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Multimodal fusion with deep 
neural networks for leveraging 
CT imaging and electronic health 
record: a case‑study in pulmonary 
embolism detection
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Matthew P. Lungren1,2,3

Recent advancements in deep learning have led to a resurgence of medical imaging and Electronic 
Medical Record (EMR) models for a variety of applications, including clinical decision support, 
automated workflow triage, clinical prediction and more. However, very few models have been 
developed to integrate both clinical and imaging data, despite that in routine practice clinicians 
rely on EMR to provide context in medical imaging interpretation. In this study, we developed and 
compared different multimodal fusion model architectures that are capable of utilizing both pixel data 
from volumetric Computed Tomography Pulmonary Angiography scans and clinical patient data from 
the EMR to automatically classify Pulmonary Embolism (PE) cases. The best performing multimodality 
model is a late fusion model that achieves an AUROC of 0.947 [95% CI: 0.946–0.948] on the entire 
held‑out test set, outperforming imaging‑only and EMR‑only single modality models.

Pulmonary Embolism (PE) is a serious medical condition that hospitalizes 300,000 people in the United States 
every  year1. The gold standard diagnostic modality for PE is Computed Tomography Pulmonary  Angiography2 
(CTPA) which is interpreted by radiologists. Studies have shown that prompt diagnosis and treatment can greatly 
reduce morbidity and  mortality3. Over the past 20 years, the usage of CTPA in the emergency department alone 
has increased 27-fold4, and still, patients with PE experience more than 6 days of delay in diagnosis and 26% 
of patients are misdiagnosed during their first  visit5,6. Strategies to automate accurate interpretation and timely 
reporting of CTPA examinations may successfully triage urgent cases of PE to the immediate attention of physi-
cians, improving time to diagnosis and treatment.

Many studies have reported promising results in applying deep learning models to automate diagnosis in 
medical  imaging7–10, including PE diagnosis on  CTPA11–13. While prior work has demonstrated potential for 
accurate automated image analysis based on imaging data alone, this is in contrast to routine clinical practice 
in which medical imaging is interpreted along with relevant clinical data to inform accurate diagnosis. In fact, 
clinical data availability during image interpretation is particularly important in radiology, as accurate medical 
diagnosis on imaging often relies significantly on pre-test probability, prior diagnosis, clinical and laboratory data, 
and prior imaging. For example, a survey showed that more than 85% of radiologists consider clinical context 
as vital for radiological exam  interpretation14. This also holds true in the use case of pulmonary embolism diag-
nosis on CTPA where clinical context and prior imaging results are considered important for imaging decisions.

Multimodal data fusion for automated clinical outcome prediction and diagnosis has been gaining trac-
tion within the past 3 years. For prediction of Alzheimer’s  disease15–18, demographic data with specific lab tests 
were combined with imaging data as inputs to deep learning models and found improvement over single data 
source models. Similarly, combining patient demographic information with dermatoscopic images of skin lesions 
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observed a boost in performance as compared to single modality skin cancer  models19–21. Other studies have seen 
similar advantages in a diverse set of medical imaging tasks such as breast cancer prediction, glaucoma classifica-
tion and detection of microcytic  hypochromia22–24. Yet, despite the promise of multimodal fusion techniques, 
prior work has focused on approaches using only one of several possible fusion techniques and relying on just 
a few manually selected clinical features. Understanding how leveraging more feature-rich clinical datasets for 
multimodal fusion can impact model performance and the relative performance of different fusion techniques 
have not yet been explored.

The purpose of this study is to build and compare multimodal fusion models that combine information from 
both CT scans and Electronic Medical Record (EMR) to automatically diagnose the presence of PE. Leverag-
ing both clinical and imaging data by using a variety of fusion approaches could not only lead to a contextually 
relevant model which reduces PE misdiagnosis rate and delay in diagnosis, but also inform future work by 
exploring optimal data selection and fusion strategies. Figure 1 outlines the overall workflow used for this study.

Results
In this study, we separately trained an imaging-only model (PENet)12 and 7 EMR-only neural network models 
(details in Methods). These single modality models not only serve as baselines for performance comparison, 
they also provide different inputs and components for different fusion models. A total of 7 fusion architectures 
were implemented and compared (Fig. 2).

