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Abstract   

Importance: This study reports the first deep-learning based delirium risk-assessment model for 

patients in the Intensive Care Unit (ICU) using only ambient noise and light information.  

Objectives: Create a deep learning model which can prospectively classify ICU patients as 

delirious versus normal based on their ICU noise and light intensities.  

Design Setting and Participants: This is a prospective cohort study in an academic hospital 

setting comprising 102 patients enrolled between May 2021 and September 2022.  

Main Outcomes and Measures: Ambient light and noise intensities were measured using 

Thunderboard, ActiGraph sensors and an iPod with AudioTools application. These 

measurements were divided into daytime (0700 – 1859) and nighttime (1900 – 0659). Deep 

learning models were trained using this data to predict the incidence of delirium during patients’ 

ICU stay or within 4 days of discharge.  Finally, outcome scores were analyzed to evaluate each 

feature’s importance and direction of influence.  

Results: Daytime noise levels were significantly higher than nighttime noise levels. When using 

only noise features or a combination of noise and light features 1-D convolutional neural networks 

(CNN) achieved the strongest performance: AUC=0.77, 0.74; Sensitivity=0.60, 0.56; 

Specificity=0.74, 0.74; Precision=0.46, 0.40 respectively. Using only light features, Long Short-

Term Memory (LSTM) networks performed best: AUC=0.80, Sensitivity=0.60, Specificity=0.77, 

Precision=0.37. Maximum nighttime and Minimum daytime noise levels were the strongest 

positive and negative predictors of delirium respectively. Nighttime light level was a stronger 

predictor of delirium than daytime light level. Total influence of light features outweighed that of 

noise features on the second and fourth day of ICU stay.  

Conclusions and Relevance: This study shows that ambient light and noise intensities are 

strong predictors of long-term delirium incidence in the ICU. It reveals that daytime and nighttime 



environmental factors might influence delirium differently and that the importance of light and 

noise levels vary over the course of an ICU stay.  

  



Introduction 

 Incidence of delirium in the Intensive Care Unit (ICU) is a significant cause of morbidity 

and mortality in critically ill patients[1].  Delirium is defined as an acute change in awareness 

and attention which develops over a short period of time and can be associated with additional 

cognitive disorders such as memory deficit, disorientation, and hallucination[2]. Studies suggest 

that delirium happens in 80% of mechanically ventilated ICU patients[3, 4] and accounts for an 

annual cost of 4-16 billion USD in this patient population[5]. Given the significant financial and 

health burdens associated with ICU delirium, its diagnosis and treatment remain imperative. 

Currently, delirium is diagnosed by overburdened ICU nurses using the Confusion Assessment 

Method ICU (CAM-ICU) questionnaire[6, 7]. The CAM-ICU contains a series of questions 

attempting to measure the level of attention, organization of thought, consciousness and change 

in mental status from baseline[8]. Due to the dependence on a baseline cognitive measurement, 

CAM-ICU maybe inaccurate in patients experiencing post-surgical cognitive disorder or baseline 

neurological disorders[9]. Furthermore, the requirement for ICU nurses to administer this test 

leads to sparse measurements, sometimes as low as 38%[10]. Also, CAM-ICU only identifies 

delirium once it has happened. Due to the vulnerability of the patient population in question, 

estimating the possibility of delirium onset can significantly improve their quality of care. 

Previous literature has mainly investigated the feasibility of predicting ICU delirium using 

electronic health records and vital signs[11-14]. Some studies have explored the possibility of 

jointly predicting level of consciousness and delirium using EEG signals from critically ill 

patients[15]. Despite pervasive sensing studies showing that ambient light and noise levels in 

ICU rooms hosting delirious patients are different from those hosting non-delirious patients[16], 

no study has yet developed a delirium-risk assessment model using these environmental 

features. Therefore, development of a delirium-risk assessment score solely using 

environmental factors is a critical need and a significant contribution for the ICU patient 

population.  



