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Abstract

Consider the problem of improving the estimation of conditional average treatment
effects (CATE) for a target domain of interest by leveraging related information
from a source domain with a different feature space. This heterogeneous transfer
learning problem for CATE estimation is ubiquitous in areas such as healthcare
where we may wish to evaluate the effectiveness of a treatment for a new patient
population for which different clinical covariates and limited data are available.
In this paper, we address this problem by introducing several building blocks that
use representation learning to handle the heterogeneous feature spaces and a flexi-
ble multi-task architecture with shared and private layers to transfer information
between potential outcome functions across domains. Then, we show how these
building blocks can be used to recover transfer learning equivalents of the standard
CATE learners. On a new semi-synthetic data simulation benchmark for hetero-
geneous transfer learning we not only demonstrate performance improvements of
our heterogeneous transfer causal effect learners across datasets, but also provide
insights into the differences between these learners from a transfer perspective.

1 Introduction

Estimating the personalized effects of interventions from observational data is a fundamental problem
in causal inference that is crucial for decision-making in many domains: in healthcare, for determining
which treatments to give to patients [1], in education, for deciding which school curriculum is best for
each student [2, 3], or in public policy for choosing who would benefit from job training programs [4].
Recently, a large number of machine learning methods have been proposed for estimating conditional
average treatment effects (CATE) which enable such personalized policies [5–16].

Nevertheless, the good performance of these methods on a population of interest relies heavily
on the availability of large enough observational datasets for training [17, 18]. In healthcare, for
instance, this can be challenging when hospitals with few patients cannot collect enough data (e.g.
a large proportion of hospitals in the USA have fewer than 100 beds, which for rare diseases can
results in less than 80 training examples per year [19]). Moreover, in situations such as the COVID
pandemic, each hospital will initially have very limited amount of data to learn the effectiveness
of interventions from [20]. Compared to the predictive setting, this problem is exacerbated in the
treatment effects setting where we need to observe both patients who are treated and not treated to be
able to reliably train a model for CATE estimation to obtain personalized treatment recommendations
for the intended patient population. While data from large national registries can be used to build
global models for general use across hospitals, such models do not take into account the particularities
of different patient populations (e.g. different conditional outcome distributions) and consequently
can perform poorly during deployment [19, 21]. Moreover, various hospitals often record different
(but overlapping) sets of patient covariates [19, 22] which makes this transfer learning problem [23]
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even more challenging as we need to account for the heterogeneous feature spaces. Therefore, it
becomes crucial to build methods for heterogeneous transfer learning that can leverage information
from large source datasets with potentially different feature spaces to improve CATE estimation on
the target datasets of interest.

We consider the Neyman-Rubin potential outcomes (PO) framework [24, 25], where for each indi-
vidual we can define two potential outcomes, one with and one without the treatment. Out of these,
we can only observe the factual outcome; the counterfactual outcome is never observed. Under the
identifiability conditions of overlap and ignorability, observational data can be used to estimate the
PO conditional on the patient’s characteristics, which can then be used to obtain CATE. In this paper,
we address the problem of heterogeneous transfer for CATE estimation, where we aim to leverage
related data from a source domain with different feature space (e.g. data from another hospital) to
improve CATE estimation on a target domain from which we only have few training examples.

Due to the fundamental problem of causal inference of not being able to observe both PO for a patient
[26], heterogeneous transfer learning in the context of CATE estimation becomes significantly more
challenging than for supervised learning. In addition to the feature mismatch between domains, the
PO may also have different conditional distributions, as covariate relationships and their impact
on patients’ response to treatments cannot be expected to stay constant across hospitals/locations
[19]. Moreover, as clinicians may use different criteria for assigning treatments for various patient
populations, this selection bias may create discrepancies in the covariate shift induced by the treated
and control populations in each domain. Consequently, we need to build an approach that can both
handle the heterogeneous feature spaces, and also model the similarities and differences between
both PO functions and treatment assignment mechanisms across the source and target domains.

For the binary treatment setting in a single patient population, a large number of different approaches
for CATE estimation have been proposed where the main design choices involved modelling the PO
functions and handling the selection bias present in observational datasets [10, 14–16, 27–29]. We
discuss these in more details in Section 2. However, note that each different CATE learner has its own
advantages and disadvantages in terms of the inductive biases they use for modelling the PO functions
and the covariate shift induced by the selection bias, and thus, different learners will achieve better
performance in various scenarios [15, 30]. Therefore, we propose a flexible approach for transfer
learning, that (1) preserves the characteristics of each learner in a single domain, while (2) enabling
heterogeneous feature spaces and (3) sharing information between PO functions across domains.
Firstly, we introduce several building blocks that can be used to adapt the most common CATE
learners [10, 15] to transfer information from a source to a target domain. These building blocks
involve handling the heterogeneous feature spaces, sharing information between PO functions across
domains and sharing information between PO functions within a single domain. Secondly, we show
how these building blocks can be used to build heterogeneous transfer causal effect (HTCE-) learner
equivalents of the most common and popular CATE learners based on neural networks [10, 15].

Contributions. Our contributions are three-fold (i) we define the problem of heterogeneous transfer
learning in the context of CATE estimation and propose several building blocks that can be used to
construct models to address this problem, (ii) we use these building blocks to construct HTCE-learner
equivalents of the most common CATE learners, and (iii) we propose a new semi-synthetic data
simulation and guidelines for evaluating CATE methods for heterogeneous transfer and perform
extensive experiments that not only show that our HTCE-learners achieve improved performance, but
also provide new insights into the differences between these learners from a transfer perspective.

2 Related works

We tackle the problem of heterogeneous transfer learning in the context of CATE estimation. Thus,
our work straddles at the intersection of research in (1) causal inference methods for CATE estimation
(2) leveraging multiple datasets for CATE estimation (3) multi-task/transfer learning and domain
adaptation. Refer to Appendix A for further discussion of related works.

CATE learners. The estimation of CATE has received a lot of attention in the causal inference
literature and several methods have been proposed to estimate the effects of binary treatments. Out of
these, we consider the most popular approaches that involve using model agnostic learning strategies,
also known as meta-learners, for CATE estimation [15, 31] or neural network-based models that build
shared representations between the PO functions followed by outcome specific layers [10, 15, 27, 28].
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The CATE meta-learners can be split into (a) one-step plug-in learners (indirect meta-learners) that
estimate the PO from the observational data and then set CATE as the difference in the PO [31]
and (b) two-step learners (direct meta-learners) that estimate the PO and/or the propensity score
in the first step on the basis of which they build a pseudo-outcome and obtain CATE directly by
regressing the input covariates on the pseudo-outcome in the second step [15, 31–33]. Refer to [15]
for a more thorough classification of the different meta-learners. Alternatively, several methods based
on representation learning with neural networks and multi-task learning have been proposed that
involve having shared layers between the PO functions followed by outcome-specific layers. The
most standard architecture for this is TARNet [10] which has been extended to allow for different
types of information sharing between the PO and propensity score in [14, 15, 27]. To account for the
confounding bias present in observational datasets, several approaches have been proposed to extend
this model architecture by building balanced representations (treatment invariant representations)
[10, 28] and/or incorporating propensity weighting to obtain unbiased estimates of the PO [29, 34].
These different approaches have their own benefits and drawback, which is why it is important to
build a heterogeneous transfer learning approach that is general enough to extend all of them.

Transfer and domain adaptation for CATE estimation. While, the problem of transfer learning
for CATE estimation has also been addressed by [35] the proposed approach considers shared feature
spaces and consists of a two-stage training procedure that involves warm-start on the first domain and
fine-tuning on the second domain. Alternatively, [36] proposes a CATE estimation method that can
generalize to distribution shifts in the patient population in the unsupervised domain adaptation setting.
However, they do not assume access to label information in the target domain and only consider a
shared feature space between the two domains. In addition, [37] leverages data from multiple different
environments, with shared feature spaces, to learn an invariant representation that removes the ‘bad
controls’ which induce bias in the CATE estimation. Then, they use this invariant representation
to learn shared PO functions across the different environments. Refer to Appendix A for more
methods that use multiple datasets for causal inference, although for different purposes than ours.