Data acquisition. With the approval of Stanford Institutional Review Board (IRB), we retrieved 108,991 
studies from patients that had CTPA performed under the pulmonary embolism protocol between 2000 and 
2016 at Stanford University Medical Center (SUMC). To curate a labeled dataset for training and testing with 
equal distribution of positive and negative PE cases, 2500 studies were selected by stratified random sampling 
from the original 108,991 studies, based on Natural Language Processing generated labels from radiology 
 reports25,26. After removing studies with wrong protocols, significant artifacts, poor imaging quality and nondi-
agnostic studies, 1837 studies from 1794 patients out of the 2500 sampled subset remained.

For each study that remained after screening, axial CT imaging data with slice thickness of 1.25 mm were 
pulled from the local picture archiving and communicating system servers. The CT scans and radiology reports 
for each study were separately reviewed by two board certified radiologists to create ground truth labels of PE 
diagnosis. The standard descriptions of central positive, segmental positive, subsegmental positive and negative 
PE by Remy-Jardin et al.27 was used for labeling ground truth. Slight modifications to the descriptions were 
made to account for anatomic variations and the orientation of vessels in the transverse plane on the CT scans. 
Particularly, subsegmental-only PE was defined as the location of the largest defect at the subsegmental level on 
a spiral CT, allowing a satisfactory visualization of all pulmonary arteries at the segmental level or higher. Fur-
thermore, slice-wise labels of positive PEs were made on all of the PE positive cases. The two radiologists had a 
high inter-rater reliability (Cohen’s Kappa Score of 0.959) and the senior radiologist resolved all conflicted cases.

For each of these studies, we also pulled a comprehensive view of patient EMR from the SUMC Epic database 
within an observational window of 12 months prior to their CT examination date. The EMR includes ICD9 codes, 
vitals, lab tests, demographics and inpatient and outpatient medications.

We randomly split the studies into a training set (1454 studies from 1414 patients), a validation set (193 
studies from 190 patients) and a hold-out test set (190 studies from 190 patients) for the purpose of develop-
ing the models. We ensured that there was no patient overlap between each set. The detailed characteristics of 
our dataset can be found in Table 1.

Figure 1.  Overview of the workflow for this study. We extracted a total of 108,991 studies from Stanford 
University Medical Center (A) and sampled a subset (B) for manual review (C). 1837 studies remained after 
screening by two radiologists and were used to train and evaluate our models. Single modality models were 
created (D) both as baselines for comparisons as well as components for the fusion models (E).



3

Vol.:(0123456789)

Scientific Reports |        (2020) 10:22147  | https://doi.org/10.1038/s41598-020-78888-w

www.nature.com/scientificreports/

Model performances. Each feed-forward neural network (including EMR-only and fusion) was trained 
using a grid search approach to find the optimal hyperparameters. The best hyperparameters, along with the 
training and validation metrics, of all of the grid searched models are detailed in Supplementary Table S1. All 
of the models achieved their lowest validation loss before the last iteration, which implies that the saved models 
have converged before the last epoch. The Late Separate Average and Late Meta fusion models are built based 
on the 7 best single modalities models with these grid search hyperparameters. The performance of each fusion 

Figure 2.  Fusion model architectures. The 7 different fusion architectures used in this study, including (A) 
Early Fusion, (B) Joint All Fusion, (C) Joint Separate Fusion, (D) Late NN Average, (E) Late Elastic Average, (F) 
Late Separate Average and (G) Late Meta. Each input feature modality is color coded. Detailed definition of each 
model architecture is described in the Methods.

Table 1.  Data characteristics of the Stanford Medical Center dataset. The curated Stanford Medical Center 
dataset was divided into training, validation and test set. The training set was used to optimize model 
parameters and the validation set was used to select the best model hyperparameters and operating points. The 
hold-out test set was used to evaluate the model’s performance.