 Previous studies indicate that ICU rooms are subject to prolonged durations of abnormal 

lighting and soundscapes[17, 18]. Constant presence of artificial light, absence of windows, 

nightly sleep disruptions, staff conversations and sound of machinery are all contributing factors 

to sleep disruption and delirium in the ICU[19, 20]. Reports show that ICU noise levels are far 

above the WHO recommended guidelines for hospitals[21]. Some prior research has attempted 

to model this deleterious effect of abnormal sound levels on delirium incidence in the ICU[22].  

Despite the overwhelming evidence of the impact of ambient sound and light to the 

incidence of delirium, no study has yet attempted to develop a delirium-risk score based on light 

and sound exposure in the ICU. In this study, we hypothesized that ambient light and noise 

intensities alone can be used to prospectively predict which ICU patients will develop delirium. 

We used deep neural networks to model the variegated impact of noise and light on delirium 

incidence. We used Shapeley Additive Explanations (SHAP) analysis to infer the relative 

importance of individual light and noise features towards delirium.  

Materials and Methods 

Participants 

 Participants included in this study were recruited through two federally funded clinical 

studies at the University of Florida (UF) Shands Hospital in Gainesville, Florida. These studies 

were approved by the UF Institutional Review Board and participants gave their written informed 

consent before study enrollment. If participants were unable to provide their informed consent, a 

legally authorized representative (LAR) assented on their behalf. Inclusion/Exclusion criteria: 

Patients were considered eligible to enroll in the study if they were greater than 18 years old, 

admitted to a UF intensive care unit (ICU) and expected to stay in the ICU for at least 24 hours 

after consenting. Patients were excluded from the study due to discharge, transfer, death within 



24 hours of ICU admission or due to isolation/contact precaution requirements. Patients unable 

to consent were excluded from the study if they had no LAR who could consent on their behalf.  

Data Collection 

 Data was collected for this study between May 2021 and September 2022 as part of two 

clinical investigations namely PAIN and ADAPT. In both studies, ambient data was collected for 

seven days or till discharge from the ICU, whichever was sooner. In the PAIN study, Actigraph 

GTX3+ devices were used to collect light data and iPod was used to collect noise data. In the 

ADAPT study, Thunderboard Sense 2 multi-sensor device was used to collect both light and 

noise data. Data collected using ActiGraph sensors were downloaded using the ActiLife toolbox. 

Noise data recorded in the iPod was collected through the AudioTools pro web application.  

Delirium states were calculated using the CAM, Richmond Agitation Sedation Scale (RASS) and 

Glasgow Coma Scale (GCS) values. These tests were administered by nurses on a daily basis.  

Training and Testing Cohorts 

In this study, we evaluated the delirium predictive power of the noise and light data 

separately and in combination. Correspondingly, we present three pairs of training and testing 

cohorts, one for each case: a) Noise Cohort: This contained 67 patients in the training dataset 

and 35 patients in the testing dataset. The training dataset comprised of 236 no-delirium 

samples and 79 delirium samples; while the testing dataset contained 132 no-delirium and 33 

delirium samples, b) Light Cohort: This contained 67 patients in the training dataset and 34 

patients in the testing dataset. Here, the training dataset contained 248 no-delirium days and 59 

delirium days; and the testing dataset contained 147 delirium days and 23 no-delirium days, c) 

Combined Cohort: This contained 32 patients in the training dataset and 25 patients in the 

testing dataset. The training data comprised of 102 no-delirium days and 46 delirium days while 



the testing data contained 85 no-delirium and 26 delirium days. Each patient had ambient 

information for 1-7 ICU days, and each day had a corresponding delirium/no-delirium label.  