Multi-task/transfer learning and domain adaptation. Methods to address these problems have
been extensively studied in the predictive (supervised) setting. We describe here the works most
related to ours that consider (a) shared feature space and (b) heterogeneous feature space. For
shared feature spaces, methods in domain adaptation focus on handling the covariate shift, i.e. the
distribution mismatch between the input features across the different domains and propose various
approaches of learning domain invariant representations [38, 39] based on which they learn an out-
come function shared between domains. Alternatively, multi-task/transfer learning methods propose
various approaches for neural networks to learn from related tasks that involve using both shared and
task (domain) specific layers [40, 41] to allow a flexible modelling of the different outcomes. To
handle heterogeneous feature spaces, [22] proposes RadialGAN, a method that augments the target
dataset with generated samples from the source datasets. However, RadialGAN involves training
separate generators and discriminators for each domain and consequently also requires access to
enough training data in the target domain. After the data generation, RadialGAN trains separate
predictors in each domain that do not share information between each other. Alternatively, Wiens et
al. [19] considers the problem of feature mismatch (in a specific healthcare application), but does not
address the problem of distributional differences in the outcomes.

We are the first to address the problem of heterogeneous transfer for CATE estimation. We build
HTCE-learners that use representation learning to handle the heterogeneous feature spaces and a
multi-task architecture with shared and private layers to transfer information between PO across
domains, thus also handling the case when different populations respond differently to treatments.

3 Problem formalism

Let random variable Xi ∈ X denote a vector of pre-treatment covariates (confounders), Wi ∈ {0, 1}
the assigned binary treatment and Yi a categorical or continuous observed outcome for individual
i. Let π(x) = p(W = 1 | X = x) denote the treatment assignment mechanism. As previously
mentioned, we work in the Neyman-Rubin potential outcomes (PO) framework [24, 25] and we
consider that each individual has two potential outcomes Yi(1) and Yi(0) for receiving and not
receiving the treatment respectively. However, only one of these outcomes can be observed such that
Yi = WiYi(1) + (1−Wi)Yi(0). Let µ1(x) = E[Y (1) | X = x] and µ0(x) = E[Y (0) | X = x] be
the PO functions.
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Our aim is to estimate the conditional average treatment effect (CATE):
τ(x) = E[Y (1)− Y (0) | X = x] = µ1(x)− µ0(x) (1)

which is the difference between expected outcomes for an individual with covariates X = x. Let
η = (µ0(x), µ1(x), π(x)) be the nuisance functions for this CATE estimation problem.

Assume access to a source dataset DR = {(XR
i ,Wi, Yi)}NR

i=1 and a target dataset DT =

{(XT
i ,Wi, Yi)}NT

i=1. Different domains in applications such as healthcare, have heterogeneous
feature spaces such that XR

i ∈ RDR and XT
i ∈ RDT , where DR 6= DT are the dimensions

of the feature spaces. We also consider that the source and target domains have different dis-
tributions p(XR) 6= p(XT ) (due to their heterogeneous feature spaces), different treatment as-
signment mechanisms p(W = 1 | XR) 6= p(W = 1 | XT ) and different conditional distri-
butions for PO, p(Y (w) | XR) 6= p(Y (w) | XT ). This results in different joint distributions
p(XR,W, Y ) 6= p(XT ,W, Y ) which is representative of hospitals recording different types of pa-
tient data where the relationships between patient covariates, treatments and outcomes can change
across diseases and locations [19, 42]. Nevertheless, we implicitly assume that there is a shared
structure between these conditional distributions across domains to enable transfer.

Our aim is to estimate conditional average treatment effects (CATE) for the target domain:

τT (x) = µT1 (xT )− µT0 (xT ), (2)
by using both the source DR and target dataset DT . In particular, we want to improve the estimation
in the target domain by leveraging information from the source domain. This is useful in the setting
where the target dataset is much smaller than the source one NT << NR and we can leverage
shared structure between the source and target outcome response functions: µR0 (xR), µT0 (xT ) and
µR1 (xR), µT1 (xT ) and treatment assignment mechanisms πR(xR), πT (xT ). To be able to identify the
causal effects from observational data, we make the standard assumptions for both domains.
Assumption 1. (Unconfoundedness) There are no unobserved confounders, such that the treatment
assignment and PO are conditionally independent given the covariates: Y (0), Y (1) ⊥⊥W | XT and
Y (0), Y (1) ⊥⊥W | XR.
Assumption 2. (Overlap) πT (xT ) = p(W = 1 | XT = xT ) > 0,∀xT ∈ X T and πR(xR) =
p(W = 1 | XR = xR) > 0,∀xR ∈ XR.

4 Building blocks for CATE transfer learners

In this section, we propose building blocks that enable a flexible transfer approach for CATE learners.
The challenge in this setting is threefold as we need to (1) handle heterogeneous feature spaces
between the source and target domains (2) share information between PO functions across source
and target datasets (µR1 , µT1 ) and (µR0 , µT0 ) as well as (3) share information between PO functions
within a single domain (µR0 , µR1 ) and (µT0 , µT1 ).

We start by addressing (1) and (2) and show how the proposed building blocks can be used to obtain
transfer approaches for the most common meta-learning strategies in the treatment effects literature
[15]. Then, we propose a building block for addressing (3) to obtain transfer CATE learners that use
shared layers and outcome specific layers for the potential outcome functions in each domain [10].

4.1 Handling heterogeneous feature spaces between source and target domains

Consider the following split for the source and target covariates XR = (Xs, XpR) and XT =
(Xs, XpT ) such that we have a set of features private (specific) to the source dataset XpR ∈ RDpR ,
a set of features private to the target dataset XpT ∈ RDpT and a set of shared features between the
two datasets Xs ∈ RDS . To handle the heterogeneous features spaces between the source and target
datasets we propose using several encoders to create a common representation that can be used as
input to the different transfer CATE learners.

Let φpR(xR) : RDR → RDp and φpT (xT ) : RDT → RDp be domain-specific (private) encoders
that map the heterogeneous input features to a representation of size Dp, such that φpT (xT ) = zpT

and φpR(xR) = zpR . Moreover, let φs(xs) : RDS → RDs be a shared encoder that maps the
shared features between the source and target domains into a representation of size Ds such that
φs(xs) = zs.
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Figure 1: Building block
for handling the heteroge-
neous feature space of the
source and target domains.

As illustrated in Figure 1, a source example xR is encoded to [zs||zpR ]
and a target example xT to [zs||zpT ], where || denotes concatenation and
where both representations have size Ds +Dp. Note that an alternative
approach would have been to use the domain-specific encoders φp only
for the private features xpR and xpT . However, inputting the shared
features through both types of encoders allows us to learn relationships
between them that are shared across the different domain, as well as
interactions which are domain-specific.

To discourage redundancy and ensure that zp and zs encode different
information from the input features, we propose using a regularization
loss that enforces their orthogonality [39]:

Lorthz = ‖ζs>ζpR‖2F + ‖ζs>ζpT ‖2F (3)

where ζpR , ζpT and ζs are matrices whose rows are the private zpR ,
zpT and shared zs representations for the source and target examples
respectively, and ‖ · ‖2F is the squared Frobenius norm.

4.2 Sharing information between potential outcomes response functions across domains

As treatment responses can vary between different patient populations, it is important to build
a transfer approach that enables learning target-specific outcome functions, while also sharing
information from the source domain. We propose a building block for sharing information between
PO functions across domains that is inspired by the FlexTENet architecture [14] and by works in
multitask learning [41] and that involves having private layers (subspaces) for each domain as well as
shared layers.
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Figure 2: Building block for sharing information
between PO across domains.

As shown in Figure 2, for each treatment w ∈
{0, 1}, we consider a model architecture for esti-
mating its PO functions in the source and target
domains µRw and µTw that consists of L layers,
each having a shared and two private subspaces
(one for each domain). For simplicity, we con-
sider the same number of hidden dimensions
for each shared and private subspace. Let h̃pRw,l,
h̃pTw,l, h̃

s
w,l be the inputs and hpRw,l, h

pT
w,l, h

s
w,l the

outputs of the lth layer. For l > 1, similarly to
[14], the inputs to the (l+1)th layer are obtained
as follows: h̃pRw,l+1 = [hsw,l||hpRw,l], h̃

pT
w,l+1 =

[hsw,l||hpTw,l], h̃sw,l+1 = [hsw,l]. For l = 1, we
set h̃pRw,1 = ΦR(xR), h̃pTw,1 = ΦT (xT ), and
h̃sw,1 = h̃pRw,1 when using an example from the
source domain or h̃sw,1 = h̃pTw,1 when using an
example from the target domain, where ΦR(·) and ΦT (·) are input representations. When sharing the
encoders from Section 4.1 for both treatments, we set ΦR(xR) = [zs||zpR ] and ΦT (xT ) = [zs||zpT ].
However, as we will see in Section 5.1, this input representation is CATE learner specific and can be
extended (see Section 5.2) by adding more representation layers to share information between PO
functions within each domain. For the last layer L, we build hsw,L, h

pR
w,L, h

pT
w,L to each have the same

dimension as the potential outcome y.

