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Abstract  

Background 

The benefits of early antibiotics for sepsis have recently been questioned. Evidence for this mainly 

comes from observational studies. The only randomized trial on this subject, the PHANTASi trial, did 

not find significant mortality benefits from early antibiotics. It is still plausible that subgroups of 

patients benefit from this practice, given the heterogeneous nature of sepsis. 

 

Research Question 

Do subgroups of sepsis patients experience 28-day mortality benefits from early administration of 

antibiotics in a prehospital setting? And what key traits drive these benefits? 

 

Study Design and Methods 

We used machine learning to conduct exploratory partitioning cluster analysis to identify possible 

subgroups of sepsis patients who may benefit from early antibiotics. We further tested the influence 

of several traits within these subgroups using a logistic regression model. 

 

Results 

We found a significant interaction between age and benefits of early antibiotics (p=0.03). When we 

adjusted for this interaction and several other confounders, there was a significant benefit of early 

antibiotic treatment (OR = 0.07; 95%-CI = 0.01-0.79; p = 0.03). 

Interpretation 

An interaction between age and benefits of early antibiotics for sepsis has not been reported before. 

When validated, it can have major implications for clinical practice. This new insight into benefits of 

early antibiotic treatment for younger sepsis patients may enable more effective care. 
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Sepsis is a major health problem worldwide. A recent study estimated the global incidence 

of sepsis to be nearly 50 million cases annually with 11 million sepsis-related deaths1. 

Dysregulation of the host response to infections can cause organ dysfunction and 

subsequently leads to these high mortality rates2. Sepsis is a truly heterogeneous 

syndrome3,4, caused by different pathogens at various sites (e.g. respiratory tract, urinary 

tract, or abdominal), which makes it difficult to develop general guidelines that will benefit 

all sepsis patients.  

 

Researchers have aimed to identify specific subgroups of sepsis patients in order to tailor the 

treatment. Seymour and colleagues, for example, categorized four clinical sepsis phenotypes 

with similar traits, that may also respond similarly to certain treatments5. Current sepsis 

treatment mainly includes administration of antibiotics and intravenous fluids. The 

subcategorization of sepsis patients could help use these options more effectively when 

given to the right patient at the right time.  

 

Most patients suspected of having systemic infections rapidly receive antibiotic treatment in 

the emergency department (ED). There is a long-standing belief that every hour of delay in 

administration of antibiotics leads to an increased risk of mortality, as suggested by Kumar et 

al. in 20066. Many treatment protocols for sepsis have been guided by this belief, ultimately 

resulting in an international effort called  the Surviving Sepsis Campaign (SSC) guideline 1-

hour bundle7.  

 

Jo
urn

al 
Pre-

pro
of



6 
 

Recently the benefits of early antibiotic treatment in all patients with suspected sepsis have 

been questioned8–11. Physicians are forced to sacrifice diagnostic accuracy, in order to treat 

these patients early, which contributes to overuse of antibiotics8,12,13. A Dutch study 

reported that 29% of suspected sepsis patients in the ED were unlikely to even have an 

infection12. In a recent review, we evaluated the literature on the benefits of early antibiotics 

for sepsis and concluded that the evidence for this is mainly derived from observational 

studies8. The only randomized controlled trial on this subject, called the Prehospital 

Antibiotics Against Sepsis (PHANTASi) trial, conducted by our research group, did not show 

significant benefits of early antibiotic treatment in a pre-hospital setting14.  

 

Although there is no conclusive evidence supporting the early use of antibiotics in all 

patients with suspected sepsis, it is plausible that subgroups of patients may benefit from 

early antibiotic treatment. In this study, we aim to identify subgroups of patients in the 

PHANTASi trial cohort who are likely to benefit from early antibiotic treatment and study 

their key traits using machine learning15.  
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Study Design and Methods 

Database 

The PHANTASi trial database was used for this study14. The PHANTASi trial randomized 2672 

patients with suspected sepsis to either receive antibiotic treatment in the ambulance 

(intervention) or antibiotic treatment once the patient had arrived in the ED (control). This 

resulted in a median difference in time to antibiotics of 96 minutes (IQR: 36-128) between 

the groups. The study ran between June 2014 and June 2016. Patients were included when 

they were at least 18 years of age, were suspected of having an infection, and had at least 

two Systemic Inflammatory Response Syndrome (SIRS) criteria, with a mandatory 

temperature ≥38°C or ≤36°C. The original trial was registered at ClinicalTrials.gov, number 

NCT01988428. More details on this study can be found here14,16. 

