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A B S T R A C T

Background: The timeliness of detection of a sepsis incidence in progress is a crucial factor in the outcome for the
patient. Machine learning models built from data in electronic health records can be used as an effective tool for
improving this timeliness, but so far, the potential for clinical implementations has been largely limited to
studies in intensive care units. This study will employ a richer data set that will expand the applicability of these
models beyond intensive care units. Furthermore, we will circumvent several important limitations that have
been found in the literature: (1) Model evaluations neglect the clinical consequences of a decision to start, or not
start, an intervention for sepsis. (2) Models are evaluated shortly before sepsis onset without considering in-
terventions already initiated. (3) Machine learning models are built on a restricted set of clinical parameters,
which are not necessarily measured in all departments. (4) Model performance is limited by current knowledge
of sepsis, as feature interactions and time dependencies are hard-coded into the model.
Methods: In this study, we present a model to overcome these shortcomings using a deep learning approach on a
diverse multicenter data set. We used retrospective data from multiple Danish hospitals over a seven-year period.
Our sepsis detection system is constructed as a combination of a convolutional neural network and a long short-
term memory network. We assess model quality by standard concepts of accuracy as well as clinical usefulness,
and we suggest a retrospective assessment of interventions by looking at intravenous antibiotics and blood
cultures preceding the prediction time.
Results: Results show performance ranging from AUROC 0.856 (3 h before sepsis onset) to AUROC 0.756 (24 h
before sepsis onset). Evaluating the clinical utility of the model, we find that a large proportion of septic patients
did not receive antibiotic treatment or blood culture at the time of the sepsis prediction, and the model could,
therefore, facilitate such interventions at an earlier point in time.
Conclusion: We present a deep learning system for early detection of sepsis that can learn characteristics of the
key factors and interactions from the raw event sequence data itself, without relying on a labor-intensive feature
extraction work. Our system outperforms baseline models, such as gradient boosting, which rely on specific data
elements and therefore suffer from many missing values in our dataset.

1. Introduction

Sepsis is one of the most common causes of death globally [1]. The
World Health Organization estimates that more than six million people
die of sepsis annually, and many of these deaths are preventable [2]. In
the United States, severe sepsis affects more than 700,000 patients each
year at a cost of more than 20 billion dollars [3,4]. Early detection of

sepsis has shown to improve patient outcomes, but it remains a chal-
lenging problem in medicine [5]. Even experienced physicians have
difficulties in detecting sepsis early and accurately, as the early symp-
toms associated with sepsis may also be caused by many other clinical
conditions [6].

Previous studies have shown that machine learning (ML) models
trained from data in individual patient electronic health records (EHR)
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may be used for the early detection of sepsis [7–12]. The ML models for
sepsis detection far exceed the predictive ability of existing clinical
early warning system scores, such as the National Early Warning Score
(NEWS) [7,9,10,12–14]. Recently, Shimabukuro et al. demonstrated
several positive effects with the use of an ML model for sepsis detection
in a randomized trial, reporting an in-hospital mortality decrease of
12.4 percentage points (p= 0.018) and an average length of stay de-
crease from 13.0 to 10.3 days (p= 0.042) [12].

However, the current studies have limitations. First, most studies
build their ML models on a limited set of clinical parameters, such as
vital signs, which therefore must be collected in the given clinical set-
ting before predictions from a model can become of any real use.
Emergency departments and intensive care units (ICU) often have
guidelines for frequent registration of vital signs, but this is typically
not the case in many medical and surgical departments. The applic-
ability and deployment potential of the models is therefore limited due
to the comprehensive data registration requirements that are imposed
on the departments in which the models are to be used. Second, during
model evaluation, it is customary to report only receiver operating
characteristic (ROC) curves and the derived area under the ROC curve
(AUROC). This type of evaluation is chosen in spite of claims that
AUROC is purely a measure of predictive ability and does not measure
expected clinical usefulness, as it does not take prevalence into account
[15–17]. AUROC may be misleading when applied to data sets with a
high imbalance between positive and negative samples, which is often
the case within the field of health science [18]. Additionally, most
studies are evaluated by ROC curves at a fixed time relative to the time
of sepsis onset. In a real clinical setting, the evaluation should start at
the time the patient arrives at the hospital, and the algorithm should be
used for inference multiple times thereafter. Finally, the clinical utility
of the models is typically not investigated in relation to potential in-
terventions. As an example, it is not reported whether sepsis treatment
has, in fact, already been initiated at the time of the early detection.

In this paper, (1) we present a scalable deep learning [19] approach
for early sepsis detection on the heterogeneous data set that includes
hospitalizations both within and outside of the ICUs from multiple
medical centers; (2) we stress the importance of clinical utility and
contrast it to simple concepts of accuracy; (3) we suggest a sequence
evaluation approach that provides realistic estimations of model per-
formance; (4) we evaluate the clinical utility of the model in relation to
early interventions with blood cultures and antibiotics.

2. Materials and methods

2.1. Data population and data sources

Table 1 lists the type of data sources that were used in the study.
The data included health data on all citizens 18 years or older with
residency in one of four Danish municipalities (Odder, Hedensted,
Skanderborg, and Horsens). We used data from the secondary health
sector in combination with nationwide registers for the period of 2010
to 2017.

The data from the secondary health sector contained information
from the EHR, including biochemistry, medicine, microbiology, med-
ical imaging, and the patient administration system (PAS). The data
constituted raw health events as they are reported into the EHR by the
healthcare professionals. Importantly, this data is of a time-stamped,
sequential nature that reflects the point in time that the healthcare
professionals record each event during the admission of a patient. An
illustrative representation of the raw sequential data for a random pa-
tient is shown in Fig. 1. The different data sources are color coded so
that events from the same data source have the same color. For ex-
ample, registrations in regard to medications are colored blue, whereas
blood test results are red. The size of a circle indicates how many events
have been observed with the same timestamp and scales with the
square root of the number of concurring events.