Overall, let gRw , gTw be the hypothesis functions estimating the potential outcomes in the source
and target domains respectively, such that gRw(ΦR(xR)) = ψ(hpRw,L + hsw,L) and gTw(ΦT (xT )) =

ψ(hpTw,L + hsw,L), where ψ is the linear function for continuous outcomes and sigmoid function for
binary ones. This allows us to define the following loss function for estimating the PO:

Ly =

NR∑

i=1

l(yi, g
R
wi

(ΦRwi
(xRi ))) +

NT∑

i=1

l(yi, g
T
wi

(ΦTwi
(xTi ))) (4)
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where l(·, ·) can be the mean squared error for continuous outcomes and the cross-entropy for binary
outcomes. Moreover, to discourage redundancy between the shared and private layers, we apply an
orthogonal regularization loss, similar to [14, 41]. Let ms

w,l−1,m
pR
w,l−1,m

pT
w,l−1 be the dimensions of

hsw,l−1, hpRw,l−1, h
pT
w,l−1 respectively, i.e. the outputs of the (l − 1)th layer. Let the weights in the lth

layer be θsw,l ∈ Rm
s
w,l−1×m

s
w,l , θpRw,l ∈ R(ms

w,l−1+m
pR
w,l−1)×m

s
w,l and θpTw,l ∈ R(ms

w,l−1+m
pT
w,l−1)×m

s
w,l .

This allows us to use the following orthogonal regularizer:

LorthPO =
∑

w∈{0,1}

L∑

l=1

‖θsw,l>θpRw,l,1:ms
l−1
‖2F + ‖θsw,l>θpTw,l,1:ms

w,l−1
‖2F (5)

A similar approach can be used to share information between the propensity estimation functions
(π̂(x)) that are used by some of the meta-learners. See appendix B for details.

5 Heterogeneous transfer causal effect learners

Using these building blocks of handling the heterogeneous feature spaces and sharing information
about PO functions across domains, we now propose a transfer learning alternative for the standard
meta-learners and neural networks (NNs) based CATE estimators, which we refer to as Heterogeneous
Transfer Causal Effect (HTCE) learners. See Appendix C for the pseudo-code for the HTCE-learners.

5.1 Heterogeneous transfer learning for CATE meta-learners

Consider NN-based implementations for the nuisance functions η = (µ0(x), µ1(x), π(x)) of each
CATE meta-learner. Based on the taxonomy of meta-learners described in [15] we divide them into
one-step plug-in learners and two-step learners and provide HTCE- equivalents for both.

One-step plug-in learners. One-step plug-in learners estimate µ̂1 and µ̂0 and then compute CATE
as τ̂(x) = µ̂1(x) − µ̂0(x). The most common strategies are the T-learner which does not share
information between PO functions and the S-learner which does [31]. Here, we consider the simplest
S-learner that uses the treatment as an additional feature, while in Section 5.2 we explore more
complex strategies for sharing information between PO functions within a single domain.

For our HTCE-T-learner (Figure 3 (a)), we build a model where there is no parameter sharing between
(gR0 , g

R
1 ) and between (gT0 , g

T
1 ). We consider treatment-specific encoders φpRw , φpTw , φsw for the hetero-

geneous feature spaces, such that ΦRw(xR) = [φsw(xs)||φpRw (xR)] and ΦTw(xT ) = [φsw(xs)||φpTw (xT )].
To enable transfer, we use the approach described in Section 4.2 to share information between the
hypothesis functions (gR0 (ΦR0 (xR)), gT0 (ΦT0 (xT ))) and (gR1 (ΦR1 (xR)), gT1 (ΦT1 (xT ))). Alternatively,
for the HTCE-S-learner (Figure 3 (b)), we propose concatenating the treatment w to the shared input
features xs and using shared layers to obtain the PO functions in each domain. Thus, we build input
representations ΦR(xR, w) = [φs(xs, w)||φpR(xR)], ΦT (xT , w) = [φs(xs, w)||φpT (xT )] and we
enable transfer by having private and shared layers between the hypothesis functions gR(ΦR(xR, w))
and gT (ΦT (xT , w)) that share parameters for both treatments within a single domain.Transfer T-learner
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(b) HTCE-S-learner

Figure 3: HTCE-one-step plug-in learners. Notice that the HTCE-T-learner uses treatment specific
feature encoders and hypothesis functions in each domain, while the HTCE-S-learner concatenates
the treatment to the shared features and shares its components for both treatments in each domain.
Two-step learners. The two-step (direct) learners consist of a first stage that involves obtaining
plug-in estimates η̂ of the nuisance parameters η = (µ0, µ1, π) which are used to compute the
pseudo-outcome Ỹη̂ and a second stage that involves regressing Ỹη̂ on X directly to obtain τ̂ . Several
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Figure 4: HTCE-DR-learner. The first step obtains estimates of η̂ using our hetereogeneous transfer
learning approach that shares information between (µ̂Rw , µ̂Tw) and (π̂R, π̂T ), which are then used to
compute the pseudo-outcomes ỸDR,η. The second stage regresses the input on the pseud-outcomes

and builds a hetereogeneous transfer approach to share information between ( ˆ̃Y RDR,η, ˆ̃Y TDR,η).

strategies based on regression adjustment (RA), propensity weighting (PW) or doubly robust (DR)
meta-learner [15] have been proposed to compute pseudo-outcomes Ỹη̂ which result in unbiased
estimates of CATE when η is known: τ(x) = E[Ỹη̂ | X = x]. These meta-learners have different
theoretical properties depending on the sample size and the selection bias present in observational
datasets [15], which is why it is important to build a transfer approach to extend all of them.

We describe here how to build the HTCE-DR-learner (Figure 4) and note that a similar approach
can be used for to obtain the HTCE-RA-learner, and the HTCE-PW-learner which use a subset of
nuissance parameters to compute the pseudo-outcomes. For the first stage of the HTCE-DR-learner of
estimating the nuisance parameters η̂, we use an approach similar to the HTCE-T-learner where each
nuisance function has its own parameters. To handle the heterogeneous feature spaces, we consider
treatment-specific feature encoders for the potential outcome functions φpRw , φpTw , φsw and additional
feature encoders for the propensity estimation φpRπ , φpTπ , φsπ such that ΦRw(xR) = [φsw(xs)||φpRw (xR)],
ΦTw(xT ) = [φsw(xs)||φpTw (xT )] and ΦRπ (xR) = [φsπ(xs)||φpRπ (xR)], ΦTπ (xT ) = [φsπ(xs)||φpTπ (xT )].
Using the approach described in Section 4.2 and Appendix B, we share information across domains
between each nuisance function: (gRw(ΦRw(xR)), gTw(ΦTw(xT ))) and (gRπ (ΦRπ (xR)), gTπ (ΦTπ (xT ))) to
estimate η̂. We then compute the pseudo-outcomes ỸDR,η̂ as follows [15]:

ỸDR,η =

(
W

π̂(x)
− 1−W

1− π̂(x)

)
Y +

[(
1− W

π̂(x)

)
µ̂1(x)−

(
1− 1−W

1− π̂(x)

)
µ̂0(x)

]
(6)

For the second stage of regressing the input on the pseudo-outcomes Ỹ RDR,η̂ , Ỹ TDR,η̂ directly, we build
a similar transfer architecture with feature encoders φpRy , φpTy , φsy to handle the heterogeneous feature,
followed by hypothesis functions with private and shared layers (gRy (ΦRy (xR)), gTy (ΦTy (xT ))), where
ΦRy (xR) = [φsy(xs)||φpRy (xR)], ΦTy (xT ) = [φsy(xs)||φpTy (xT )].

5.2 Sharing information between potential outcome functions within each domain
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Figure 5: HTCE-TARNet.

In previous sections, we focused on sharing
information between PO functions across
domains (µR1 , µT1 ) and (µR0 , µT0 ). How-
ever, many methods in the causal inference
literature for estimating treatment effects
propose different strategies for also sharing
information between PO functions within
a single domain (µR0 , µR1 ) and (µT0 , µT1 )
[10, 15, 27]. The most common one is the
TARNet architecture [10] which uses sev-
eral layers to build a shared representation,
followed by outcome-specific layers.

To obtain HTCE-TARNet (Figure 5), we
propose using feature encoders φpR , φpT , φs that are shared across the different treatments in each
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domain. Then, we construct another building block that involves adding several representation layers
on top of the feature embeddings in each domain using domain-specific encoders ΩpT and ΩpR .
These representation layers are domain specific as their purpose is to share information between
the PO functions within a single domain. Thus, we obtain ΦR(xR) = ΩpR([φs(xs)||φpR(xR)]),
ΦT (xT ) = ΩpT ([φs(xs)||φpT (xT )]), which are used as input to the corresponding (treatment-
specific) hypothesis functions gRw(ΦR(xR)) and gTw(ΦT (xT )).