 

Vital parameters and laboratory results were recorded in the ambulance and in the ED. Any 

treatments, including an early dose of antibiotics in the ambulance in the intervention 

group, were recorded. Diagnoses were confirmed by an expert panel and sepsis severity was 

categorized according to the 2001 international sepsis criteria17, which were the gold 

standard at the time. The study was powered to detect differences in the primary outcome, 

which was 28-day mortality14. 

 

Statistical Analysis 

Statistical analyses were performed in R 3.518, and in R modules within the Alteryx software 

(Alteryx Inc, Irvine CA, USA)19, which is an extraction transformation and loading application. 

Differences between non-normally distributed and continuous variables were assessed with 
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a Mann-Whitney U test20. Differences between categorical variables were tested with a chi-

square test. Normality of the data was assessed with histograms and Q-Q plots. A two-tailed 

p-value of <0.05 was considered to be statistically significant. 

 

Machine learning algorithms were used to conduct exploratory partitioning cluster analysis 

to identify possible factors impacting the benefits of early antibiotic treatment.  This 

clustering approach involved three broad phases: exploratory data analysis, preliminary 

cluster diagnostics, and then focused cluster partitioning based on key traits. 

 

During the exploratory data analysis, unsupervised machine learning techniques (K-means, 

K-medians, and Neural Gas clustering) were performed in order to identify any relevant 

cluster patterns exhibited by combinations of traits with either known or suspected 

associations with 28-day mortality. Twenty-two exploratory analyses were performed 

involving various traits (outlined in e-Table 1: Exploratory K-Centroids Diagnostic Data 

Mining Trials). These clusters assessed various clinical factors obtained in the ambulance, ED, 

as well as deterioration between ambulance and ED (delta in particular traits such as heart 

rate, respiratory rate, etc.). We visually assessed each cluster pattern outcome to gain 

general insight and help shape the direction of subsequent, more focused, clustering 

techniques. 

 

We identified three specific focused clustering combinations, outlined in Table 1, for further 

evaluation and subsequent cluster diagnostics, based specifically on clinical factors obtained 

in the ambulance. A thorough pre-assessment K-Centroid diagnostic analysis was performed 

for these specific combinations of key traits. This involved identifying possible traits that 
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could have a strong cluster relationship, and then algorithmically evaluating the 

mathematically ideal number of clusters (k) for each combination. Cluster diagnostic results, 

including supporting Adjusted Rand (ARI) and Calinski-Harabasz (CH) indices for each 

selected k-value, are represented in Table 1. The ARI was used to help provide a measure of 

agreement, or similarity, between partitions; the CH provided a measure for separation and 

inter-cluster density. The assessment process evaluated the suitable number of clusters (k) 

by maximizing ARI and CH, when compared to k alternatives, in order to increase cluster 

performance and quality. Once the number of clusters was determined for each possible 

trait combination, the clustering assignment was attempted and associated to each patient 

record. We used K-Means clustering for each grouping and no additional unit 

standardization was applied to input fields. See Table 1 for further details. These cluster 

analyses focused primarily on better understanding previously unknown relationships within 

the data, as well as to help focus the direction of subsequent, more traditional, multivariable 

logistic regression statistical analysis. 

 

To further test associations between 28-day mortality and various traits, a multivariable 

logistic regression model was used.  The raw model was adjusted for confounders using the 

10% change-in-estimate criterion, as is one of the accepted methods of confounder 

identification21,22. Also, full models with all a priori identified theoretical confounders are 

presented23. 