The EHR data was combined with data from the National Patient
Register [20] and the Civil Registration System [21] containing in-
formation of a more contextual type, such as previously registered di-
agnoses, procedures, hospital admissions, marital status, and housing
situation. These data were used to additionally include contextual
covariates with information about comorbidities, age, and marital
status, which had been registered preceding the current admission.

The data were extracted from the research project “CROSS-
TRACKS”.1

2.2. Inclusion criteria and dataset preparation

The flowchart in Fig. 2 illustrates the stepwise construction of the
data set. First, all relevant hospital contacts were identified from a set of
1,002,450 contacts. From this set, 776,219 outpatient contacts were
removed, leaving 226,231 inpatient contacts to be considered. Second,
11,262 admissions with a duration of less than 3 h were removed. Fi-
nally, admissions to hospital departments with an overall prevalence of
sepsis less than 2% (162.740 contacts) were removed, leaving 52,229
contacts in total in the data set. The threshold of 2% is arbitrary but
reflects a trade-off between the coverage of the prediction model and
the noise of errorneous predictions. With a threshold of 2%, the in-
cluded departments cover 96% of all sepsis contacts in our data set.
Note that the registered events – or non-registration hereof – do not in
any way impose restrictions on the inclusion of a patient contact to the
data set. Neither will later manipulations (see Section 2.4) of the raw
EHR events affect the inclusion. For that reason, we denote this data set
as the full data to contrast it with a second data set, called the vital sign
data.

The vital sign data set was constructed by removing 49,103 contacts
with incomplete vital sign measurements (systolic blood pressure,
diastolic blood pressure, heart rate, respiratory rate, peripheral capil-
lary oxygen saturation, and temperature) in the 3 h preceding the label
time. For the positive sequences, the label time corresponded to the time
the positive label was obtained (sepsis onset). For the negative se-
quences, there was no obvious label time, so we selected a pseudo-
random time during the admission, excluding the first and last 3 h of the
admission.

The data set was as a result of this reduced to a subset of the full
data consisting of 3126 contacts in total (Fig. 2). The vital sign data was
constructed to enable a direct comparison with successful models from
the literature. However, note that due to the sparsity of the vital sign
measurements, the clinical usefulness of models constructed from this
data is severely limited compared to full data models.

For both data sets, the hospital contacts that led to sepsis were
identified (see Section 2.3), and the data were split into two parts: one
with sepsis-positive contacts and one with sepsis-negative contacts.
Sepsis-positive contacts were further divided into training data (80%),
validation data (10%), and test data (10%) and combined with sepsis-
negative contacts of similar proportions. The training data were used to
fit the model parameters. The validation data were used to perform an
unbiased evaluation of a model fit during training, and the test data
were used to provide an unbiased evaluation of the final model fit on
the training data. In the training data, the sepsis-positive contacts were
oversampled by a factor of ten. This entire process was repeated five
times to enable five-fold cross-validation.

For each sequence, we considered at most five days of data prior to
the label time. Fig. 1 shows an example with an observation window in
green and the corresponding prediction window in red. The transition
between the two windows is marked by the prediction time, which is
not static but rather slides from the beginning of each sequence to the
label time, along with the progression of the hospitalization for a pa-
tient. In this way, both windows are changing size as the prediction

1 http://www.tvaerspor.dk/.
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time shifts forward in real-time.

2.3. Target definition for the early detection of sepsis

After the inclusion of hospital admissions, each admission under-
went a binary classification process to denote it as either sepsis-positive
or sepsis-negative. The concrete individual registration of sepsis used in
our dataset occurs when an internal medicine physician based on the
SIRS criteria and with a sufficient clinical suspicion of systemic infec-
tion with or without proven bacteriaemia actively register this as a
sepsis event in the EHR. The classification defines whether, or not, a
patient meets the gold standard for sepsis, which is based on the 2001
consensus definition of sepsis [22]. That is, the presence of two or more
Systemic Inflammatory Response Syndrome (SIRS) criteria paired with
a suspicion of infection. The SIRS criteria are defined as:

• heart rate >90 beats/min
• body temperature >38°C or <36°C
• respiratory rate >20 breaths/min or PaCO2 (alveolar carbon di-

oxide tension) <32 mm Hg
• white cell count >12 × 109 cells/L or <4 ×109 cells/L

Importantly, the fulfillment of the 2001 consensus sepsis definition is an
independent EHR registration that occurs continually during admission
and is reported by the treating physician. This registration is in contrast
to the registration of diagnoses, which often relates to the time of dis-
charge. Hence, in this study, the gold standard may be fulfilled and
registered even though vital sign measurements have not yet been en-
tered into the EHR. This is in great contrast to other sepsis studies that
needs to estimate the sepsis onset time retrospectively. Based on this
unique EHR registration in our dataset, we chose to conduct this study
with the 2001 gold standard despite the introduction of the new Sepsis-
3 definition introduced in 2016 by Singer et al. [23].

2.4. Data representation

In the raw data, each sample represents a given patient as a time-
ordered sequence of EHR events = …E e e e( , , , )T1 2 , where et is an ob-
served event ordered by t ∈ 1, …, T and T corresponds to the registered
time for the patient's label assignment. Recall the visual example of the
time-ordered sequence of EHR events in Fig. 1. Each event consists of
three elements: a time stamp, an event category (e.g., blood pressure or
medication code), and a value. The time for the registration of event et
is denoted as t e( )t , the category c e( )t , and the value v e( )t . For example, if
the category c e( )t is blood pressure, then v e( )t

2, as it contains both
the systolic and diastolic measurements. Notice that only for the se-
quential neural network model, the detailed ordering of events is im-
portant.