Category Sub-category Overall Train Validation Test

CTPA exams

Number of studies 1837 1454 193 190

Number of patients 1794 1414 190 190

Median number of 
slices (IQR) 386 (134) 385 (136) 388 (132) 388 (139)

Patient Demographics
Female 1048 (57.07%) 823 (56.64%) 130 (67.36%) 99 (52.08%)

Median age (IQR) 66.14 (53.24–82.40) 66.13 (53.14–82.95) 64.10 (50.88–78.38) 67.24 (56.62–82.76)

Race

White 1101 (59.70%) 872 (59.80%) 108 (55.96%) 121 (62.69%)

Black 140 (7.59%) 101 (6.93%) 22 (11.40%) 17 (8.80%)

Asian 144 (7.81%) 122 (8.37%) 12 (6.21%) 10 (5.18%)

Pacific Islander 13 (0.70%) 10 (0.69%) 0 (0.0%) 3 (1.55%)

Other 210 (11.39%) 168 (11.52%) 25 (12.95%) 17 (8.80%)

Unknown 233 (12.63%) 184 (12.62%) 24 (12.44%) 25 (12.95%)

Pulmonary embolism

Number of negative 
PE 1111(60.48%) 946 (65.06%) 85 (44.04%) 80 (42.10%)

Number of positive PE 726 (39.50%) 508 (34.94%) 108 (55.96%) 110 (57.89%)

Central 257(35.40%) 202 (39.76%) 27 (25.00%) 28 (25.45%)

Segmental 387(53.31%) 281 (55.31%) 52 (48.15%) 54 (49.09%)

Subsegmental 82 (11.29%) 25 (4.91%) 29 (26.85%) 28 (25.45%)

Vitals
BMI (mean: std) 28.37 : 9.65 28.36 : 10.03 27.11 : 6.78 29.60 : 9.22

Pulse (mean: std) 81.62 : 14.99 81.53 : 15.64 83.05 : 11.86 80.50 : 13.06

D-dimer
D-dimer test taken 580 (30.62%) 461 (30.90%) 58 (28.71%) 61 (30.50%)

D-dimer positive 496 (26.18%) 389 (26.07%) 51 (25.25%) 56 (28.00%)
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model, including subsegmental PE, is detailed in Table 2. Over the entire hold-out test set, the Late Elastic Aver-
age model achieved the highest test AUROC of 0.947. Using bootstrap to compute the p-values between each 
model, we show that late elastic average’s performance outperformed the other fusion architectures significantly 
(Supplementary Figure S3).

As detailed in Table 3 and Supplementary Figure S2, our best fusion model significantly outperforms both of 
our best performing single modality models: 0.036 AUROC higher than EMR only-model and 0.156 AUROC 
higher than imaging-only model across the entire test set (Supplementary Figure S3). In this study, we set our 
operating point based on the Youden’s J-Score statistic that maximizes both sensitivity and specificity on the 
validation set. We used the standard definition of operating point as the numeric threshold that separates the 
predicted classes: all studies with prediction probability higher than this operating point are considered positive 
predictions, otherwise  negative28. Using this threshold, our fusion model achieves better performance across 
all evaluation metrics as compared to either single modality modals. Applications in clinical settings, however, 
are usually tuned to maximize sensitivity in order to minimize the false-negative rate. We can further improve 
the fusion model’s sensitivity with the cost of lowering PPV: using an operating point of 0.35, the fusion model 
achieves a sensitivity of 0.972 [0.971–0.973] and PPV of 0.862 [0.861–0.864] across the entire test set, as well as 
sensitivity of 1.00 [1.00–1.00] and PPV of 0.829 [0.827–0.832] when excluding subsegmental cases in the test set.

Our qualitative analysis of false-positive predictions (Supplementary Table S4) indicated that all of these 
studies had pre-existing or concurrent medical conditions. A qualitative analysis of the false-negative predic-
tions made by the vision model showed that these PEs were either (1) subsegmental or very small and difficult to 
assess even for the radiologist or (2) surrounded by pathological findings such as collapse of lung tissue or pleural 
effusion (examples in Fig. 3). In 39 out of 49 cases (79.59%), the fusion model was able to correctly re-classify 
false-negative mistakes made by the vision-only model. Half of the remaining false-negative cases were clini-
cally insignificant subsegmental only PEs. Lastly, our fusion model uses a late fusion approach, which takes the 

Table 2.  Fusion model architecture experimentation. Comparison between different fusion strategies. Model 
performance on the held-out test set with 95% confidence interval using probability threshold that maximizes 
both sensitivity and specificity on the validation dataset. Best performance metrics in bold text.