This approach can be easily extended to recover HTCE- equivalents of other SNet architecture
[15] that build additional representation layers to share information between PO (and propensity)
estimation within each single domain [27]. Moreover, several methods have been proposed to account
for the selection bias in the observational dataset by building balancing representations [10, 27, 28].
This can also be achieved for our HTCE-learners by enforcing regularization on top of the learnt
domain-specific representations: ΩpR(·) and ΩpT (·). Overall, we have built the HTCE-learners to
preserve the characteristics of the different CATE-learners in a single domain, but to handle the
heterogeneous feature spaces and to share information between outcome functions across domains.

6 Evaluation

6.1 Experimental set-up

Semi-synthetic data generation. Given that counterfactuals, and subsequently ground truth causal
effects are never observed in real-datasets, semi-synthetic data is needed to be able to evaluate
methods for estimating CATE. While several benchmarks have been proposed for the standard CATE
estimation problem [15, 17] in a single domain, none exist for the heterogeneous transfer learning
setting. Thus, we propose a new semi-synthetic data simulation to evaluate our HTCE-learners
against the benchmarks. Let XR = (Xs, XpR) and XT = (Xs, XpT ) be patient features from real
source and target datasets respectively. We simulate outcomes as follows:

Y R(w) = α

DS∑
j=1

(vsw,jX
s
j )/DS + (1− α)

β DpR∑
j=1

(vpRw,jX
pR
j )/DpR + (1− β)

DR∑
j=1

(vRj X
R
j )/DR

+ εR

(7)

Y T (w) = α

DS∑
j=1

(vsw,jX
s
j )/DS + (1− α)

β DpT∑
j=1

(vpTw,jX
pT
j )/DpT + (1− β)

DT∑
j=1

(vTj X
T
j )/DT

+ εT

(8)

where vsw,j , v
pR
w,j , v

pT
w,j , v

R
j , v

T
j ∼ N (−10, 10), εR, εT ∼ N (0, 0.1) and the parameters α and β

control the amount of sharing between PO across and within domains respectively. For each domain,
we simulate the treatment assignment using W | X ∼ Bernoulli(Sigmoid(κ(Y (1)− Y (0)))), where
for κ = 0 there is no selection bias and the treatments are assigned randomly, while a high κ indicates
high selection bias. Unless otherwise specified, we set α = 0.5, β = 0.5 and κR = 1, κT = 1.

Datasets. We perform experiments using patient features from three real datasets with diverse
characteristics (e.g. number of features, proportion of categorical features): Twins [43], TCGA [44]
and MAGGIC [45]. From the real patient features, the treatment assignments and corresponding
outcomes are simulated as described. Refer to Appendix D for details of the datasets and of the way
the source and target domain and the shared and private features are obtained. Due to space limitation,
we report here the results on Twins. See Appendix E for the results on the other datasets.

CATE learners and benchmark methods. The following CATE learners are used in our experi-
ments: S-Learner, T-Learner, DR-Learner and TARNet. We consider the following benchmarks: (1)
training the CATE learners only on the target dataset, (2) using only the shared features between
the source and target datasets and (3) using RadialGAN [22] to ‘translate’ the source dataset into
the target domain. We compare these against our HTCE-learners that leverage the full source and
target datasets for training. To ensure a fair comparison, we fixed equivalent hyperparameters in
terms of number of layers and units in each layer for the CATE-learners trained on data from the
different benchmarks and our HTCE-learners. We describe the hyperarameter used and provide
implementation details in Appendix D. We evaluate the different methods using the the Root Mean
Squared Error of estimating τT (xT ), also known as the precision of estimating heterogeneous effects
(PEHE) [5]. The results are averaged across 10 runs for which we report the mean PEHE and its
standard error.
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6.2 Results and discussion

Table 1: Benchmarks comparison and source of gain analysis
in terms of PEHE on Twins dataset.

Learner S-Learner T-Learner DR-Learner TARNet

Target 0.30 ± 0.03 0.23 ± 0.02 0.20 ± 0.03 0.19 ± 0.02
Shared features 0.46 ± 0.10 0.47 ± 0.10 0.46 ± 0.09 0.46 ± 0.09
RadialGAN 0.21 ± 0.02 0.2 ± 0.02 0.17 ± 0.01 0.19 ± 0.02

HTCE - PO sharing 0.18 ± 0.03 0.15 ± 0.01 0.11 ± 0.01 0.12 ± 0.01
HTCE - Lorthz 0.14 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 0.11 ± 0.01
HTCE - LorthoPO 0.15 ± 0.01 0.11 ± 0.01 0.10 ± 0.01 0.11 ± 0.01

HTCE (ours) 0.12 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 0.09 ± 0.01

Benchmarks comparison and
source of gain. We first evaluate the
HTCE-learners1 against the bench-
marks and perform a source of gain
analysis to evaluate the importance
of our different components and loss
functions. We evaluate the impact
of removing the shared and private
layers that enable sharing information
between the PO functions across
domains (HTCE - PO sharing), removing the orthogonal regularization loss for the learnt shared and
private feature representations in Equation 3 (HTCE - Lorthz ) and removing orthogonal regularization
loss from the PO layers in Equation 5 (HTCE - LorthoPO ). Table 1 reports results on the Twins dataset.
Note that our HTCE-learners achieve better performance compared to the baselines and that each
component we propose brings performance improvements. When analyzing the performance across
the different CATE learners we notice that the S-Learner achieves worse performance due to its
strong inducting bias of fully-sharing information between PO functions within each domains, which
becomes even more restrictive in the transfer setting.

Varying the information sharing between domains. To further gain insights into the differences
between the benchmarks under different settings, we vary the parameter α, which controls the amount
of information shared between the PO in the source and target dataset. Figure 6 (top) reports the
results for this analysis on the Twins dataset. Note that our flexible approach for information sharing
between PO functions across domains achieves good performance both when the PO functions are
significantly different between the source and target dataset (α = 0.1) and also when they have the
same functional form and only depend on the shared features (α = 1.0). As a sanity check, we also
notice that for (α = 1.0) the performance of the HTCE-learners matches the one of the corresponding
CATE learners trained only on the shared features between the two domains. Moreover, note that for
this setting of α = 1.0 when the PO only depend on the shared features between the two domains,
the different CATE learners trained only on the target dataset have a decrease in performance as they
also need to perform the task of implicit feature selection with limited amount of data.

Varying the target dataset size. We also evaluate performance when varying the size of the target
dataset NT . We report in Figure 6 (bottom) the results on the Twins datasets. Note that while our
HTCE-learners still bring benefits for all values of NT , the most performance improvements are
when the target dataset size is small and we get diminishing returns as NT increases. Moreover, note
that TARNet trained only on the target dataset reaches the performance of the HTCE-TARNet learner
with less amount of data compered to T-learner trained on the target dataset vs. the HTCE-T-learner.
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Figure 6: Performance comparison on Twins when varying the information sharing between PO
functions across domains through α (top) and the size of the target dataset through NT (bottom).

1The code for the HTCE-learners can be found at https://github.com/vanderschaarlab and at
https://github.com/ioanabica/HTCE-learners.
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Figure 7: Performance comparison on Twins for DR-learner
when varying the selection bias κR and κT in the source and
target datasets.

Effect of selection bias. Finally, we
investigate how the selection bias in
the source and target datasets impact
transfer performance. We consider
three setting for the selection bias in
the source dataset κR = 0.0 for ran-
dom treatment assignment, κR = 2.0
for moderate and κR = 10.0 for
strong selection bias. For each setting
of κR, we vary the selection bias in
the target dataset κT from κT = 0.0
to κT = 10.0 and report the results
on Twins for the DR-learner in Figure
7. See Appendix E for results on the
other learners and datasets. Note that our HTCE-DR-learner has consistent performance when
increasing the selection bias in both datasets and when there are significant discrepancies in the
treatment assignment mechanism between the source and target datasets.

7 Discussion

We proposed heterogeneous transfer causal effect (HTCE) learners capable of improving the estima-
tion of CATE on a target domain by leveraging data from a related source domain. This represents
the first work that addresses the heterogeneous transfer learning problem for CATE estimation which
is prevalent in many causal inference application areas where the personalized effects of interventions
for a new population need to be estimated from small target datasets with different features than the
available source datasets [3, 19]. We hope that the insights gained from this paper, in terms of the
need for sharing information between PO functions to enable transfer and the differences between
CATE learners in the transfer setting, will help guide further model development for this problem.

