trained, large-scale language model 
tailored for medical applications, and MedFound-DX-PA, which is fur-
ther optimized for enhanced diagnostic capabilities. First, we curated a 
diverse collection of medical corpora for continued pre-training based on 
the BLOOM model (176 billion parameters), resulting in MedFound. This 
step aims to adapt the LLM to the medical domain to boost its end-task 
performances. Subsequently, we fine-tuned MedFound using a dataset 
with diagnostic rationales to learn diagnostic reasoning, resulting in 
MedFound-DX. Finally, we refined MedFound-DX to align with the domain 
expertise and requirements of the diagnostic profession and human 
expert preferences using DPO19, resulting in MedFound-DX-PA. The 
alignment process was guided by the hierarchical structure of disease 
classifications according to the ICD and by human expert preferences 
assessed through helpfulness scores from a helpfulness scoring model.

Pre-training for developing MedFound. Here, we leveraged the 
BLOOM52 family of LLMs, a decoder-only transformer language model, 
as our base model for domain pre-training. The BLOOM training corpus 
consists of 1.61 terabytes of text across multiple languages. We chose 

BLOOM-176B as the base model, owing to its status as the largest open-
source language model available, with its emergent capabilities and 
extensive knowledge base53. For pre-training, the model is trained via 
the objective of causal language model8. Let D = {xi} denote the collec-
tion of sequences, and the sequence xi is made up of ni tokens—that is, 
xi = (w1,w2,… ,wni ). The training objective is to minimize the negative 

log-likelihood ∑|D|
i=1∑

ni
j=1 − logP (w j|w1,w2,… ,w j−1).

Fine-tuning for diagnostic reasoning. To adapt the model for the 
clinical diagnosis tasks, we fine-tuned MedFound on a dataset with 
diagnostic rationales based on a self-bootstrapping approach, resulting 
in MedFound-DX. In clinical diagnosis, physicians are required to 
explain a patient’s symptoms and describe their rationale for generat-
ing a diagnosis, demonstrating the complex and multi-step nature of 
diagnosis reasoning54. To incorporate this essential element for accu-
rate diagnosis, we employed COT fine-tuning55 on MedFound, integrat-
ing diagnostic rationales into the dataset, thereby enhancing the ability 
of the model to mimic human-like diagnostic thought processes. The 
generated diagnosis is conditioned on this intermediate rationale, 
which is expected to improve its accuracy. The language model pθ is 
trained to generate a response R = v1∶n for a given input prompt I = w1∶m, 
optimizing the likelihood pθ (R|I ) = pθ (v1∶n|w1∶m), where n and m repre-
sent the lengths of the response and input prompt, respectively. Thus, 
the loss function is 1

n
∑m+n
i=m+1 − logpθ (wi|w1,… ,wm).

Although COT fine-tuning56 has demonstrated advantages with 
LLMs, it remains challenging to acquire a substantial amount of COT 
demonstrations for fine-tuning, especially within the medical domain. 
To address this issue and further enhance the model’s diagnosis reason-
ing ability, we adopted a self-bootstrapping approach, following the 
Self-Taught Reasoner (STaR)57. This approach helps the LLM learn to 
automatically generate more coherent and precise rationales by train-
ing it based on a seed set of high-quality diagnostic rationale demon-
strations annotated by human expert55. Given a dataset 𝒟𝒟 = {(xi, yi)}i  
and a small dataset with rationale 𝒮𝒮 = {xi, yi, ri}i, where xi is a medical 
record with diagnosis yi, ri represents diagnostic rationale. First, we 
fine-tuned a preliminary model M1 based on the pre-trained model M0 
with 𝒮𝒮 to learn to generate diagnostic rationale. Then, the model M1 
generates diagnosis y′i with diagnostic rationale r′i for each sample xi 
from 𝒟𝒟, resulting in 𝒟𝒟1 = {(xi, r′i , y

′
i)}i . We then generated diagnostic 

rationale r′′i , where we provide the true diagnosis as a hint in a prompt—
that is, ( yi, xi)—to the model M1 and ask it to generate diagnostic ration-
ale r′′i , resulting in 𝒟𝒟2 = {(xi, r′′i , y

′
i)}i. We then corrected the diagnostic 

rationale r′i by r′′i  if diagnosis y′i is wrong, resulting in a new dataset 𝒟𝒟′. 
We then fine-tuned the model again using 𝒟𝒟′, deriving the refined 
model M2.