Evaluation 
metrics

Early Late Joint

Early fusion
Late NN 
average

Late elastic 
average

Late separate 
average Late meta Joint all Joint separate

Operating 
threshold 0.345 0.473 0.414 0.483 0.197 0.500 0.517

Accuracy 0.842
[0.84–0.844]

0.848
[0.846–0.849]

0.885
[0.884–0.886]

0.853
[0.851–0.854]

0.828
[0.826–0.829]

0.809
[0.808–0.811]

0.842
[0.841–0.844]

AUROC 0.899
[0.898–0.901]

0.895
[0.894–0.897]

0.947
[0.946–0.948]

0.908
[0.906–0.909]

0.896
[0.895–0.898]

0.796
[0.794–0.798]

0.893
[0.891–0.894]

Specificity 0.737
[0.733–0.74]

0.838
[0.835–0.84]

0.902
[0.9–0.904]

0.851
[0.849–0.853]

0.852
[0.849–0.854]

0.709
[0.706–0.712]

0.837
[0.835–0.840]

Sensitivity 0.919
[0.918–0.921]

0.781
[0.778–0.783]

0.873
[0.871–0.875]

0.854
[0.851–0.856]

0.81
[0.808–0.813]

0.882
[0.88–0.884]

0.846
[0.844–0.849]

PPV 0.827
[0.825–0.829]

0.869
[0.867–0.871]

0.924
[0.923–0.926

0.887
[0.886–0.889]

0.883
[0.881–0.885]

0.807
[0.805–0.809]

0.877
[0.875–0.879]

NPV 0.870
[0.867–0.873]

0.734
[0.731–0.737]

0.838
[0.835–0.84]

0.809
[0.806–0.811]

0.765
[0.762–0.768]

0.814
[0.811–0.817]

0.799
[0.796–0.801]

Table 3.  Comparison between multimodality and the best performing single modality models. Model 
performance on the held-out testset with 95% confidence interval using probability threshold that maximizes 
both sensitivity and specificity on the validation dataset. Best performance metrics in bold text.

Evaluation metrics

Including subsegmental Excluding subsegmental

Imaging model EMR model Late elastic average Imaging model EMR model Late elastic average

Operating threshold 0.625 0.630 0.448 0.625 0.612 0.414

Accuracy 0.687
[0.685–0.689]

0.834
[0.832–0.835]

0.885
[0.884–0.886]

0.756
[0.754–0.758]

0.873
[0.871–0.874]

0.902
[0.900–0.903]

AUROC 0.791
[0.788–0.793]

0.911
[0.910–0.913]

0.947
[0.946–0.948]

0.833
[0.830–0.835]

0.921
[0.919–0.923]

0.962
[0.961–0.963]

Specificity 0.862
[0.860–0.865]

0.875
[0.872–0.877]

0.902
[0.9–0.904]

0.863
[0.861–0.866]

0.878
[0.876–0.880]

0.849
[0.847–0.852]

Sensitivity 0.559
[0.557–0.562]

0.804
[0.801–0.806]

0.873
[0.871–0.875]

0.651
[0.647–0.654]

0.867
[0.865–0.870]

0.953
[0.951–0.954]

PPV 0.848
[0.846–0.851]

0.898
[0.896–0.899]

0.924
[0.923–0.926

0.830
[0.827–0.833]

0.879
[0.877–0.882]

0.866
[0.864–0.869]

NPV 0.588
[0.585–0.590]

0.765
[0.761–0.767]

0.838
[0.835–0.84]

0.707
[0.705–0.710]

0.866
[0.864–0.868]

0.946
[0.945–0.948]
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average of two independent models, each using a different modality. In the situation where one of the modalities 
isn’t present (e.g., before the patient is able to obtain CT imaging), our fusion model is still capable of making 
predictions based only on the patient’s EMR and could be used for imaging workflow triage.