In terms of limitations and directions for future work, while we focused on the binary treatment setting
which is the most common in the causal inference literature, addressing the problem of heterogeneous
transfer learning is equally important for more complex treatment settings such as treatments with
dosage [46, 47], treatment combinations [48, 49] and treatments in the temporal setting [50–54].
Moreover, while we demonstrate the benefits of our HTCE-learners experimentally, future work
should also provide theoretical guarantees on their performance in terms of the similarities between
the source and target datasets. We provide further discussion of possible extensions and limitations of
our method in Appendix F. Finally, we acknowledge that in areas such as healthcare, acting based
on incorrect estimates from such causal inference models can have life-threatening implications.
Because of this, it becomes crucial that such models undergo extensive testing through clinical trials
and expert validation and that they are only used for decision support alongside clinicians.
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A Expanded related works

In this section, we further expand on the related works described in Section 2.

Additional methods that leverage multiple datasets for causal inference. While several other
methods propose leveraging multiple datasets to improve CATE estimation, these focus on combining
observational data with randomized data from clinical trials with the aim of handling the bias from
hidden confounders [55–57]. Moreover, all of these methods learn potential outcome functions
that are shared between the different domains. Conversely, we assume that there are no hidden
confounders and propose an approach that can share information from a source domain to improve
CATE estimation on a target domain of interest.

A different strand of work aims to address the problem of identifiability of causal effects for an obser-
vational dataset of interest by leveraging data from other datasets. In particular, [58] investigates how
to transfer average treatment (causal) effects obtained from experimental data (such as randomized
clinical trials) to an observed population that may have different distribution of covariates, treatments
and outcomes and where the causal relationship of interest cannot be identified using only the observa-
tional data. The paper assesses under which conditions such average causal effects can be transported
according to the differences between the randomized and observational data. The authors also provide
a brief discussion of how to transfer these average causal estimates between observational datasets.
Alternatively, [59] aims to help identify the average effects of interventions on a target population of
interest by integrating multiple types of auxiliary data: data from a randomized study on the same
population, data from an observational study on the same population, selection biased data from the
same population and data from a randomized study from a different population. All of the auxiliary
datasets have the same set of features as the target dataset. Both [58, 59] consider this transportability
problem of average treatment effects in the context of causal diagrams. This is different from our
set-up for CATE estimation where we assume that the potential outcomes are identifiable in both the
source and target domains. Moreover, we also handle the case of heterogeneous feature spaces and
only assume access to a source domain larger than a target domain, without putting any restrictions
on whether this data is experimental or observational.

Transfer learning and domains adaptation in the predictive setting. Another method loosely
related to ours is the one of [60], which considers the case of having both heterogeneous feature
and label spaces in the context of natural language processing and proposes a method that learns a
common embedding for the features and labels and then builds a mapping between them. In this
paper, we consider a shared label space. In addition, [61] uses a causal approach to address the
problem of domain adaptation for the predictive setting, where it considers labelled data in one or
more source domains, unlabelled data in the target domain, same feature spaces between the source
and target domains and aims to learn predictive functions that are invariant to the changes between
domains to be able to reliably estimate the outcomes in the target domain. [61] proposes tackling
this unsupervised domain adaptation by modelling the different distributions between the source
and target domains as different contexts of a single underlying system (where the context represents
interventions causing the distribution shifts between domains, such that the source and target domains
come from different interventions).

Table 2 provides a comparison of our method with the most relevant related works. Note that
our heterogeneous transfer learning approach is designed to share information between one source
domain and a target domains. Moreover, we assume access to labels on the target domain and build
target-specific outcome functions that share a common structure with the source domain.
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Method Number of
domains

Heterogeneous
feature spaces

Heterogeneous
label spaces

Access to labels
on target domain

Domain-specific
outcome functions

C
au

sa
l

In
fe

re
nc

e CATE learners [10, 14, 15] 1 No No No No
Johansson et al. [36] 2 No No No No
Shi et al. [37] N No No Yes No
Kunzel et al. [35] 2 No No Yes Yes

L
ea

rn
in

g
ac

-
ro

ss
do

m
ai

ns Ganin et al. [38] 2 No No No No
Magliacane et al. [61] N No No No No
Rudner et al. [41] N No No Yes Yes
Yoon et al. [22] N Yes No Yes Yes
Moon et al. [60] 2 Yes Yes Yes No

(Ours) HTCE-learners 2 Yes No Yes Yes

Table 2: Comparison of our proposed method with related works.

B Heterogeneous transfer propensity estimator

For our HTCE-propensity estimator that is used as part of the two-step meta-learners (e.g. HTCE-
DR-learner) we build a model that shares information between the treatment assignment mech-
anisms in the source and target datasets as illustrated in Figure 8. In particular, our HTCE-
propensity estimator consists of encoders φpRπ , φpTπ , φsπ for the heterogeneous feature spaces, such
that ΦRπ (xR) = [φsπ(xs)||φpRπ (xR)] and ΦTπ (xT ) = [φsπ(xs)||φpTπ (xT )]. To enable transfer, we use
an approach similar to the one described in Section 4.2, but this time to share information between
the hypothesis functions for the propensity estimation (gRπ (ΦRπ (xR)), gTπ (ΦTπ (xT ))). Moreover, we
use the following outcome loss:

Lπ =

NR∑

i=1

l(wi, g
R
π (ΦR(xRi ))) +

NT∑

i=1

l(wi, g
T
π (ΦT (xTi ))) (9)

where l(·, ·) represents the binary cross-entropy loss (for binary treatment).
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Figure 8: HTCE-propensity estimator.

C Pseudo-code for the HTCE-learners

Algorithm 1 provides the pseudo-code for training our proposed HTCE-T-learner and Algorithm 2
provides the pseudo-code for training our proposed HTCE-TARNet. Note that a similar training
procedure can be used for the HTCE-S-Learner, HTCE-propensity estimator and in the second stage
of the two-step learners (e.g. HTCE-DR-learner). The main differences are in the encoder used,
in terms of sharing layers between PO functions within each domain and the outcome used for
computing the corresponding loss function. Refer to Section 5.1 and Appendix B for architectural
details. Similarly to [15], we do not use cross-fitting for the two-step learners (HTCE-DR-learner).
Refer to [15] for more details. For simplicity, we set the mini-batch size to be the same in both the
source and target datasets: BT = BR = B. Moreover, note that in practice, we multiply Lorthz
and LorthPO by 0.01 to ensure that all losses have a similar scale and we use early stopping on the
validation dataset from the target domain to check for convergence.
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Algorithm 1 Pseudo-code for training the HTCE-T-learner.
1: Input: Dataset with expert demonstrations from source DR and target DT domains, learning rate
λ, mini-batch size for source dataset BR, mini-batch size for target dataset BT

2: Initialize: θ (all parameters of the HTCE-T-Learner)
3: while not converged do
4: Sample mini-batch of BR demonstrations from the source dataset (xRi , wi, yi) ∼ DR and a

minibatch of BT demonstrations from the target dataset (xTi , wi, yi) ∼ DT .
5: Handle heterogeneous feature spaces:
6: for i = 1 . . . BR do . Process batch from source domain.
7: zsRi = φswi

(xsi ), where xsi is part of xRi ; zpRi = φRwi
(xRi )

8: Set: ζsR = [zsR1 . . . zsRBR
]>, ζpR = [zpR1 . . . zpRBR

]>

9: for i = 1 . . . BT do . Process batch from target domain.
10: zsTi = φswi

(xsi ), where xsi is part of xTi ; zpTi = φRwi
(xTi )

11: Set: ζsT = [zsT1 . . . zsTBT
]>, ζpT = [zpT1 . . . zpTBT

]T

12: Compute orthogonal regularization loss for the feature representations:

Lorthz = ‖ζsR>ζpR‖2F + ‖ζsT>ζpT ‖2F

13: Share information between PO functions across domains:
14: for i = 1 . . . BR do . Process batch from source domain.
15: for l = 1 . . . L do
16: if l == 1 then
17: h̃pRwi,1

= [zsRi ||zpRi ]; h̃swi,1 = h̃pRwi,1
18: else
19: h̃pRwi,l

= [hswi,l−1||h
pR
wi,l−1]; h̃sw,l = [hsw,l−1].