PA for developing MedFound-DX-PA. To align MedFound-DX with 
real-world diagnostic scenarios and human expert preferences, we 
propose a unified PA framework. This framework incorporates two 
types of preferences, including the diagnostic hierarchy preference 
and the helpfulness preference, which are jointly optimized in the 
model to align with the diagnostic standards, and expectations of 
healthcare professionals in clinical scenarios. The diagnostic hierarchy 
preference, guided by the hierarchical structure of disease classifica-
tions defined by the ICD codes, seeks to align the model’s generation 
with the standards for disease classification. The helpfulness prefer-
ence is refined through a helpfulness scoring model trained on expert 
annotations, aiming to make the model’s generation more informative, 
useful and trustworthy for diagnostic purposes while minimizing the 
risk of harm or misleading information. The PA process comprises two 
steps: preference construction and preference optimization. For the 
diagnostic hierarchy preference construction, we leverage guidance 
from the ICD to address the issues associated with setting preferences 
based solely on diagnostic correctness, which can result in sparse sig-
nals, especially in cases involving rare diseases or conditions that are 
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including junior, intermediate and senior physicians, separately from 
each specialty in pulmonary and endocrine medicine. For the com-
parison, we constructed an independent validation set comprising 
300 cases, with 150 cases from each of endocrinology and pulmonol-
ogy. Each physician made diagnoses based on information provided 
from the medical records, including demographics, chief complaint, 
present illness, past medical history, physical examination, labora-
tory tests and radiological examination. We used the diagnoses of an 
expert consensus panel comprising three senior physicians from each 
specialty, serving as the gold standard. We then used it as a reference 
to assess the accuracy of AI-generated diagnosis in comparison to the 
physician groups.

Assisted diagnostic accuracy with the LLM in the workflow. We 
conducted a study to examine the AI system’s potential role in assisting 
the diagnostic performance of physicians within their workflow. After 
the previous initial diagnosis, each group of junior and intermediate 
physicians was asked to provide a diagnosis with the assistance of the 
model-generated output, including reasoning rationales and final 
diagnosis suggestions. Each junior and intermediate physician received 
150 cases. Then, the physicians formulated their final diagnosis using 
the model-generated contents as reference. The re-test comparison 
study was conducted at least 2 weeks later to ensure reproducibility. 
We compared the diagnostic accuracy of junior and intermediate physi-
cians after AI assistance to that of our AI system or senior physicians, 
to investigate whether the integration of an LLM in the workflow could 
enhance junior and intermediate physicians.

Human evaluation framework of the diagnostic capability of the 
LLM. To gain a comprehensive understanding of the capabilities and 
potential limitations of the LLM in clinical senecios, we proposed an 
assessment framework named CLEVER. This framework is designed to 
evaluate the capacity of the LLM to generate accurate and reliable diag-
noses while adhering to medical standards, covering various aspects 
from medical case comprehension and clinical reasoning to diagnosis 
formulation. The development of the CLEVER framework was inspired 
by previous work14,59 and involved consultations with expert physicians 
in the United Kingdom and China. The framework included eight key 
evaluation axes and refined metrics. (1) Medical case comprehension. 
The objective of this metric was to assess the LLM’s understanding 
and interpretation of medical cases, including comprehension of the 
record of clinical cases and crucial information required for diagnosis 
with completeness and correctness. (2) Medical guideline and con-
sensus. The objective of this metric was to assess the LLM’s adherence 
to established medical guidelines and consensus within the medical 
community. (3) Clinical reasoning. The objective of this metric was 
to assess the LLM’s content aligned with the diagnostics reasoning 
process of physicians in clinical practice. (4) Relevance of differential 
diagnosis. The objective of this metric was to assess the LLM’s capacity 
to differentiate among multiple possible conditions or diseases that 
could potentially cause a patient’s symptoms. (5) Acceptability of diag-
nosis. Assessing the feasibility of the LLM’s generated diagnoses. We 
asked the physicians to rate whether the diagnosis was acceptable or 
reliable for clinical use. (6) Unfaithful content. Evaluating the presence 
or extent of inaccurate or misleading information in the LLM’s output. 
The physicians were asked to rate whether the LLM included incorrect 
or fabricated content. (7) Bias and unfairness. Assessing the presence 
or extent to which the LLM demonstrated varying levels of stereotypes 
related to age, gender, culture and race. (8) Possibility of harm. Assess-
ing the presence or extent to which the generated content of the LLM 
contains any incorrect, adverse, harmful or fabricated evidence, which 
could potentially lead to misdiagnosis or mislead physicians, resulting 
in possible serious medical accidents/negative impacts.