Discussion
The purpose of this study was to build a multimodal deep learning model that leverages information from both 
CT images and Electronic Medical Record (EMR) to diagnose pulmonary embolism. We found that the fusion 
model achieved state-of-the-art AUROC of 0.962 [0.961–0.963] for detecting clinically important central and 
segmental PE which was significantly better than either the pixel-based (0.833 [0.830–0.835]) or EMR-based 
(0.921 [0.919–0.923]) models alone. Setting an operating threshold of 0.35 also allowed our model to capture all 
positive cases while maintaining PPV of 0.829, supporting potential clinical utility as a screening and prioritiza-
tion tool to improve time to diagnosis and treatment.

Implementation of neural network models for PE diagnosis started as early as the  1990s29. These studies ini-
tially focused on using simple neural networks trained with hand-crafted clinical variables or planar ventilation-
perfusion imaging with modest  performance30. More recently, researchers have shifted their attention to applying 
Convolutional Neural Networks (CNNs) on volumetric CTPA imaging for PE diagnosis. However, prior work 
relied on extensive feature engineering and processing, frustrating efforts towards clinical deployment given a 
lack of an end-to-end solution. For example, Tajbakhsh et al.’s 3D CNN requires extensive segmentation and 
vessel-alignment to extract pixel features as  inputs13. Similarly, Yang et al.’s 3D CNN also relies on detecting can-
didate voxels in the entire CTPA volume using a region proposal network as inputs to the classification  model11. 
State-of-the-art by Rajan et al. employs a two-stage model capable of achieving 0.85 AUROC for detecting saddle 
and central PE, and 0.70 AUROC in detecting segmental and smaller  PE31. In contrast, our work not only relies on 
an end-to-end solution that avoids complex image pre-processing, but also utilized important clinical and labora-
tory data with imaging data to achieve a combined AUROC of 0.947 for the task of automatically detecting PE.

Medical imaging diagnosis relies heavily on synthesis of clinical data from multiple sources in order to inform 
accurate interpretation of the imaging data since substantial clinical context is often essential to drive diagnosis. 
For example, many prior studies have found that a lack of access to clinical and laboratory data during image 
interpretation results in lower imaging interpretation performance and decreases clinical utility for the refer-
ring  provider32. The importance of clinical context during image interpretation for clinical decision-making also 
holds true in the use case of PE diagnosis on CTPA. Recognizing this, we developed multimodal deep learning 
models for detecting PE using both CT imaging and large-scale patient EMR-data and found that multimodal 
fusion models significantly outperformed single modality models. In particular, we found that the single modal-
ity image-based model showed large overlapping regions of predicted probabilities for the positive and negative 
test cases, which precludes a clinically useful operating threshold (see Supplementary Figure S5). The EMR only 
model revealed more defined clusters of the same cases but still suffered from limited separation. To achieve a 
clinically useful high sensitivity performance, the EMR only model would require a low operating point (0.05) 
to correctly detect all PE positive cases but would lead to too many false-positives (0.337 specificity). In contrast, 
the multimodal fusion model achieves more clinically useful separation between positive and negative cases; all 
the central and segmental positive cases can be diagnosed correctly with an operating point of 0.35 and achiev-
ing a specificity 0.778. Based on this analysis the fusion model may be more optimal for integration into clinical 
workflow due to the end-to-end approach and high sensitivity using a low operating point, thereby helping to 
reduce false-positives and clinical alert fatigue.

Figure 3.  Two selected axial CT images of the chest from two separate patients with positive diagnosis 
of PE. The left CT scan demonstrates a left lower lobe posterolateral basal segmental artery filling defect 
consistent with a pulmonary embolism. The CT scan on the right panel demonstrates a small elongated filling 
defect bridging across the segmental arteries of the right lower lobe consistent with a segmental pulmonary 
embolism, in addition to surrounding collapse of the right lower lobe. The vision-only model yielded false-
negative predictions for both cases, but the fusion model correctly predicted both as positive.
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This study includes several important limitations. This is a retrospective study design which comes with well 
described shortcomings and inherent limitations. The deep learning model described was developed and trained 
on data from a single large academic institution. Validation on an external test set from another institution has 
to be done to better understand the generalizability of our model and will inform the direction of future work. 
Although pre-existing or concurrent medical conditions exist in all of the false-positive cases in the test set, our 
model is not trained to identify these cases and should not be used explicitly to identify other important patholo-
gies. Our joint fusion models are based on extracted features from the vision model instead of using the original 
CT scans, which can limit the models’ ability to generate feature representations that might best complement 
the EMR features. Lastly, our comparison of different fusion types is based only on the task of predicting PE 
using CT scans and EMR, so the methods and results should be considered with caution when applying to other 
predictive tasks using different input modalities.