20: hswi,l
= Shared_Layerwi,l

(h̃swi,l
); hpRwi,l

= Private_LayerRwi,l
(h̃pRwi,l

)

21: ŷRi = ψ(hpRwi,L
+ hswi,L

)

22: for i = 1 . . . BT do . Process batch from target domain.
23: for l = 1 . . . L do
24: if l == 1 then
25: h̃pTwi,1

= [zsTi ||zpTi ]; h̃swi,1 = h̃pTwi,1
26: else
27: h̃pTwi,l

= [hswi,l−1||h
pT
wi,l−1], h̃swi,l

= [hswi,l−1].

28: hswi,l
= Shared_Layerwi,l

(h̃swi,l
); hpTwi,l

= Private_LayerTwi,l
(h̃pTwi,l

)

29: ŷTi = ψ(hpTwi,L
+ hswi,L

)

30: Compute outcome loss:

Ly =

BR∑

i=1

l(yi, ŷ
R
i ) +

BT∑

i=1

l(yi, ŷ
T
i )

31: Compute orthogonal regularization loss for the PO shared and private layers:

LorthPO =
∑

w∈{0,1}

L∑

l=1

‖θsw,l>θpRw,l,1:ms
l−1
‖2F + ‖θsw,l>θpTw,l,1:ms

w,l−1
‖2F

32: Parameters update:
33: θ ← θ − λ∇θ(Ly + Lorthz + LorthPO)

34: Output: Learnt parameters θ
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Algorithm 2 Pseudo-code for training the HTCE-TARNet.
1: Input: Dataset with expert demonstrations from source DR and target DT domains, learning rate
λ, mini-batch size for source dataset BR, mini-batch size for target dataset BT

2: Initialize: θ (all parameters of the HTCE-TARNet)
3: while not converged do
4: Sample mini-batch of BR demonstrations from the source dataset (xRi , wi, yi) ∼ DR and a

minibatch of BT demonstrations from the target dataset (xTi , wi, yi) ∼ DT .
5: Handle heterogeneous feature spaces:
6: for i = 1 . . . BR do . Process batch from source domain.
7: zsRi = φs(xsi ), where xsi is part of xRi ; zpRi = φR(xRi )

8: Set: ζsR = [zsR1 . . . zsRBR
]>, ζpR = [zpR1 . . . zpRBR

]>

9: for i = 1 . . . BT do . Process batch from target domain.
10: zsTi = φs(xsi ), where xsi is part of xTi ; zpTi = φR(xTi )

11: Set: ζsT = [zsT1 . . . zsTBT
]>, ζpT = [zpT1 . . . zpTBT

]T

12: Compute orthogonal regularization loss for the feature representation:

Lorthz = ‖ζsR>ζpR‖2F + ‖ζsT>ζpT ‖2F

13: Share information between PO functions within each domain:
14: for i = 1 . . . BR do . Process batch from source domain.
15: z̃Ri = ΩpR([zsRi ||zpRi ])

16: for i = 1 . . . BT do . Process batch from target domain.
17: z̃Ti = ΩpT ([zsTi ||zpTi ])

18: Share information between PO functions across domains:
19: for i = 1 . . . BR do . Process batch from source domain.
20: for l = 1 . . . L do
21: if l == 1 then
22: h̃pRwi,1

= z̃Ri ; h̃swi,1 = h̃pRwi,1
23: else
24: h̃pRwi,l

= [hswi,l−1||h
pR
wi,l−1]; h̃sw,l = [hsw,l−1].

25: hswi,l
= Shared_Layerwi,l

(h̃swi,l
); hpRwi,l

= Private_LayerRwi,l
(h̃pRwi,l

)

26: ŷRi = ψ(hpRwi,L
+ hswi,L

)

27: for i = 1 . . . BT do . Process batch from target domain.
28: for l = 1 . . . L do
29: if l == 1 then
30: h̃pTwi,1

= z̃Ti ; h̃swi,1 = h̃pTwi,1
31: else
32: h̃pTwi,l

= [hswi,l−1||h
pT
wi,l−1], h̃swi,l

= [hswi,l−1].

33: hswi,l
= Shared_Layerwi,l

(h̃swi,l
); hpTwi,l

= Private_LayerTwi,l
(h̃pTwi,l

)

34: ŷTi = ψ(hpTwi,L
+ hswi,L

)

35: Compute outcome loss:

Ly =

BR∑

i=1

l(yi, ŷ
R
i ) +

BT∑

i=1

l(yi, ŷ
T
i )

36: Compute orthogonal regularization loss for the PO shared and private layers:

LorthPO =
∑

w∈{0,1}

L∑

l=1

‖θsw,l>θpRw,l,1:ms
l−1
‖2F + ‖θsw,l>θpTw,l,1:ms

w,l−1
‖2F

37: Parameters update:
38: θ ← θ − λ∇θ(Ly + Lorthz + LorthPO)

39: Output: Learnt parameters θ
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D Experimental details

D.1 Dataset description

In this section, we provide a description of the three datasets used for evaluation: MAGGIC [45],
Twins [43] and TCGA [44]. Note that these datasets have diverse characteristics in terms of the number
of features and the proportion of categorical/continuous features. To the best of our knowledge, none
of the medical datasets used contain personally identifiable information nor offensive content. Given
that Twins and TCGA are datasets from a single domain, we then explain how we used them to obtain
source and target datasets with heterogeneous feature spaces.

MAGGIC. MAGGIC [45] consists of datasets with heterogeneous features from 30 domains repre-
senting medical studies of patients who have experienced heart failure. Note that this medical dataset
is private. Refer to [45] for details on how the dataset was collected and curated. Each medical study
consists of a number of patients ranging from 190 to 13279. From these, we sample a dataset with
< 500 patients to represent our target domain and a dataset with > 500 patients to represent our
source domain. The different datasets in MAGGIC consist of a mixture of categorical and continuous
features representing clinical covariates for patients who have experienced heart failure such as age,
gender, serum creatinine, diabetes, beta-blocker prescription, lower systolic blood pressure, lower
body mass, time since diagnosis, current smoker, chronic obstructive pulmonary disease, etc. The
total number of features across the different medical studies in MAGGIC is 216 and the average
number of features in a single study is 73. After sampling the source and target dataset from the
different medical studies in MAGGIC, we simulate treatment assignments and outcomes as described
in Section 6. Note that different source and target datasets are sampled for each of the different 10
random seeds used for all experimental results.

Twins. Twins [43] represents one of the standard benchmark datasets in the causal inference
literature for estimating the effects of binary treatments. The dataset consists of data from 11400
pairs of twin births in the USA recorded between 1989-1991 [43]. Refer to [43] for details of
how the dataset was collected and curated. We use the publicly available version of the dataset
from: https://github.com/AliciaCurth/CATENets. For each twin pair, 39 relevant
covariates were recorded related to the parents, pregnancy and birth such as marital status, mother’s
age, number of previous births, pregnancy risk factors, quality of care during pregnancy, number of
gestation weeks, etc. These represent a mixture of continuous and categorical features. We obtain our
full dataset with NF = 114000 examples and DF = 39 features by randomly sampling one of the
twins to observe. We then sub-sample our source and target datasets as described below and simulate
treatments and outcomes as described in Section 6.

TCGA. TCGA is a dataset consisting of cancer patients for which gene expression measurements
were recorded [44]. The dataset is publicly available and has been used by previous methods in causal
inference [46, 47, 62]. In particular, we use the publicly available version of the TCGA dataset as
used by DRNet [47] https://github.com/d909b/drnet. Refer to [44] for details of how
the dataset has been collected and curated. The dataset consists of NF = 9659 patients (samples),
for which we use the measurements from the DF = 100 most variable genes. Note that these are all
continuous features. Moreover, we log-normalized the gene expression data and scale each feature
in the [0, 1] interval. We then sub-sample our source and target datasets as described below. The
treatment assignment and outcomes are simulated as described in Section 6.

Obtaining source and target datasets for Twins and TCGA. Unless the size of the target dataset
is fixed, from the full datasets, we sample a target dataset of size NT ∼ U(100, 500) and a source
dataset of size NR ∼ U(1000, NF −NT ), where NT is the size of the target dataset, NR is the size
of the source dataset and NF is the size of the full dataset. For the experiments where we vary the
size of the target dataset, we set NT ∈ {100, 200, 300, 500, 1000, 2000, 4000} and we again sample
the size of the source dataset from NR ∼ U(1000, NF −NT ). Moreover, to create heterogeneous
feature spaces for the source and target domains, let DF be the number of features in the full dataset.
From these, we randomly sample DpR ∈ U(5, DF /3) features that are private for the source dataset,
DpT ∈ U(5, DF /3) features that are private for the target dataset and Ds ∈ U(5, DF /3) features
that are shared between the two. Note that different sizes for the source and target datasets and
different sets of shared and private features are sampled for each of the different 10 random seeds
used for all experimental results.
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We use the full source datasets for training the benchmarks making use of the source dataset. Each
target dataset undergoes a split into 56/24/20% for training, validation and testing respectively. The
validation dataset is used for early stopping.