 

In some cases, age was not used as a continuous variable, but as a dichotomous variable, 

The categories were created by splitting the dataset in the 50% youngest and 50% oldest 
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patients, in order to obtain equally large numbers of patients in both groups22. The age 

ranges in these groups were 18 - 75 and 76 - 100 years respectively.   
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Results  

Exploratory partitioning cluster analysis  

Clusters of similar patients were created based on various patient characteristics and with 

the use of various unsupervised machine Learning techniques. Based on the most favorable 

Rand index values, a K-means cluster algorithm based on age, heart rate in the ambulance, 

and temperature in the ambulance was selected to generate two clusters (mean ARI: 0.93; 

mean CH: 4485.1). The patterns produced using this model consistently resulted in strong 

ties associated with the age trait, seen in figure 1, with partitioning occurring around the age 

of 70. Figure 1 illustrates three different two-dimensional representations of the same 

clusters, generated based on age, heart rate, and temperature. Though these are simplified 

representations of the three-dimensional clusters, they clearly show that the age trait is the 

most important driver of the clusters. 

 

In figure 2a, patients were categorized based on designated cluster and separated by 

randomization group and 28-day mortality outcome. For simplicity, we opted to only present 

a two-dimensional representation in this figure, since further insights are mostly derived 

from the age axis. The figure identifies the control group (antibiotics administered in the ED) 

from the intervention group (antibiotics in the ambulance), and separates patients who 

survived after 28 days from those deceased. Cluster 1 (denoted: O) resulted in 1671 patients 

with a mean age of 80.6. Cluster 2 (denoted: X) produced 848 patients with a mean age of 

57.5. There were also 153 patients categorized as outliers based on inconclusive clinical 

factors and were not assigned a cluster. Additional analysis yields that younger patients seen 

in cluster 2 may exhibit a slight lowering of the overall 28-day mortality rate in the 
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intervention group (4.0%) when compared to younger patients in the control group (5.0%), 

while this is less pronounced in cluster 1 with older patients. Mortality rate percentages 

associated with each cluster are further outlined in figure 2b. 

 

Logistic regression modelling 

We created an association model to quantify the initial finding of a possible interaction 

between age and the effect of early antibiotic treatment. We used a logistic regression 

model to explain 28-day mortality in all patients who were categorized as having sepsis 

(n=2617). This number differs from the complete population (n=2672), because some 

patients had diagnoses other than sepsis in retrospect.  Baseline characteristics of the 

included patients are presented in Table 2.  

We used 28-day mortality as dependent variable and intervention with early antibiotics 

(yes/no) as the main independent variable in our model. We also added the interaction 

between intervention and age (as a continuous variable) in the raw model, since this was the 

effect modifier we aimed to study. In the raw model, the effect of the intervention on 28-

day mortality (OR = 0.13; 95%-CI = 0.02-1.10; p = 0.061) as well as the interaction term 

between age and the benefit of the intervention (OR = 1.03; 95%-CI = 1.00-1.05; p = 0.066) 

did not meet traditional measures of clinical significance. We then adjusted the model for a 

priori selected potential confounders, based on the 10% change-in-estimate criterion. This 

resulted in an adjustment based on qSOFA score and Charlson comorbidity index, after 

which other variables did not meaningfully change this adjusted model. The adjusted model 

showed a significant benefit of the intervention on 28-day mortality (OR = 0.07; 95%-CI = 

0.01-0.79; p = 0.03) as well as a significant interaction term between age and the benefit of 
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the intervention (OR = 1.03; 95%-CI = 1.00-1.06; p = 0.03). Additionally, we created a full 

model based on all a priori selected potential confounders, irrespective of their influence in 

this dataset. This approach has been proposed in the literature and provided similar results 

as the adjusted model, as can be seen in Table 3, which also shows the full list of variables 

that we had selected as possible confounders. 

 

Age as a categorical value 

In the initial model, we used age as a continuous variable. Since we cannot be sure that the 

beneficial effects of early antibiotics decrease linearly with increasing age, we also created a 

model based on age groups. The age groups were created by a split based on the median 

age. This resulted in a cut off at the age of 76. The raw model, with age as dichotomous 

variable, did not show significant benefits of the intervention (OR = 0.68; 95%-CI = 0.02-1.10; 

p = 0.126), or interaction term between age and the benefit of the intervention (OR = 1.65; 