The raw event data is transformed through a two-step vectorization
of individual events. The first step will represent each event et by a very
sparse vector et with an entry for all event-value types that can be ob-
served across all patients. The size of this vector will be greater than the
number of different event categories, as a category may have more than
one measurement (e.g., for the blood pressure event from above, the
event vector et will have two nonzero elements, one for each mea-
surement in v e( )t ). In the second step, each vector entry is further
transformed as follows. Categorical features are converted into their
corresponding one-hot binary feature vector, numerical features are
standard normalized, and hierarchical features, such as diagnosis codes,
are represented as multi-hot vectors with an entry in each of the present
levels of the diagnosis hierarchy. The resulting vectorization of a given
event et is therefore a very sparse, but not necessarily one-hot, vector et
of size 80,000.

A raw event vector sequence may be partitioned into intervals of
time, where the raw event vectors are then aggregated within a time
interval I. We will let eI denote the interval aggregation of all et where
t e I( )t . Different aggregation functions are applied across different
elements in the event vectors. Binary (categorical) outcomes, such as

Table 1
Data sources.

Source system Data type

Electronic health record (patient administration
system)

Diagnoses (international classification disease – 10; ICD-10), procedures (NCSP – the NOMESCO Classification of Surgical
Procedures), booking information, health content (structured notes containing physiological measurements, symptom
classifications, check box data such as smoking and exercise habits)

Electronic health record (medication module) Dates and times for prescriptions and dispensing together with information on ingredients, dose, administration routes.
Laboratory system Microbiology and blood gas analysis
Medical imaging system Image descriptions from computed tomography, magnetic resonance imaging, ultrasound, X-ray, positron-emission

tomography
National patient register Hospital admissions, diagnoses (ICD-10), procedures (NCSP)
Civil registration system Patient demographics: age, address, and marital status

Fig. 1. A visual example of data for a
randomly chosen sepsis patient. The
observation window has a green back-
ground while the prediction window
has a red background. The transition
between the two windows is called the
prediction time. The prediction time is
not static, as displayed in this snapshot;
instead, it is shifting from the begin-
ning of each sequence to the label time,
as the hospitalization progresses. For
the sepsis-positive sequences, the label
time corresponded to the time of sepsis
onset. For the negative sequences, the
label time was randomly chosen within
the admission. (For interpretation of
the references to color in this figure
legend, the reader is referred to the
web version of this article.)
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procedure codes, are aggregated to numerical counts, and numerical
measurements, such as blood pressure, are converted to minimum,
maximum, and mean values. Naturally, depending on the degree of
aggregation, the ordering of the events in the entire event sequence is
ignored to a greater or lesser extent.

Similar to the raw event vector, we also construct a vectorization of
the context for a given patient. That is, the contextual meta data, such
as demographics and the patient's comorbidities prior to the first raw
event, are considered in a model. The context vector is denoted by c and
is, in contrast to the raw event vectors et, not dependent on the se-
quence ordering in the model.

2.5. Data preprocessing and model design

The models in this study were built with an onset in three different
approaches: (1) a classical epidemiological approach, where the model
includes a small group of selected and clinically well-founded features;
(2) a more data-driven approach, where all the available data is used in
a slightly aggregated form to train a non-sequential neural network; and

finally (3) a data-driven approach, where the available data is used in
its sequenced form for the training of a sequential neural network. The
first two models serve as baseline comparison models.

2.5.1. Gradient boosting
In the simplest baseline model, called GB-Vital, we replicate a well-

known sepsis detection model from the literature, which has shown
excellent results in a randomized study [12]. The full technical de-
scription of the model can be found in [10]. The explanatory features
for this model are constructed by considering only six vital-sign events
from the raw EHR event sequences: systolic blood pressure, diastolic
blood pressure, heart rate, respiratory rate, peripheral capillary oxygen
saturation, and temperature. The constructed features highly aggregate
the sequence information, and only limited ordering information is
retained. That is, for each of the six vital signs, five features are con-
structed to represent the average value for the current hour, the prior
hour, and the hour prior to that hour, along with the trend value be-
tween two succeeding hours.

Based on these 30 features (five values from each of the six mea-
surement channels), the GB-Vital model is constructed as a gradient
boosted classifier of decision trees. As in [10], each tree in the gradient
boosting model is limited to split at most six times, and no more than
1000 trees are aggregated to generate the risk prediction. The model
was trained in Python using the Gradient Boosting Classifier in the
Scikit-learn package.

2.5.2. Multilayer perceptron
In the more advanced baseline model, we constructed a standard

multilayer feedforward neural network in the form of a multilayer
perceptron (MLP). The model does not limit data to include only vital
signs. Instead, features were constructed by aggregating entire event
vectors in E across retrospective windows of time, including intervals of
1 h, 2 h, 4 h, 8 h, 16 h, and 32 h preceding the time of the label. Notice
that with this coarse aggregation of events, the ordering of the events is
basically ignored, except for the fact that the final feature vector for the
model concatenates the aggregating event vectors in E across the dif-
ferent sized windows of time. Finally, to remove noise and reduce di-
mensionality, we only consider features that are present in at least 100
sample sequences of the training data, resulting in a reduction from
approximately 100,000 to 5000 distinct entries in the feature vector for
each retrospective timespan, or approximately 30,000 features in total.

The model structure for the MLP in this study feeds the 30,000 input
units together with the 26 contextual features into two hidden layers of
200 units each, which is then followed by the binary decision. The
model was trained to optimize the cross-entropy loss using the Adam
optimizer [24] with mini-batches of size 50, a learning rate of 0.0001,
and a dropout of 30% to prevent overfitting. Keras 2.2.2 with a Ten-
sorFlow 1.11 backend was used for the MLP experiments in this study.

2.5.3. CNN-LSTM
In this model, we considered all elements in the entire event se-

quence E for a patient. As with the MLP model, we only considered
events that were present in at least 100 sample sequences of the
training data, resulting in approximately 5000 distinct entries in the
event-vector representation for an event et.