To summarize, the core contributions of this work include development and evaluation of different end-to-
end multimodal deep learning models for detecting PE using both CT imaging and patient EMR data. Our best 
performing model is a late fusion model using 3D CNN and ElasticNet which achieved an AUROC of 0.962 
[0.961–0.963]. End-to-end machine learning models that consider both CT scans and patient medical history, 
similar to a radiologist, offer better abnormality discrimination over imaging data alone. Multimodal data fusion 
models may improve the clinical utility of automating medical imaging tasks and are well-suited for adoption 
in clinical practice.

Methods
CT imaging only model. In order to observe the effect of using different multimodality fusion strategies, 
we created single modality classification models as baselines for comparison. To preprocess data for the CT 
imaging-only model, all of the pixel data for each CT exam were extracted from the original Digital Imaging and 
Communications in Medicine (DICOM) format. The CT scans were scaled to 224 × 224 × N pixels where N is the 
number of CT slices. The Hounsfield Units were clipped to the range of − 1000 to 900 and normalized to be zero-
centered. During training, a sliding window of 24 slices was fed into the model instead of the entire volumetric 
CT scan to increase the proportion of the target PE relative to the input. A sliding window was considered PE 
positive if more than 35% of the slices were labeled as positive.

In our previous work, we have developed a 77-layer 3D Convolutional Neural Network (CNN) model, PENet, 
capable of detecting PE using only CT  imaging12. PENet is primarily made up of layers of 3D convolutions with 
skip connections and squeeze-and-excitation blocks. Some notable implementation details of PENet include (1) 
pretraining the model with a video dataset (Kinetics-600) for transfer learning and (2) using a sliding window 
of CT slices as inputs and base prediction on the sliding window with the highest PE probability. The detailed 
model architecture and training procedure can be found in the original manuscript. Due to its high performance 
in detecting PE as compared to other classical 3D CNN architectures, we have decided to input CTPA exams 
to PENet for this study as our imaging only model. After pretraining the model on the Kinetics-600 dataset, we 
replaced the softmax output layer with a single output neuron with sigmoid activation and continued training 
with the CT scans from the training dataset. We used a focal loss  function33 to alleviate the class imbalance 
between the sliding windows.

EMR only model. Each category of EMR was parsed and feature engineered in different ways in accordance 
to the processing steps described by Banerjee et al.34. The demographic features consisted of one-hot encoded 
gender, race and smoking habits and the age as a numeric variable. For vitals, we included systolic and diastolic 
blood pressure, height, weight, body mass index (BMI), temperature, respiration rate, pulse oximetry (spO2) 
and heart rate. The vitals were represented with respect to their sensitivity to change, which was computed by 
taking the derivative of the vital values along the temporal axis. 641 unique classes of drugs were identified 
for inpatient and outpatient medication. Each medication was represented as both the frequency within the 
12-month window and a binary label of whether the drug was prescribed to the patient. We excluded all ICD-9 
codes with less than 1% occurrences in the training dataset and collapsed into top diagnosis categories, which 
resulted in a total of 141 diagnosis groups. We used a binary presence/absence as well as a frequency to represent 
diagnosis code as features. All ICD codes recorded with the same encounter number as the patient’s CT exam, or 
within a 24 hour window prior to their CT examination, were dropped to avoid data leakage. Lastly, we identified 
22 lab tests and represented each test as binary presence/absence as well as the latest value of the test.