A total of six senior physicians, comprising three senior physicians 
specialized in the pulmonary field and three senior endocrinologists, 

each with over 10 years of clinical experience, were involved in evaluat-
ing the model’s generated diagnosis and the related reasoning process. 
The capabilities of the LLM with alignment versus the LLM without 
alignment were assessed by each senior physician within their respec-
tive specialty. This process included a total of 180 evaluations. Each 
senior physician reviewed and scored the cases based on a five-point 
Likert scale. A detailed description of the metrics is provided in the 
Supplementary Information.

Implementation
We applied low-rank adaptation (LoRA)60 and ZeRO++61 with the 
DeepSpeed framework to train LLMs. LoRA can reduce the number of 
trainable parameters by freezing the pre-trained model weights and 
injecting trainable rank decomposition matrices into each layer of the 
transformer architecture (see details in the Supplementary Informa-
tion). We found that LoRA fine-tuning, when appropriately configured, 
can be more effective for large-scale LLMs (Supplementary Table 8). 
Experiments demonstrated that with parameter-efficient training and 
selecting domain-representative corpora, the corpus token size used 
is sufficient to build an efficient medical LLM (Supplementary Table 9 
and Extended Data Fig. 9). We employed the vLLM62 library for model 
inference for its high efficiency in memory and computational resource 
utilization. In our approach to generating diagnosis using LLMs, we 
included two prompting techniques: MED-Prompt prompting63 and SC 
prompting64. MED-Prompt is a medical prompting strategy, combined 
with few-shot prompting to generate predictions from pre-trained 
LLMs without the need for task-specific fine-tuning. The SC strat-
egy was employed with 20 samples to balance performance and cost 
(Extended Data Fig. 10). Detailed parameters of the implementation 
are provided in the Supplementary Information.