The event sequences are further pre-processed by (1) a temporal
preserving aggregation step, (2) a gap-filling step, and (3) a context
concatenation step. In the temporal preserving aggregation step, all
event vectors are grouped into five-minute non-overlapping blocks
B⊆ E, such that the maximum time between two events in each block is
five minutes. The main reason for this step is to reduce the number of
inputs to the model in order to improve computational efficiency.
However, the temporal aggregation also has the effect of discarding the
order of events within each five-minute block, which arguably better
complies with the randomness in order that healthcare professionals
may introduce when entering information that close in time into the

Fig. 2. Inclusion flow chart for the full and the vital sign data sets.
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EHR. The gap-filling step now fills the sequence with empty event
vectors such that all feature vectors in the sequence are equidistant in
time. In this way, there is a vector for every five minutes in the se-
quence, some of which are aggregations of one or more event vectors
and some are empty vectors. The sequence can therefore be represented
as a sparse matrix of shape N× K, where N is the number of five-minute
vectors in the longest sequence ( =N t e t e( ) ( )

5 min
T 1 ) and K is the number

of entries in the event feature vectors (K≈ 5000). Finally, each of the N
aggregated event vectors was concatenated with the same fixed context
vector such that the final sequence matrix is of shape × +N K C( ),
where C is the number of entries in the context vector C( 30). Recall
that the context vector contains meta data about the patient, such as
age, gender, and comorbidities. The intuition for concatenating the
contextual data with every event is that the importance of certain EHR
registrations may be supported by such contextual information.

The classifier is structured as a convolutional neural network (CNN),
followed by a recurrent layer of long short-term memory (LSTM) cells,
also known as a CNN-LSTM model (or sometimes Long-term Recurrent
Convolutional Network) [25]. This architecture has been shown to
learn robust temporal feature representations in the convolutional
layers, which makes it easier for the LSTM layer to capture temporal
dependencies compared to using the raw inputs [26]. The overall ar-
chitecture of the classification model is illustrated in Fig. 3. The model
first projects the sparse inputs into dense 1000-dimensional vectors,
reducing the dimensionality for the following convolutional layer by a
factor of five. With inspiration from Conneau et al. [27], short-term
temporal developments for a patient are now captured in the model by
a stack of “convolutional blocks”. A convolutional block consists of two
one-dimensional ReLU-activated convolutional layers followed by a
max-pooling layer. All convolutional layers have kernels of size 3, a
stride of 1, and zero-padding is used. All max-pooling layers have a
kernel size of 2 and a stride of 2, halving the temporal width of the
input. To ensure that information across the convolutional blocks obeys
the ordering of the input information, without contaminating the
output with information from the future, all kernels are causal in the
sense that they only filter input from the current time and the past.

There are five convolutional blocks in the model. The initial block
has a depth of 128 for both of the convolutional layers in the block,
whereas the convolutional layers in the last four blocks all have a depth
of 64. After the input filters through the five convolutional blocks, the
output vectors contain partly overlapping temporal information, where
each vector spans 15 h and 30 min of the original input, and the tem-
poral distance between two succeeding vectors is 2 h and 40 min.
Finally, the model captures the long-term temporal development of a
patient by allowing the output from the convolutional blocks to feed
into an LSTM layer that incrementally builds up a representation of the
temporal inputs and continually predicts an output. The LSTM layer has
64 units and is initialized with a random initial state. This layer consists

of a “conventional” LSTM layer with a forget gate, as defined in [28].
Our experiments have shown that by adding the convolutional layers in
front of the LSTM, we gain significant improvements in both efficiency
and effectiveness compared to using a single stacked LSTM. The final
prediction layer is a softmax layer.

The model was implemented in Keras 2.2.2 with a TensorFlow 1.11
backend and trained on a NVIDIA Tesla V100 GPU. Convergence was
reached after approximately 90 min for experiments with this model.

2.6. Model evaluation

The models in this study produce prediction values that reflect the
risk that a patient's hospital admission may result in sepsis, if not in-
tervened upon. The predicted risk will be in the range from zero to one
and should be higher for those patients at risk of later developing sepsis
compared to those that are not. It is customary to evaluate the dis-
criminative power of a binary decision model at a range of thresholds
p [0; 1] for the decision p> pτ and then report results in the form of
receiver operating characteristic (ROC) curves, precision-recall (PR)
curves, area under ROC (AUROC), or mean average precision (mAP).
We report these well-known measures to enable easy comparison to
existing and future studies that employ evaluations of this kind.

However, while discrimination is an important statistical property,
it does not properly address clinical usefulness [15–17,29–31]. For
example, if a false negative decision causes greater harm than a false
positive decision, a model with high sensitivity may be preferable to a
model with high specificity and lower sensitivity, although the latter
model might have, say, a higher AUROC. In general terms, a model is
clinically useful if the use of its decisions for patients leads to a better
ratio between benefits and harms than not using the model. Grounded
in the utility measure from the field of decision theory, decision curve
analysis (DCA) assesses the clinical usefulness of a prediction model by
evaluating the so-called net benefit at varying decision thresholds for
the model (see, e.g., [32,33]). Let TP and FP denote the number of,
respectively, true positives and false positives that a model predicts
from a sample of N cases. The net benefit, NB is now defined as

=
N

NB TP (FP· ) , (1)

where the weighting factor, ω, can be interpreted as the exchange ratio
between the number of false positives that is acceptable in exchange for
one true positive. This interpretation is important, because it is in-
formative of how the clinician weights the harm H of a false sepsis-
positive decision over the benefit B of a true decision, with the rationale
being to start intervention for a patient if the expected harm compared
to the benefit is above the clinician's preference of exchange ratio H/B.
For example, a weighting factor of 1

10
indicates that if the clinician

misses one sepsis patient that could have been detected by the model, it
is valued as being 10 times worse than unnecessarily classifying one

Fig. 3. The CNN-LSTM architecture for sepsis classification.
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healthy person to be at risk of sepsis. Finally, by rearranging the ex-
pression for the expected utility of an intervention, one can establish
the following relation between the harm/benefit exchange ratio and an
operational model's decision threshold.