Preprocessing 

 All data were divided into “daytime” and “night-time”. These were treated as different 

features. Any time between 0700 to 1859 was denoted as day-time and times between 1900 to 

0659 of the next day were regarded as night-time. Noise data collected through the PAIN study 

using the iPod and AudioTools web application had seven features: maximum noise, minimum 

noise, intensities greater than 99th percentile, 90th percentile, 50th percentile, 10th percentile and 

1st percentile. Therefore, noise information collected through Thunderboard multi-sensor in the 

ADAPT study were converted into these variables to create a combined dataset. This combined 

dataset was randomly sorted into training and testing datasets while ensuring that data points 

from the same patient do not fall into both the training and testing blocks. After division into 

training and testing cohorts, the information coming from PAIN and ADAPT were min-max 

scaled to 0-1 separately. This process is illustrated in Figure 1. The same process was followed 

for the light data coming from the two studies as these were also collected using different 

sensors. For creating the combined datasets, the training and testing datasets for noise and 

light were combined after their respective scaling operations. Patients who only had either the 

noise or the light information were removed from the final combined datasets. To feed this data 

into deep learning models, every sequence was zero-padded to 7 days as this was the 

maximum ICU length of stay in our study. Finally, multiple delirium labels for each sequence 

were replaced with the label which occurred more number of times. There were no ties in our 

dataset.  

Deep Learning Specifications 



 Three different deep learning models were used in our study: a) Long Short Term 

Memory (LSTM), b) Gated Recurrent Units (GRU), and c) 1-dimensional convolutional neural 

network (1-D CNN). Each model was appended with a fully connected neural network classifier 

with sigmoid activation. All other layers had relu activation. All models were trained over 100 

epochs with a batch size of 1 and a learning rate of 0.001. The optimized loss was binary cross 

entropy loss, and the optimizer was Adam. Hyper-parameters were optimized within a 3-fold 

cross validation setting. Several performance metrics were reported on the test datasets such 

as Area Under the Receiver Operating Curve (AUC), accuracy, F1-score, Precision, Sensitivity, 

Specificity, and negative predictive value. The test datasets were bootstrapped 100 times to 

generate 95% confidence intervals for each performance metric.   

SHAP Analysis 

The best model for each training condition was subjected to SHAP analysis to identify 

the best performing variables, and how they impacted the model score. For the combined 

dataset, SHAP values for noise and light were aggregated separately to investigate the relative 

weightage of each data modality towards the model performance.  

 

Figure 1. Conceptual Workflow of the methodology 



Results 

Participants 

 The participants in our study were primarily white (75.5% white, 12.7% black, 1.9% 

Asian), non-Hispanic (91.2% non-Hispanic, 8.8% Hispanic), biological males (66.7% male, 

33.3% female), with an average age of 55.4 years (Standard Deviation; S.D=16.8 yrs). Their 

average length of stay in the ICU was 4.9 days (S.D=2.1 days). The distribution of days spent in 

the ICU resembled a bimodal distribution with two peaks at 2 days and 7 days respectively. 

Supplementary Fig 1 shows this distribution.  

Comparison Between Daytime and Nighttime Noise  

 Noise levels in the ICU during daytime and nighttime are significantly different. Table 1 

shows the results of a Student’s T test between maximum daytime versus maximum nighttime 

noise levels and between minimum daytime and minimum nighttime noise levels. Figure 2 

highlights the daytime versus nighttime noise fluctuations for a single randomly selected patient 

from the PAIN study (P009).  

Table 1. Difference between daytime and nighttime noise levels 

Noise 
feature 

Time Number of 
samples 

Q1 Median Mean Q3 p-value 

Lmax 
(dB) 

Day 7.38 X 106 58.5 63.9 64.5 68.7 0.0 

Night 7.41 X 106 56.9 62.2 62.9 67.0 

Lmin (dB) Day 7.38 X 106 52.5 56.5 58.3 63.5 0.0 
Night 7.41 X 106 52.2 55.9 57.8 63.0 

Abbreviations. Lmax; Maximum noise intensity, Lmin; Minimum noise intensity, Q1; Quartile 1, Q3; 
Quartile 3.  

 



 

 

 

 

 

 

 

Figure 2. Mean and standard deviation of maximum noise in the ICU of a randomly selected patient 

(P009). 

Delirium Prediction Using Deep Learning 

 Three different deep learning models capable of learning temporal sequence information 

were used to predict delirium from the environmental data. Table 2 shows the performance of 

the best model in predicting delirium during their ICU stay and over a period of 4 days from the 

last day in the ICU using only noise, only light and the combine data.  