Statistical analysis
We used micro accuracy and macro accuracy to evaluate diagnos-
tic performances. We calculated the mean and standard error of the 
performance. To compute the CIs, we used a non-parametric boot-
strap procedure with 1,000 samples65. We also reported more met-
rics, including precision, recall, ROC-AUC and PR-AUC, using both 
macro average (unweighted) and micro average (sample-weighted) 
methods. The ROC-AUC scores were calculated using SC agreement 
frequency66. In clinical studies, a two-sided P value of less than 0.05 was 
considered statistically significant. We use two-sided t-tests between 
MedFound-DX and MedFound-DX-PA to show whether significant 
differences exist across eight dimensions of human evaluation for 
diagnostic performance.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The raw data of PMC-CR and MedText are available from https://www.
ncbi.nlm.nih.gov. The MIMIC-III-Note dataset can be found at https://
physionet.org/about/database/ and requires access due to its terms of 
use. MedDX-Note and MedDX-Bench are sourced from real-world clini-
cal scenarios, with IRB approval obtained from institutions for EHR data 
collection. Due to privacy regulations, the EHRs cannot be made freely 
available in a public repository. De-identified data from MedDX-Note 
and MedDX-Bench can be requested through the management team by 
contacting the corresponding author (G.W.), following a defined proto-
col for data request approval. Generally, all such requests for access to 
EHR data will be responded to within 1 month. For the reproduction of 
our code and model, a representative test dataset from MedDX-Bench, 
containing samples across specialties, is publicly available on GitHub 
(https://github.com/medfound/medfound/tree/main/data/test.zip). 
Data can be shared only for non-commercial use.
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Code availability
The deep learning models were developed and deployed in 
Python (3.10) using PyTorch (2.1.2). The following standard model  
libraries were used: numpy (1.26.4), pandas (2.2.1), transformers 
(4.36.1), vllm (0.2.5), scikit-learn (1.2.1), matplotlib (3.7.1) and scipy 
(1.11.3). We build upon PyTorch (2.1.2) to implement Direct Pref-
erence Optimization (DPO). Custom codes were specific to our 
development environment and were used primarily for data input/ 
output and parallelization across computers and graphics processors. 
The codes are available for scientific research and non-commercial 
use on GitHub at https://github.com/medfound/medfound. The 
pre-trained models are publicly available (https://huggingface.
co/medicalai/MedFound-7B, https://huggingface.co/medicalai/
MedFound-176B).
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Extended Data Fig. 1 | The development of the LLM-based diagnostic system. 
a, The fine-tuning process. First, we fine-tuned M′ based on a language model M  
to generate diagnostic rationales based on a small number of manual 
demonstrations D0.annotated by physicians. Then, we utilized the model M′ to 
generate a dataset with diagnostic rationales D1. Given a medical record as input, 
the model M′ generated diagnostic rationale. For cases where the diagnosis in 
rationale was incorrect, we provided the model M′ with the medical records and 
the corresponding correct diagnosis as a reasoning cue to re-generated 
diagnostic rationale. Finally, we finetuned the model M′′ using the augmented 

data D2. b, Unified preference alignment framework. Left, Preference alignment 
includes two steps: preference construction and preference optimization. Upper 
right, given a medical record, multiple rationales are sampled and used to 
construct preference pair. Lower right, both diagnostic hierarchy and 
helpfulness preferences are incorporated, where diagnostic hierarchy 
preferences are guided by the hierarchical structure of disease classifications 
based on ICD codes and helpfulness preferences are constructed based on expert 
annotations.
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Extended Data Fig. 2 | The user interface of annotation. a, The user interface allows physicians to annotate diagnostic rationale. b, The user interface allows 
physicians to annotate the given diagnostic rationale by a label of helpful or not.
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Extended Data Fig. 3 | The user interface of clinical evaluation for comparison with physicians. a, The user interface allows physicians to make diagnosis. b, The 
user interface allows physicians to make diagnosis with AI-assistance.
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Extended Data Fig. 4 | The user interface of clinical evaluation for diagnostic performance with a human evaluation framework. The user interface allows 
physicians to evaluate AI-model’s rationale, with eight metrics on a Likert-scale of 1 to 5.
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Extended Data Fig. 5 | Top-1 accuracy of the LLMs for diagnosis of common 
diseases. a and b, The micro accuracy over individuals between Meditron-70B 
(light green), Llama 3-70B (medium green), Clinical Camel-70B (dark green), 
GPT-4o (orange) and our MedFound-DX-PA (blue), for diagnosing diseases in 

in-distribution (ID) (a) (n = 11,662) and out-of-distribution (OOD) (b) (n = 23,917) 
settings stratified by eight specialties: pulmonology, gastroenterology, urology, 
cardiology, immunology, psychiatry, neurology, and endocrinology. The error 
bars represent the 95% CIs.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Top-1 accuracy of the LLMs for diagnosis of rare 
diseases. a, The distribution of diseases in the MedDX-Rare dataset. The 
horizontal axis represents the diseases ranked by the number of samples 
illustrating the long-tail distribution, and the vertical axis represents the number 
of samples. b, Performance comparison of macro accuracy between Meditron-
70B (light green), Llama 3-70B (medium green), Clinical Camel-70B (dark green), 
GPT-4o (orange) and our MedFound-DX-PA (blue) across eight specialties: 
pulmonology, gastroenterology, urology, cardiology, immunology, psychiatry, 
neurology, and endocrinology (n = 20,257). Bar graphs indicate the MedFound-
DX-PA’s Top-1 accuracy for individual diseases within each specialty. Each 
specialty’s performance on individual diseases is aggregated at the octiles of 