= =H
B

p
p1 (2)

The harm/benefit exchange ratio is subjective and will vary across
clinicians. A decision curve in DCA illustrates the consequence of an
arbitrary choice by evaluating the net benefit for the binary decision of
opting into the intervention (p> pτ), or not (p ≤ pτ), across a range of
different decision thresholds – or equivalently, for a range of different
harm-benefit exchange ratios. With different models to consider – in-
cluding the extreme options of never intervening or always intervening
– the clinician should favor the model with the highest net benefit at his
personally determined H/B ratio. The curves also allow the clinician to
alter this ratio in the context of a given patient (e.g., in accordance with
the patient's preferences). See Fig. 6c for an example of DCA curves.

The attentive reader may have noticed that the above formulation of
DCA exclusively focuses on the patients for whom an intervention will
occur, as is the case in [32]. For the remaining patients, their hospital
contact will continue as usual and not be affected by the prediction
model. This is a more conservative evaluation than the formulation of
DCA in [33], where harms and benefits for non-interventions are also
included. However, the latter DCA formulation is more demanding on
the elicitation of the weighting factor to be used in an actual clinical
setting, as it now relies on the clinician's ability to state a four-way
relation between harms and benefits. In the following, we will use the
former definition of net benefit in our DCA reporting.

2.6.1. Sequence evaluation with a retrospective assessment of intervention
potential (SERAIP)

Concerning the clinical usefulness of a prediction model, it is im-
portant to account for earlier related interventions, if any, when eval-
uating the effect of the model. The model will not create additional
value to the clinician (and patient) if interventions are already initiated
at the time of prediction. In this case, the prediction cannot lead to any
new action. There are two aspects to consider when accounting for
earlier interventions in the performance measure for a prediction
model: (1) An intervention may have been caused by the model at an
earlier timestep, or (2) an intervention may have been caused by clin-
ical presumptions, independently of the model.

Concerning the first aspect, a model may perform very well when
evaluated close to the onset of sepsis, but at the same time perform
critically bad when evaluated many hours before severe sepsis symp-
toms occur. When the model is used in a real-time clinical setting, the
effect of a positive prediction will be an intervention that cannot be
withdrawn. It implies that model decisions about interventions in ear-
lier timesteps must be carried through and accounted for when evalu-
ating model performance in subsequent timesteps. We address the effect
of past model performance by defining the sequence prediction at time
t, pt

seq as the maximum probability of all predictions until then. That is:

=p pmax ( ),t x t x
seq

0 (3)

where px is the prediction at time x. In this way, a sepsis-positive
classification will be maintained for the subsequent timesteps, as the
effect of a positive prediction will be an intervention that cannot be
withdrawn.

Concerning the second aspect, we suggest adding a retrospective
assessment of interventions to the evaluation by looking for intravenous
antibiotics and blood cultures preceding the prediction time. Here, in-
travenous antibiotics are identified as intravenous medications be-
longing to either the ATC J01 (antibacterial agents for systemic use) or
ATC J02 (antimycobacterial agents) subgroups, and blood cultures are
identified through the laboratory system for microbiology. We include
all registrations back to 72 h before the prediction time to ensure that
all registrations related to clinical presumptions on sepsis are captured.
For a given timestep this assessment is performed for all true positive
predictions TP, yielding a partition of TP into those with none, one of,
or both the two types of interventions; intervenous antibiotics and
blood culture. We are only interested in the predictions of sepsis
( >p pt

seq ) that do not already have a sepsis-related intervention. That
is, the partition of TP without interventions, as these indicate the non-
contestable potential for early intervention. We denote this evaluation
metric as sequence evaluation with a retrospective assessment of interven-
tion potential (SERAIP)

3. Results

3.1. Vital sign data coverage

Fig. 4 shows, in percentage, how many patients from our multi-
center dataset have had two or more vital sign registrations at each
hour prior to a sepsis onset. We see a dramatic decrease in the mea-
surements, as we move back in time. Let t denote the time of sepsis
onset. Already at t− 3 h before the onset, only 62% of all patients have
two or more vital sign measurements, and moving further back in time
to t− 10 and t− 24 h, the percentages are reduced to 48% and 33%,
respectively. This observation affirms the large reduction from 52,229
to 3,126 contacts that the vital sign inclusion criterion (Section 2.2)
implies on the full data set.

3.2. Gradient boosting

Fig. 5a and 5b show the ROC and PR curves from evaluating the GB-
Vital model on the vital sign test data. The model achieved an AUROC
of 0.786 and a mAP (mean average precision) of 0.797 when evaluated
3 h before sepsis. The results from the DCA are shown in Fig. 5c. The NB
of using the GB-Vital model was equal to the NB of treating all patients
in the range of probability thresholds from 0% to 32%. At thresholds
above 32%, the NB of using the GB-Vital model exceeded both the NB of
treating none patients and the NB of treating all patients.

3.3. Multilayer perceptron

The MLP model achieved an AUROC of 0.764 and a mAP of 0.689
when evaluated 3 h before sepsis on the vital sign data set (Fig. 5a and

Fig. 4. Percentage of patients with two or more vital sign measurements (vital
sign completeness) as a function of time before sepsis onset.
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b). The NB of using the MLP model was equal to the NB of treating all
patients in the range of probability thresholds from 0% to 20%. At
threshold values above 45%, the NB of using the MLP model exceeded
both the NB of treating no patients and the NB of treating all patients.

Results from the full data set are summarized in Fig. 6. Fig. 6a and b
show how AUROC and mAP change as a function of time before the

labeled onset of sepsis (or not sepsis). The MLP AUROC scores on the
full data set were as follows: t− 15 min: 0.872; t− 3 h: 0.871; t− 10 h:
0.751; and t− 24 h: 0.619. The highest mAP of 0.578 was achieved at
3 h. The mAP dropped on both sides of this peak (0.395 at t− 15 min
and 0.318 at t− 10 h) and further decreased to 0.147 at t− 24 h.