 Table 2. Classification performance of noise and light data in predicting delirium 

Time of 
Delirium 

Data  Method AUC 
(95% 
C.I) 

Accuracy 
(95% 
C.I) 

F1-
score 
(95% 
C.I) 

Precision 
(95% 
C.I) 

Sensitivity 
(95% C.I) 

Specificity 
(95% C.I) 

NPV 
(95% 
C.I) 

During 
ICU stay 
or within 
4 days of 
discharge 

Noise 1-D 
CNN X 
2 

0.77 
(0.58 
- 
0.92) 

0.70 
(0.51 - 
0.84) 

0.50 
(0.29 
- 
0.76) 

0.46 
(0.20 - 
0.76) 

0.60 (0.36 
- 0.81) 

0.74 (0.55 
- 0.89) 

0.86 
(0.67 
- 
0.94) 

Light  LSTM 0.80 
(0.61 
- 
0.94) 

0.74 
(0.53 - 
0.91) 

0.44 
(0.05 
- 
0.72) 

0.37 
(0.04 - 
0.70) 

0.60 (0.08 
- 0.82) 

0.77 (0.57 
- 0.93) 

0.91 
(0.69 
- 
0.96) 

Combined 1-D 
CNN X 
2 

0.74 
(0.55 
- 
0.91) 

0.68 
(0.54 - 
0.86) 

0.43 
(0.17 
- 
0.75) 

0.40 
(0.12 - 
0.76) 

0.56 (0.25 
- 0.80) 

0.74 (0.57 
- 0.90) 

0.83 
(0.62 
- 
0.95) 

Abbreviations. AUC; Area Under the Curve, NPV; Negative Predictive Value 



 

SHAP Interpretation of Deep Learning Models 

 SHAP analysis was used to investigate the order of importance and the directionality of 

influence of noise and light features on the deep learning models discussed above. Figure 3 

shows the SHAP summary plot for the three conditions namely: predicting delirium with a) 

noise, b) light and c) combined. The SHAP summary plot ranks features according to their 

importance (topmost being the most significant predictor). Figure 3A shows that when models 

used only noise data, maximum nighttime noise and minimum daytime noise were the two most 

significant features. Furthermore, Figure 3A shows that maximum nighttime noise intensity was 

positively correlated with delirium while minimum daytime noise intensity was negatively 

correlated with delirium.  

 

A             B       C 

Figure 3. SHAP analysis results. A) only noise, B) only light, C) combined. Red dots indicate samples with 

high values of that particular feature and blue dots indicate samples with low values of that particular 

feature. Positive X-axis values indicate that the corresponding feature value pushed the model towards 

predicting 1; and vice versa.  

Figure 3B reveals that light during nightly hours were protective against delirium, and light 

during daytime were positively associated with delirium. Figure 3C shows that when noise and 

light features are used together, then noise features are more significant than light features. 

Also, the noise features which the models found most predictive in this case were different from 



those in “only noise” models. In Figure 3C L10-day (10th percentile of daytime noise) was the 

most predictive feature and was positively correlated with delirium. We further investigated the 

relationship between noise and light features over each day of ICU stay. Figure 4A-G shows the 

variegated impact had by noise and light features over the course of ICU stay. Light features 

were more important than noise features in predicting delirium on day 2 and day 4 of ICU stay.  

  

  A         B              C 
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Figure 4. Difference in cumulative significance of noise versus light features over the 7 days of ICU stay. 

A. Day 1, B. Day 2, C. Day 3, D. Day 4, E. Day 5, F. Day 6, G. Day 7. Light > Noise only on days 2 and 4.  

Discussion 

 In this study, we have used the data from two prospective single center ICU cohorts to 

train three temporal deep learning models to predict the risk of developing delirium inside or 

after discharge from the ICU. Our models show moderately strong performance in classifying 

patients who experienced delirium versus patients who did not. SHAP analysis revealed that 

maximum nighttime noise and minimum daytime noise were strong predictors of delirium but 

differed in their directionality of effect. While maximum nighttime noise was a positive predictor, 

minimum daytime noise was a negative predictor of delirium. SHAP analysis also found that 



higher nighttime noise intensities corresponded to less prevalence of delirium while higher 

daytime noise intensities corresponded to more prevalence of delirium in our dataset. 