Summary statistics for the datasets We provide in Table 3 summary statistics of the different
characteristics of the full source and target datasets used across our 10 experimental runs. Note
that for the experiments where we vary the size of the target dataset, NT is fixed as described
above. To highlight the diversity of the datasets used for evaluating the benchmarks, we highlight
in Table 3 the mean and standard deviations for the size of the source dataset NR, size of the target
dataset NT , number of features shared between the source and target datasets Ds, number of features
private to the source dataset DpR , number of features private to the target dataset DpT , proportion
of shared features in the source dataset Ds/(Ds +DpR), proportion of shared features in the target
dataset Ds/(Ds+DpT ) and the Maximum Mean Discrepancy (MMD) (computed using RBF kernel)
between the shared features of the source and target datasets MMD(XsR , XsT ). Note that the MMD
between the shared features of the source and target datasets for MAGGIC is much higher than for
TCGA and Twins, as the different datasets in MAGGIC represent medical studies with different
patient populations.

Table 3: Summary statistics of the datasets sampled for training the benchmarks.
TCGA Twins MAGGIC

NR 4219± 2569 5106± 2988 2533± 3711
NT 360± 120 360± 120 267± 75

Ds 20± 8 9± 2 27± 7
DpR 15± 7 9± 2 25± 9
DpT 21± 9 8± 3 21± 15
Ds/(Ds +DpR) 0.57± 0.17 0.49± 0.10 0.54± 0.13
Ds/(Ds +DpT ) 0.50± 0.14 0.52± 0.08 0.60± 0.19

MMD(XsR , XsT ) 0.0009± 0.0005 0.0011± 0.0008 0.056± 0.057

D.2 Implementation details and hyperparameter setting

As mentioned in Section 6, we evaluate the following benchmarks (1) training the CATE-learners
only on the target dataset, (2) using only the shared features between the source and target datasets
and (3) using RadialGAN [22] to ‘translate’ the source dataset into the target domain (4) training the
HTCE-learners on the full source and target datasets. We describe here the implementation details
for RadialGAN [22], for the different CATE-learners used (S-Learner, T-Learner, DR-Learner and
TARNet) and the corresponding HTCE-learners (HTCE-S-Learner, HTCE-T-Learner, HTCE-DR-
Learner and HTCE-TARNet).

RadialGAN. We use the publicly available implementation of RadialGAN [22]1 which we augment
to the treatment effects setting by considering the treatment separate from the rest of the features.
While RadialGAN, was developed to work with any number of source datasets and uses multiple GAN
architectures to learn to translate from any one of the source datasets to the target domain, we consider
here a simplified case with one source dataset. We use the same hyperparameter setting described in
[22] and found in the publicly available implementation for the generators, discriminators, encoders
and decoders architectures and optimization (optimizer, batch size, learning rate).

CATE-learners. We use the publicly available implementation of the different CATE learners from
[15]2. This allows us to have a consistent implementation for the S-Learner, T-Learner, DR-Learner
and TARNet [10]. Moreover, we use components similar to those in [10, 15] for all networks which
ensure that µ̂w(x), π̂(x) and τ̂(x) have access to similar number of layers and units in total, thus
resulting in equally complex nuisance functions. In particular, for the S-learner, µ̂(x,w) consists of 5
layers of 200 units each, for the T-learner, each of µ̂0(x), µ̂1(x) consists of 5 layers with 200 units
each. For the DR-Learner, we set each of µ̂0(x), µ̂1(x), π̂(x), τ̂(x) to have 5 layers with 200 units
each. Finally, TARNet consists of 3 representation layers of 200 units each, followed by two outcome
heads, each with 2 layers of 100 units each. We use ReLU activation function for the hidden layers

1https://github.com/vanderschaarlab/mlforhealthlabpub/tree/main/alg/
RadialGAN

2https://github.com/AliciaCurth/CATENets
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and linear/sigmoid activation for the last layer (for continuous/binary outcomes respectively). The
different CATE learners are trained using the Adam optimizer [63], with learning rate set to 0.0001
and batch size 128. We perform early stopping on the validation dataset from the target domain.

HTCE-learners. Each φpR , φpT , φs for handling the heterogeneous feature spaces consists of one
hidden layer with 100 units each. For the HTCE-S-Learner, we consider a building block of 5
layers with 100 hidden units for each shared and private subspace to share information between
µ̂R(xR, w), µ̂T (xT , w). Note that this essentially gives us 200 hidden units for the hypothesis
function in each domain, thus ensuring that the nuisance functions for the CATE vs. HTCE-learners
in each domain have similar complexity. For the HTCE-T-learner, we use separate feature encoders
for each treatment w ∈ {0, 1} (φpRw , φpTw , φsw each consisting of one hidden layer with 100 units),
and we use two building blocks of 5 layers with 100 units for each shared and private subspace to
share information between (µ̂R0 (xR), µ̂T0 (xT )) and (µ̂R1 (xR), µ̂T1 (xT )). Similarly, for the HTCE-DR-
learner, we use the same architecture as for the HTCE-T-learner to obtain the plug-in estimates of the
potential outcomes, which consists of separate feature encoders for each treatmentw, and two building
blocks of 5 layers with 100 units for each shared and private subspace to share information between
(µ̂R0 (xR), µ̂T0 (xT )) and (µ̂R1 (xR), µ̂T1 (xT )). Moreover, for the propensity estimation, we use separate
feature encoders (φpRπ , φpTπ , φsπ each consisting of one hidden layer with 100 units) and a building
blocks of 5 layers with 100 units for each shared and private subspace to share information between
(π̂R(xR), π̂T (xT )). Finally, for the pseudo-outcome regressor we also use separate feature encoders
(φpRy , φpTy , φsy each consisting of one hidden layer with 100 units) and a building blocks of 5 layers
with 100 units for each shared and private subspace to share information between (τ̂R(xR), τ̂T (xT )).
For HTCE-TARNet, we use feature encoders shared between the two treatments (φpR , φpT , φs each
consisting of one hidden layer with 100 units), followed by 3 representation layers (for each of ΩR,
ΩT ) and two building blocks of 2 layers with 100 units for each shared and private subspace to share
information between (µ̂R0 (xR), µ̂T0 (xT )) and (µ̂R1 (xR), µ̂T1 (xT )). We use ReLU activation function
for the hidden representation layers, SeLU activation for the shared and private subspace layers
and linear/sigmoid activation for the last layer (for continuous/binary outcomes respectively). Note
that for the building block of sharing information between outcome functions, we build upon the
FlexTENet implementation [14]. The different HTCE-learners are trained using the Adam optimizer
[63], with learning rate set to 0.0001 and batch size 128. Moreover, we also use the validation dataset
from the target domain for early stopping.

All of the experiments were run on a virtual machine with 6CPUs, an Nvidia K80 Tesla GPU and
56GB of RAM.
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E Additional experimental results

This section provides results for the different experimental settings considered in Section 6 for
the remaining datasets and for all learners. Note that we observe similar trends for the different
experimental settings across all datasets.

E.1 Benchmarks comparison and source of gain

Table 4 reports results on the TCGA and MAGGIC datasets for the comparison of the HTCE-learners
against the benchmarks and the source of gain analysis. To reiterate, we compare the following
benchmarks (1) training the CATE learners only on the target dataset, (2) using only the shared
features between the source and target datasets to train the CATE learners (3) using RadialGAN
[22] to ‘translate’ the source dataset into the target domain and training the CATE learners on the
target dataset augmented in this way and (4) training our HTCE-learners on the full source and target
datasets. Moreover, we evaluate the impact of removing the shared and private layers that enable
sharing information between the PO functions across domains (HTCE - PO sharing), removing the
orthogonal regularization loss for the learnt shared and private feature representations in Equation
3 (HTCE - Lorthz ) and removing orthogonal regularization loss from the PO layers in Equation 5
(HTCE - LorthoPO ). We note that on the TCGA and MAGGIC datasets as well, the HTCE-learners
achieve better performance compared to the baselines and that each component we propose brings
performance improvements.

Table 4: Benchmarks comparison and source of gain analysis in terms of PEHE on TCGA and
MAGGIC datasets.