The NB of using the MLP model on the full data set was slightly

Fig. 5. Results from the vital sign test data set evaluated 3 h before sepsis onset: (a) ROC curves; (b) PR curves; (c) DCA.

Fig. 6. Results from the full test data set: (a) AUROC at different predictions times with 95% confidence intervals. (b) mAP at different prediction times with 95 %
confidence intervals c) DCA 3 h before sepsis onset. (d) Calibration curve. (For interpretation of the references to color in the text, the reader is referred to the web
version of this article.)
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higher than the NB of treating all patients in the range of probability
thresholds from 0% to 12%. In the range from 12% to 20% and above
45%, the NB was negative. In the range from 20% to 45%, the model
exceeded both the NB of treating no patients and the NB of treating all
patients (Fig. 6c).

In Fig. 6, the calibration curve for the MLP model is shown (blue
line). The plot provides an indication of whether future predicted
probabilities agree with the observed probabilities. For example, if we
predict a 35% risk of developing sepsis, the observed frequency of
sepsis should be approximately 35 out of 100 patients with such a
prediction. A perfectly calibrated model would have a 45 degree line
along the diagonal [34,35].

3.4. CNN-LSTM

The CNN-LSTM model achieved an AUROC of 0.856 and a mAP of
0.79 when evaluated 3 h before sepsis on the vital sign test data (Fig. 5a
and b). Results from the full data set showed that the CNN-LSTM model
decreased from a maximum mAP of 0.531 at t− 15 min to 0.407 at
both t− 10 and t− 24 h. The CNN-LSTM AUROC scores were as fol-
lows: t− 15 min: 0.879; t− 3 h: 0.842; t− 10 h: 0.792; and t− 24 h:
0.752. The NB of using the CNN-LSTM model on the full dataset ex-
ceeded both the NB of treating no patients and the NB of treating all
patients in the range of probabilities from 5% to 60% (Fig. 6c). The
calibration of the CNN-LSTM model is shown in Fig. 6d (orange line).

3.5. SERAIP

Table 2 shows the results of SERAIP. The columns “TP with IV an-
tibiotics”, “TP with blood culture”, “TP with IV antibiotics or blood
culture” and “TP with no intervention” indicate the potential for in-
itiating interventions that the clinicians have not already thought about

at the time of prediction. Using the first row of the table as an example,
the model finds 17% of the positives, corresponding to 39 patients. The
column “TP with IV antibiotics” shows that 8 patients out of the 39 true
positives were already started with intravenous antibiotics. The column
“TP with blood culture” shows that 12 out of the 39 patients had al-
ready had a blood culture, and “TP with IV antibiotics or blood culture”
shows that 8 of the 12 patients for whom intravenous antibiotics had
been started had also had a blood culture. Finally, the last column “TP
with no intervention” shows that 27 of the 39 patients had no inter-
vention initiated at the point of prediction.

The column “FP/FP” indicates the relationship between false posi-
tives and true positives and shows that one can expect 9.28 false alarms
for every one true positive.

4. Discussion

4.1. Results

We have presented an accurate deep learning system for early sepsis
detection on a multi-center data set from outside ICUs. We have com-
pared three different approaches for early detection of sepsis: a GB-Vital
model, based on vital sign features; a non-sequential MLP model with
thousands of features, including those used for the GB-Vital model; and
a sequential CNN-LSTM model with an equal number of features.

The GB-Vital model had reasonable performance, with an AUROC of
0.786 3 h before sepsis onset for patients with registered vital signs, but
it underperforms when compared to the results of previous studies on
early sepsis detection. Qingqing Mao et al. achieved an AUROC of 0.88
[10] 3 h before sepsis onset with a similar GB-Vital model. Nemati et al.
reported an AUROC of 0.85 4 h before sepsis onset with a Weilbull–Cox
proportional hazards model. Futoma et al. reported AUROCs of 0.86
and 0.78 3 h and 12 h before sepsis onset, respectively, with a multi-

Table 2
Results from the “sequence evaluation with retrospective assessment of intervention potential” on the full test data set. Area under the receiver operating char-
acteristics (AUROC), false positive (FP), true negative (TN), false negative (FN), false positive (FP), intravenous (IV), Hospital (Hosp.), gastrointestinal (gastroin.),
specificity (SPE) sensitivity (SEN), TP with IV antibiotics (TP anti), TP with blood culture (TP blood), TP with IV antibiotics or blood culture (TP int.), TP with no
intervention (TP no int.).

Department/Hospital Evaluated up until SEN SPE FP/TP TP TN FN FP TP anti TP blood TP int TP no int.

Emergency Dept. Hosp. 1 t− 3 h 0.17 0.91 9.28 39 3663 197 362 8 12 12 27
t− 10 h 0.13 0.91 14.77 22 3456 151 325 4 7 7 15
t− 24 h 0.11 0.90 18.76 17 2899 132 319 1 2 2 15

Dept. of Oncology Hosp. 2 t− 3 h 0.31 0.93 7.25 4 389 9 29 3 1 3 1
t− 10 h 0.40 0.93 7.25 4 372 6 29 2 1 3 1
t− 24 h 0.30 0.93 9.33 3 364 7 28 2 0 2 1

Joint Emergency Dept. Hosp. 1 t− 3 h 0.33 0.87 3.00 4 78 8 12 0 1 1 3
t− 10 h 0.09 0.10 1.50 6 1 60 9 0 1 1 5
t− 24 h 0.09 0.14 1.20 5 1 50 6 0 0 0 5