disease prevalence for averaged performance evaluation. c, The micro accuracy 
over individuals between Meditron-70B (light green), Llama 3-70B (medium 
green), Clinical Camel-70B (dark green), GPT-4o (orange) and our MedFound-
DX-PA (blue), for diagnosing rare diseases across eight specialties: pulmonology, 
gastroenterology, urology, cardiology, immunology, psychiatry, neurology, and 
endocrinology. Bar graphs indicate the mean ± 95% confidence intervals. d, The 
micro accuracy of MedFound-DX-PA for diagnosing rare diseases stratified by 
cumulative prevalence, including ultra-rare diseases (prevalence ≤ 0.1%) (n = 378) 
and rare diseases (prevalence between 0.1% and 1%) (n = 1,727). The x-axis 
represents the accuracy (mean ± 95% confidence intervals).
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Extended Data Fig. 7 | Performance comparison of LLMs with or without 
self-consistency strategy for various diagnostic accuracy. Impact analysis of 
self-consistency strategy on the accuracy of various LLMs, Meditron-70B (light 
green), Llama 3-70B (medium green), Clinical Camel-70B (dark green), and our 
MedFound-DX-PA (blue), for diagnostic tasks on MedDX-Test (in-distribution 

testing on common diseases) (left), MedDX-OOD (out-of-distribution testing on 
common diseases) (middle), and MedDX-Rare (out-of-distribution testing on 
rare diseases) (right). The short horizontal line shows the mean performance of 
a set of models. The percentage increases shown are the improvements gained 
through self-consistency strategy.
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Extended Data Fig. 8 | Performance comparison of LLMs using classification 
and text generation for diagnosis. a and b, Comparison of accuracy between 
classification models (HRF, Med-BERT, MedFound-CLS) and text generation 
model (MedFound-DX-PA) for diagnostic tasks in in-distribution (ID) (a) 

(n = 11,662) and out-of-distribution (OOD) (b) (n = 20,257) settings on diseases 
across eight specialties: pulmonology, gastroenterology, urology, cardiology, 
immunology, psychiatry, neurology, and endocrinology. Bar graphs indicate the 
mean ± 95% CI.
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Extended Data Fig. 9 | Performance analysis of MedFound-7B and MedFound-
176B model, pre-trained on corpora of varying sizes. The performance 
of MedFound (orange) and MedFound-7B (blue) pre-trained on increasing 
proportions of the MedCorpus dataset for diagnostic tasks across eight 
specialties: pulmonology, gastroenterology, urology, cardiology, immunology, 
psychiatry, neurology, and endocrinology. The x-axis indicates the proportion 
of total data used for pre-training the LLM. The y-axis represents the accuracy 
of diagnoses. The horizontal dashed line corresponds to the mean performance 

of the LLMs over the last three data points. To examined the effects of corpus 
size for LLM pretraining, we utilized MedFound and MedFound-7B with the 
MED-Prompt strategy, evaluated on MedDX-Test. We observed consistent 
performance improvements as the training corpus ratio increased up to 70%. 
The improvements plateaued when further increasing the data size beyond 
this threshold, indicating that the current corpus meets the requirements for 
effective training.
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Extended Data Fig. 10 | The ablation results of self-consistency. a, Performance 
using self-consistency with various consistency level (n = 8,000). The x-axis is 
consistency levels. The y-axis is accuracy. Plots show the median and interquartile 

range. b, Performance using self-consistency with various sample size. The x-axis 
is sample size. The y-axis is accuracy change compared to baseline. The shaded 
area represents the 95% CI.
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