TCGA MAGGIC
Learner S-Learner T-Learner DR-Learner TARNet S-Learner T-Learner DR-Learner TARNet

Target 0.15± 0.02 0.12± 0.01 0.10± 0.01 0.11± 0.01 0.39± 0.04 0.21± 0.01 0.19± 0.01 0.19± 0.01
Shared features 0.30± 0.07 0.30± 0.07 0.29± 0.07 0.30± 0.07 0.32± 0.03 0.28± 0.03 0.27± 0.03 0.27± 0.03
RadialGAN 0.12± 0.01 0.11± 0.01 0.09± 0.01 0.13± 0.03 0.31± 0.01 0.19± 0.01 0.19± 0.02 0.19± 0.01

HTCE - PO sharing 0.15± 0.03 0.10± 0.01 0.09± 0.01 0.10± 0.01 0.29± 0.02 0.15± 0.01 0.14± 0.01 0.17± 0.01
HTCE - Lorthz 0.10± 0.01 0.07± 0.01 0.06± 0.01 0.07± 0.01 0.25± 0.02 0.10± 0.01 0.09± 0.01 0.12± 0.01
HTCE - LorthoPO 0.11± 0.01 0.08± 0.01 0.07± 0.01 0.05± 0.01 0.26± 0.02 0.10± 0.01 0.10± 0.01 0.12± 0.01

HTCE (ours) 0.07± 0.01 0.06± 0.01 0.04± 0.01 0.06± 0.01 0.24± 0.02 0.08± 0.01 0.08± 0.01 0.10± 0.01

When looking at the performance of the benchmarks, using only the shared features between the
two datasets generally has poor performance. This is due to the fact that this introduces hidden
confounders in the CATE estimation since all of the patient features in both domains are used to
obtain the potential outcomes and the treatment assignment in our data simulation (see Section 6).
Moreover, note that RadialGAN only slightly improves performance over only training the CATE
learners on the target dataset. We hypothesise that this may also be due to the small size of the target
dataset which hinders the generator networks in RadialGAN to learn how to map examples from the
source domain to the target one.

E.2 Varying the information sharing between domains

Figure 9 reports the results for varying the parameter α, which controls the amount of information
shared between the PO in the source and target domains, on the TCGA (top) and MAGGIC (bottom)
datasets. We again notice that our HTCE-learners, which use a flexible approach for information
sharing between PO functions across domains achieve good performance both when the PO functions
are significantly different between the source and target dataset (α = 0.1) and also when they have
the same functional form and only depend on the shared features (α = 1.0). In addition, for high
values of α and especially for α = 1.0 we again notice the degradation in performance due to the fact
that the learners need to perform the implicit task of feature selection.

E.3 Varying the target dataset size.

Figure 10 reports the results on when varying the size of the target dataset NT on the TCGA dataset.
Note that for the MAGGIC dataset, the size of the target domain is not simulated and it represents the
size of the various studies selected as target domains. Thus, we only report here results on TCGA
where we directly simulate the size of the target dataset. We notice that the benefits of doing transfer
learning degrade as we increase the size of the target dataset.
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Figure 9: Performance comparison on TCGA (top) and MAGGIC (bottom) when varying the
information sharing between PO functions across domains through α.
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Figure 10: Performance comparison on TCGA when varying the the size of the target dataset (NT ).

E.4 Effect of selection bias

Finally, we report results when varying the selection bias in the source and target domains for all
learners on all three datasets: Twins (Figure 11), TCGA (Figure 12) and MAGGIC (Figure 13). We
consider three setting for the selection bias in the source dataset κR = 0.0 for random treatment
assignment, κR = 2.0 for moderate and κR = 10.0 for strong selection bias. For each setting of κR,
we vary the selection bias in the target dataset κT from κT = 0.0 to κT = 10.0. Our HTCE-learners
have consistent performance when increasing the selection bias in both datasets and when there
are significant discrepancies in the treatment assignment mechanism between the source and target
datasets. While the impact of increasing the selection bias differs among the learners (e.g. TARNet
vs. DRLearner), note that this is due to the intrinsic characteristics of each learner on a single domain,
as the DRLearner uses propensity weighting to adjust for the selection bias, while TARNet does not.
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Figure 11: Performance comparison on Twins for all learners when varying the selection bias κR and
κT in the source and target datasets.
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Figure 12: Performance comparison on TCGA for all learners when varying the selection bias κR
and κT in the source and target datasets.
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Figure 13: Performance comparison on MAGGIC for all learners when varying the selection bias κR
and κT in the source and target datasets.
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F Additional discussion about extensions and limitations

In this section, we describe how our method could be extended to additional scenarios than the ones
considered in the paper and further discuss limitations.

Multiple source datasets. While in this paper we mainly consider the standard and most common
transfer learning setting [64] of leveraging a source dataset to improve the estimation of outcomes on
a target dataset of interest, our proposed approach could be easily extended to having multiple source
domains, and in fact, would scale linearly to incorporating additional domains.

More precisely, consider access to M source domains, {DRm}Mm=1, where each source domain
consists of DRm = {(XRm

i ,Wi, Yi)}NRm
i=1 and a target domain as described in Section 3. The

objective would still be the one from Section 3 of improving the estimation of CATE for the target
domain, but in this case, we need to leverage data from all M source domains. Our proposed building
blocks could be extended as follows to handle the additional source domains. The building block
for handling heterogeneous feature spaces between source and target domains could be extended by
having encoders φRm for the private features XpRm of each source domain (part of XRm ). Moreover,
we can build an approach that shares information between the potential outcomes of each source
domain with the target domain by having L layers shared between all source domains and the target
domains and L private layers for each source domain. For source domain m, the input to the layer
(l + 1)-th can be obtained using h̃pRm

w,l+1 = [hsw,l||h
pRm

w,l ] where hpRm

w,l is the output of the l-th private
layer for source domain m and hsw,l is the output of the l-th shared layer across all domains.

While from a model development perspective this extension can be easily done, one also needs to
consider whether the multiple source domains satisfy the underlying implicit assumptions for which
such an architecture would be appropriate. In particular, it would be important to consider whether
the PO functions across all source domains share information with the PO functions in the target
domain, as using source domains that are significantly different from the target domain could harm
performance.

Streaming datasets. Another important setting to consider is the one of having streaming datasets.
In this scenario, one option could be the case where we already have a source domain and a target
domain and we have incoming data streaming from the target domain. One such example in healthcare
would be the case where in a single hospital we start collecting more or different clinical covariates
for the patients which we now want to use for CATE estimation. The source domain would be the
patients with only the original set of features, while the target domain would be the patients with the
new set of features. However, as we start collecting these additional features, the initial target dataset
will be small but it can start increasing with time as we observe more patients. In this setting, we can
train an HTCE-learner with the initial data available from the source and target domains. However,
instead of retraining the full HTCE-learner as we obtain more patients from the target domain, one
option would be to fine-tune the weights using the incoming examples. While this is outside the scope
of our paper, we believe that it would be important to investigate appropriate ways for performing
such fine-tuning.

Another option could be the case of having full source datasets streaming, while the target dataset
remains fixed. This would happen in the setting where for instance we gradually get access to data
from multiple locations and we want to use these datasets as source datasets. In this scenario, one
possibility would be to use the approach described above for having multiple source datasets and
retraining a new model that incorporates all of the available source datasets as we get access to them.
Another possibility would be to, instead of retraining a full model as we go from M to M + 1 source
domains, we can add the needed private encoder and layers for the (M + 1)-th domain and train only
the new parameters and fine-tune the shared ones with the data from the new domain. While this is
again outside our scope, it can provide interesting avenues for future work.

Unknown domains. In this paper, we assume that the source and target domains are known. However,
given that we handle the setting of transfer learning for heterogeneous feature spaces, if the domains
are unknown, one way to split available data into different domains, in this case, would be by using
the same features to denote a single domain. For instance, if different patients in the dataset have
recorded different sets of features, then the patients can be grouped according to having the same
information collected for them and these can denote the different domains. Then, one needs to
decide which represents the target domain, while keeping in mind that doing transfer learning is most
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beneficial when the target dataset is small (as highlighted by our experimental results in Section 6.2
and Figure 6 (bottom)).

Personalized feature spaces. In the case where different features are available for different patients
and the source and target domains are unknown, then the patients can be grouped according to their
feature spaces as described in the paragraph above. On the other hand, if the source and target
datasets are pre-defined and the patients within each dataset have different features available for
them, one possible option would be to consider the super-set of their features as the different feature
spaces and consider the features that are not available for each patient as missing. However, as
our HTCE-learners has not been designed for this particular setting of having missing data, one
would also need to investigate if additional assumptions (in addition to ensuring that the no hidden
confounders and overlap assumptions are still satisfied) are needed to be able to obtain valid estimates
of causal effects.
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