Emergency Dept. Hosp. 3 t− 3 h 1.00 0.92 5.00 1 55 0 5 0 0 0 1
t− 10 h 1.00 0.86 5.00 1 31 0 5 0 0 0 1
t− 24 h 1.00 0.85 5.00 1 28 0 5 0 0 0 1

Dept. of Anaesthesiology Hosp. 1 t− 3 h 0.60 0.66 1.83 6 21 4 11 3 2 3 3
t− 10 h 0.45 0.59 2.20 5 16 6 11 1 1 1 4
t− 24 h 0.56 0.60 2.00 5 15 4 10 0 1 1 4

Dept. of Hematology Hosp. 2 t− 3 h 0.36 0.93 5.80 5 398 9 29 3 1 3 2
t− 10 h 0.45 0.93 5.80 5 372 6 29 2 1 3 2
t− 24 h 0.30 0.93 9.33 3 364 7 28 2 0 2 1

Dept. of gastroin. surgery Hosp. 2 t− 3 h 0.67 0.63 2.75 4 19 2 11 1 0 1 3
t− 10 h 1.00 0.62 2.75 4 18 0 11 1 0 1 3
t− 24 h 1.00 0.63 2.50 4 17 0 10 1 0 1 3

Dept. of Anaesthesiology Hosp. 2 t− 3 h 0.33 0.95 1.00 1 19 2 1 0 0 0 1
t− 10 h 0.50 0.95 1.00 1 19 1 1 0 0 0 1
t− 24 h 0.50 0.95 1.00 1 18 1 1 0 0 0 1

S.M. Lauritsen, et al. Artificial Intelligence In Medicine 104 (2020) 101820

8



output Gaussian processes model [7]. The reason for the lower AUROC
values in our GB-Vital model is likely due to the amount of missing
values in our data set. All of the above studies are built solely on data
from ICUs, where vital parameters are recorded frequently. Recall that
in our diverse data set, only 62% of the sepsis patients had at least two
vital signs measured 3 h before sepsis onset. Qingqing Mao et al. ex-
amined the direct impact of missing values in their GB-Vital model and
found that AUROC decreased from 0.9 to 0.79 when increasing the
percentage of missing values from 0% to 20%. Increasing the percen-
tage of missing values even further to 60% yielded an AUROC of 0.75.
The reported AUROC of 0.79 with a missing value rate of 20% is di-
rectly comparable to our GB-Vital model, which archived an AUROC of
0.786 3 h before sepsis with a similar rate of missing values. It is im-
portant to note that when Qingqing Mao et al. created a data set re-
miniscent of ours, our results correlate.

These numbers indicate that although the GB-Vital model performs
well on ICU data, it may not be useful for the early detection of sepsis at
a broader scale, where vital parameters are not recorded as frequently
across various hospital departments.

In Fig. 6a, it can be seen that the MLP and CNN-LSTM models had
close to equal AUROC performance at time t− 3, and in fact, the MLP
model had a better average precision (Fig. 6b) than the CNN-LSTM
model. This was probably because the DNN model was trained on data
3 h before sepsis onset. In contrast, the CNN-LSTM model appeared to
be more stable when used at different times relative to sepsis onset,
which may be attributed to the sequential modeling approach.

The CNN-LSTM had higher NB values in the DCA compared to the
MLP model for the full range of threshold values (Fig. 6c). In addition, a
slightly odd NB profile could be observed for the MLP model in the
threshold range from 0.05 to 0.2, indicating that the model was not well
calibrated in this area and therefore would serve poorly as a risk-esti-
mation model. This was investigated with a calibration plot, as shown
in Fig. 6d. The plot supported our presumption that the MLP model was
poorly calibrated, as the observed frequency of sepsis was system-
atically higher than the predicted risk of developing sepsis, especially in
the probability ranges of 0.05–0.2 and 0.6–0.8. The CNN-LSTM model
did not seem to suffer from poor calibration.

4.2. SERAIP

The SERAIP is our attempt to create an “close to the clinic” eva-
luation yielding an accurate picture of how the algorithm could support
the clinical work at different departments. SERAIP can be considered an
extension of the real-time validation suggested by Futoma et al. [7].

We simulated real-world usage by doing a retrospective evaluation,
investigating two of the most important actions that a sepsis detection
model could help initiate. Intravenous antibiotics and blood culture
requisitions has been analyzed in the period preceding predictions, al-
lowing for better estimates of the clinical utility of the model. The
numbers for sensitivity and specificity in Table 2 were calculated using
a global probability threshold of 0.1, which was determined from in-
spection of ROC and DCA. Optimally, a threshold should have been
chosen per department, as the patient case mix varies greatly.

Looking at the Emergency department, Hospital 1 the model had a
sensitivity of 0.17 3 h before sepsis, which corresponded to finding 39
true positives, of which 27 had not received any intervention.
Conversely, as many as 362 false positives (at a specificity of 0.91) must
be accepted at a threshold of 0.1. The hematology department (Hospital
2) is an example of a department with a completely different patient
clientele than the emergency department. Here the model had a sen-
sitivity of 0.45 and a specificity of 0.93 10 h before sepsis onset, which
corresponded to 5 true positives and 29 false positives. At the same
time, no interventions were initiated for two of the five true positives.
An important observation from the evaluation was that the model de-
tected a very high proportion of sepsis patients in departments in which
sepsis is not common. This was probably because septic patients differ

more from the usual clientele than in, for example, emergency de-
partments.

4.3. Limitations

4.3.1. Black box
An important improvement in relation to clinical acceptance would

be to implement supporting explanation methods in the predictions,
such as layer-wise relevance propagation, deep Taylor decomposition,
pattern attribution, or other DL explanation approaches [36,37]. It is
easy to imagine that a model that is more interpretable and supported
by explanations would be more easily accepted in the clinic. Shickel
et al. reached the same conclusion in a recent article reviewing the
latest trends in the use of DL on EHR data [38]. They completed their
review with a warning against downplaying the importance of inter-
pretability in favor of improvements in model performance.