Combining light and noise intensities resulted in reduced performance over a range of metrics.   

 To our knowledge, this study is the first of its kind to investigate the feasibility of 

predicting delirium incidence in the ICU by using only environmental factors such as ambient 

light and noise. Although there is considerable prior research which indicates that the abnormal 

noise and light inside ICU rooms contribute to circadian desynchrony which causes delirium no 

study has yet attempted to construct a delirium-risk score based solely on these environmental 

factors. Furthermore, this study represents a growing body of data where researchers used 

pervasive sensing in the ICU to improve the predictability of adverse outcomes. Additionally, our 

study offers some unique strengths. The use of deep learning allowed us to use environmental 

factors in a non-linear manner to predict delirium. This is evident in the case of light features 

where SHAP analysis revealed the directionality of the nighttime light to be ambiguous, yet the 

model retained it as the most significant feature. In the combined cohort, L90-day significantly 

predicted delirium without having a strict directionality. This meant that the decision boundaries 

found by our model were non-linear. Furthermore, our study did not treat the deep learning 

models as black boxes. SHAP analysis revealed the relative importance of different features, 

how they impacted the model output and the relative impact of combined noise and light 

features on different days of ICU stay. The fluctuating importance of light features indicated a 

possible relationship between nighttime light intensities and patient care schedules. This study 

is also the first to compare the importance of ICU noise and light intensities together and in 

isolation.  

Our study has some weaknesses. The presence of only 102 patients in our overall 

cohort weakened the robustness of our deep learning models. This was exacerbated in the 

combined cohort where the training data only comprised of 32 patients. This prevented us from 



training models with large number of parameters due to possibility of overfitting. The loss of 

samples in the combined cohort was a result of using different sensors to collect light and noise 

data in the PAIN study. The periods of measurement of light and noise data were often not the 

same and hence these samples had to be excluded from the combined cohort. Another 

disadvantage of using multiple sensors was the possible presence of batch effect. In the noise 

data, we countered this by computing the different features collected in the PAIN study from the 

Thunderboard data (ADAPT study). The distributions of noise intensities in both studies were 

Gaussian (Supplementary Figure 2A-B). However, the light intensity distributions were dissimilar 

between the ActiGraph (PAIN) and the Thunderboard (ADAPT) studies (Supplementary Figure 

2C-D). This could be an influencing factor behind the apparent loss of directionality in the light 

features.   

Future work will revolve around collecting more environmental data using a single multi-

sensor platform. We will use this data to further improve the deep models and test them on 

larger independent validation datasets. The temporally fluctuating importance of light features 

also warrants further investigation. We think that this might be caused by nightly disruptions 

owing to patient care. It is possible that the significance of nighttime light intensities as a 

delirium predictor on day 2 and 4 of ICU stay is really a reflection of a loss of circadian rhythm 

caused by scheduled nighttime patient care on these days. Therefore, we will incorporate sleep 

quality questionnaires after each night spent in the ICU into our analytic models. We will use 

state-of-the-art Natural Language Processing architectures such as Transformers to model this 

information.  

Conclusions 

 Deep Learning based time-series modeling of environmental data could develop 

classifiers with good performance for identifying patients who prospectively developed delirium. 

Further investigation of the relative importance of different environmental factors revealed that 



while noise remains an important predictor of delirium throughout the ICU stay, light becomes 

more important than noise on certain nights of ICU stay.  
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Supplementary Information 

 

Supplementary Fig 1. Distribution of number of days spent in the ICU. The distribution is bimodal with peaks 

at 2 days and 7 days.  
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Supplementary Fig 2. Distribution of maximum noise levels and light intensities collected through different 

sensors. A. Noise levels collected through iPod. B. Noise levels collected through Thunderboard. C.  Light 

levels collected using ActiGraph. D. Light levels collected using Thunderboard. Noise intensities are 

Gaussian irrespective of the sensor, but light intensities are positively skewed and different between 

ActiGraph and Thunderboard sensors.   
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