We have implemented a simple feed-forward neural network that uses a concatenation of all EMR features as 
inputs (except CT imaging features). We hypothesized that the sparse EMR feature vectors would be challenging 
for neural network models to learn, so we also applied  ElasticNet35 to detect PE using all the EMR features. As 
part of the implementation step for the late fusion models, we also implemented feed-forward neural networks 
for each individual category of EMR features (demographics, ICD-9 codes, vitals, medications, lab tests). Before 
feeding into each model, all input features are normalized by subtracting the mean and dividing by the standard 
deviation.

Fusion models. The processed data used for ‘Imaging only model’ and ‘EMR only model’ was also used for 
our fusion models. We implemented different fusion architectures that leveraged information from both CT 
scans and patient EMR using different strategies, namely early fusion, late fusion and joint fusion. Early fusion is 
defined as joining features or feature representations at the input level before feeding into a model. Late fusion, 
also known as decision level fusion, aggregates the prediction probabilities of different single modality models to 
make a final prediction. Joint fusion extracts feature representations from each modality using a neural network 
model, then concatenates these learned feature representations as inputs to another model. The prediction loss 
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from the fusion model is propagated back to the feature extracting models to iteratively improve the learned 
feature representations.

Figure 2 details the 7 different fusion model architectures that we experimented in this study. Each input 
modality is color coded. Our Early Fusion model is a simple fully connected neural network model, taking in a 
concatenation of all the EMR features as well as the learned feature representation from the last fully connected 
layer of the PENet. In total, we implemented 4 different types of late fusion models. Late NN Average Fusion 
model takes the average of the predicted probabilities from the PENet model and a Neural Network trained 
simultaneously with all the EMR features. Late Elastic Average Fusion uses an ElasticNet instead of a feed 
forward neural network for the EMR features. Late Separate Average Fusion takes an average of the predicted 
probabilities of 7 different neural networks for each type of EMR data (including PENet). Late Meta Fusion 
uses a meta neural network classifier trained with the predicted probabilities from each of the 7 single modality 
classifiers. Lastly, our two joint fusion models, Joint All Fusion and Joint Separate Fusion differ by whether 
different EMR features are passed into a single feature extraction neural network or separately neural networks.

For all feed-forward neural network models (Fusion and EMR only), we utilized a grid search approach to find 
the optimal activation [ELU, LeakyReLU, Tanh], number of hidden layers [0–10], number of neurons [10–500], 
optimizer [Adam, SGD, AdaDelta], learning rate [0.0001–0.1], weight initialization method [Normal, Xavier, 
Kaiming], and dropout rate [0.3–0.8]. All of the models are trained with a batch size of 256 and a total of 200 
epochs. The optimal weights for each model are saved based on the epoch that achieved the highest validation 
accuracy. The best model is also chosen based on the configuration that gives the lowest validation loss.

Statistical analysis. Area under the receiver operating characteristic curve (AUROC) for each of the fusion 
models was used to determine the best performing model. To comprehensively compare the performance of the 
best fusion model to the single modality models, several evaluation metrics were calculated for the performance 
across the entire test set, including: AUROC, sensitivity, specificity, accuracy, positive predictive value (PPV), 
and negative predictive value (NPV). Diagnosing subsegmental-only PE is known to have questionable clinical 
significance and is often left  untreated36. Therefore, we have also computed the same evaluation metrics for nega-
tive and non-subsegmental-only positive PE to understand the clinical utility of our model. Lastly, we calculated 
95% DeLong Confidence Intervals for the AUROC of the model, and 95% Wilson Score Confidence Intervals 
for sensitivity, specificity, accuracy, PPV, and NPV at each operating point to measure the variability in these 
estimates. All confidence intervals were calculated with 1000 empirical bootstrap replicates.

Relevant guidelines. All applicable institutional IRB guidelines were followed as well as relevant state and 
national data privacy regulations.

Informed consent. This study was approved by the IRB of Stanford University and patient consent was 
waived by the same.

Data availability
The datasets generated and analyzed during the study are not currently publicly available due to HIPAA compli-
ance agreement but are available from the corresponding author on reasonable request.

Code availability
All code related to this project will be made available at https ://githu b.com/marsh uang8 0/pe_fusio n.
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