4.3.2. Bias and confounding
As the presented DL models (MLP and CNN-LSTM) operate in a high

dimensional feature space not limited by domain specialists, it is im-
portant to consider the associated bias issues. In June 2018, Benjamin
Recht and colleagues from UC Berkeley argued that many DL models
may be less generalizable than we have assumed [39]. This claim was
supported a month later by Zech et al., who showed that their DL
models were significantly influenced by organizational and process-
oriented elements [40]. Agniel et al. highlighted similar problems in a
study on EHR data [41]. The authors found that data regarding the time
when the blood samples were ordered were more important than the
blood test results for predicting three-year survival [5]. The important
message in relation to sepsis detection based on EHR data is twofold:
(1) If doctors or nurses have not measured certain vital signs or ordered
certain blood samples, it will not be possible for models such as GB-
Vital to predict sepsis. In this case, the CNN-LSTM model could still be
used to estimate whether the patient is developing sepsis. (2) On the
other hand, the CNN-LSTM model will most likely contain an un-
fortunate bias, which may be important if process-oriented elements
change, such as new IT-systems or workflows.

4.3.3. Reproducibility
We do not test our models on the MIMIC-III database as the two

cohorts comprise completely different patient groups. The CROSS-
TRACKS database embraces a mixed rural and urban multi center po-
pulation in contrast to critical care unit at a large tertiary care hospital
in the MIMIC-III database. In the CROSS-TRACKS database, patients
may be hospitalized without being critically ill, unlike MIMIC-III da-
tabase. If a patient in the MIMIC-III database do not have sepsis they are
most likely critically ill with another condition. The in-hospital mor-
tality is almost 15 times higher in the MIMIC-III database compared to
CROSS-TRACKS and similarly, the median length of stay, and average
laboratory measurements are both ten times higher among MIMIC-III
patients (see Table 3). In addition, the CROSS-TRACKS database con-
tains data about comorbidities from nationwide registers, which, to the
best of our knowledge, is the not the case for MIMIC-III. Despite these
differences, and not being the scope of this article, it would be very

Table 3
Comparison between the CROSS-TRACKS patient population and the MIMIC-III
patient population.

CROSS-TRACKS MIMIC-III

Distinct patients, no. 226.320 38.597
Age, median years 55.2 65.8
Gender, male, % of total admissions 47.6 55.9
Length of stays, median hours 16 165.6
Laboratory measurements, average per admission 37 380
Hospital motality, % of total admissions 0.8 11.5
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interesting to test the generalizability of sepsis prediction models be-
tween these databases in a future study. One could imagine a setup
where a model is trained on the CROSS-TRACKS database and tested it
on MIMIC-III and vice versa.

4.3.4. Case–control matching
In this study, we exclusively sampled our negative cases from simple

naive rules, such as age and contact length. This means that our data
sets potentially contain many patients that our algorithm could easily
categorize as negatives. An improved sampling technique would be to
match sepsis-positive contacts with “similar” sepsis-negative contacts in
a case control matching approach, as suggested in [7]. In that study, the
authors implemented a propensity scoring mindset that seemed to be
inspired by causal inference estimation theory.

4.3.5. Dataset construction and oversampling
In Section 2.2, we described how we oversampled the positive

samples by a factor of 10 and then sampled negatives until we reached a
ratio of 1:5. We explored many different combinations in relation to
sampling techniques and balancing. Undersampling of the negative
class worsened the test performance dramatically, indicating poor
sampling of the variation space. Class ratios greater than 1:5 combined
with weight-adjusted loss functions also reduced test performance, as
did oversampling factors greater than ten. It could make sense to try
more sophisticated sampling or data augmentation techniques to
achieve better training performance.

4.3.6. Gold standard
In this study we used the 2001 consensus definition of sepsis as our

gold standard. In our data the fulfillment of the 2001 consensus sepsis
definition is an independent EHR event, that occurs continually during
admission. This is in great contrast to other sepsis studies that needs to
estimate the sepsis onset time retrospectively. Based on this unique EHR
registration in our dataset, we chose to conduct this study with the
2001 gold standard despite the fact that the definitions of sepsis and
septic shock were revised in 2016 and the new The Third International
Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) was
formed and published by Singer et al. In the paper by Singer et al. the
2001 consensus definition of sepsis, used in this study, was criticized for
focused solely on inflammatory excess and validity of SIRS as a de-
scriptor of sepsis pathobiology was challenged. Seymor et al. also
concluded that SOFA was statistically greater than SIRS at predicting
hospital mortality among ICU encounters with suspected infection. It
would therefore be interesting to investigate in a future study how the
model, proposed in this study, performs on the same data with new
Sepsis-3 definition. [42,23]

5. Conclusion

In this multi-center retrospective study, we present a novel deep
learning system for early detection of sepsis in the heterogeneous data
set present outside ICUs. The system learns representations of the key
factors and interactions from the raw event sequence data itself,
without relying on a labor-intensive feature extraction process. Our
study indicates that sequential deep learning models can be used to
detect sepsis at a very early stage, and we find that our model out-
performs strong baseline models, such as GB-Vital, which rely on spe-
cific data elements and therefore suffer from many missing values in
our data set. We also propose a new retrospective evaluation technique
for assessing the clinical utility of the model that accounts for both
intravenous antibiotics and blood culture requisitions. The evaluation
showed that a large proportion of sepsis patients had not initiated in-
travenous antibiotics or blood culture at the time of early detection, and
thus the model could facilitate such interventions at an earlier point in
time.

The study is conducted on retrospective observational data and the

conclusions are therefore hypothesis-generating in nature. A new pro-
spective confirmatory study is needed to the test whether the expected
utility can be realized in the clinic.

Interesting directions for future work would be to add supporting
explanation methods into the predictions to improve clinical accep-
tance, to test our models on the MIMIC-III database and finally to test
the model in a prospective randomized trial.
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