95%-CI = 0.90-3.05; p = 0.110). We then adjusted the model for the same variables as the 

adjusted model in the previous analysis, and noticed that differences in the benefits of early 

antibiotics (OR = 0.63 95%-CI = 0.36-1.06; p = 0.082), just as the interaction term between 

age and the benefit of the intervention (OR = 1.89; 95%-CI = 0.99-3.63; p = 0.055) did not 

meet traditional measures of clinical significance. The full model, adjusted a priori with 

identified possible confounders, showed a similar benefit of early antibiotics as with age as a 

continuous variable (OR = 0.59; 95%-CI = 0.34-1.05; p = 0.063) and the interaction term 

between age and the benefit of the intervention also presented similar results (OR = 2.17; 

95%-CI = 1.11-4.30; p = 0.025). See Table 3 for further details. 
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Different cut-off values for age groups 

In the analysis which used age as a dichotomous variable, we chose to split the groups based 

on the median age. Supplementary Table 2 presents results for other cut-off values. Many 

cut-off values between 75 and 83 years of age showed significant results.  
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Discussion 

We re-evaluated the PHANTASi trial cohort to identify subgroups of patients who may 

benefit from early antibiotic treatment and the traits driving these subgroups. We found a 

significant interaction between age and intervention with early antibiotics, associating early 

antibiotic treatment with a significant decrease in 28-day mortality among younger patients. 

We showed that there is a significant interaction between age and the effect of early 

antibiotic treatment on mortality (p=0.04).  When we adjusted for this interaction, along 

with other potential confounders, there was a significant association between intervention 

with early antibiotics and 28-day mortality (OR = 0.07; 95%-CI = 0.007-0.75; p = 0.03). 

 

In context 

The three largest observational studies which evaluate the effect of time of antibiotic 

administration on mortality, have not assessed the interaction between the age of the 

patients and the benefits of early antibiotic treatment24–26. Over the past year, our research 

group has received several inquiries about the non-significant, but notably low relative risk 

of mortality in the younger patients in the original PHANTASi trial, which spiked our interest 

in finding subgroups of patients who may have benefitted from early antibiotics. We opted 

to start this study by performing exploratory partitioning cluster analysis, rather than 

focusing specifically on age, since this allowed us to provide a broader view of potential 

patient factors that could be associated with benefits of early antibiotics treatment. 

However, we soon found that age seemed to be the most important driver of clusters and 

that we needed to focus on this trait. 
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Residual confounding 

We tested the robustness of our results by using age as a continuous as well as a 

dichotomous variable, as well as using empirical and theoretical criteria to select the 

confounders we adjusted for. We thereby hoped to have limited residual confounding which 

is inherent to secondary analyses. Since this study is based on secondary analyses, p-values 

are difficult to interpret. The original study was not designed to detect this interaction, 

which makes it hard to find statistically significant results. We therefore focused on 

evaluating whether our findings remained similar when we examined different subgroups or 

adjusted the model for different potential confounders, while still providing p-values and 

confidence intervals for clarity. 

 

We showed that the interaction between age and the intervention with early antibiotics was 

independent of the cut-off value we used for the age groups. In supplementary Table 2, we 

report p-values for the interaction between age and intervention for cut-off levels between 

the age of 70 and 85, which are significant at multiple thresholds. The absence of significant 

results at the lower and higher ends of that range is likely a reflection of the low numbers of 

patients and events in one of the two groups in those situations. This can also explain why 

the relative risk in the original publication of the PHANTASi trial did not reach statistical 

significance. The cut-off in the original publication was 65, which is a commonly accepted 

cut-off to define younger and older patients, but created a younger group (n=600) that was 

considerably smaller than the elderly group (n=2017). 
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Clinical value 

The interaction between age and benefits of early antibiotic treatment, which is associated 

with significant improvements in 28-day mortality in younger sepsis patients, can be 

clinically relevant. Knowing in which subcategory of patients benefits of early antibiotic 

treatment can be expected, will enable effective and optimized care.  

 

Our results suggest that we should immediately consider antibiotic treatment in younger 

patients, while early treatment does not seem to have much beneficial effects in older sepsis 

patients. We do not propose a specific age cut-off for the benefits of early antibiotics, but we 

do believe that additional time to do a proper work-up may be taken with elderly sepsis 

patients, to confirm the diagnosis before initiating antibiotic treatment. This is especially 

helpful since diagnosing sepsis in the elderly is often more challenging due to non-specific 

presentations27. Recent research indicates that early administration of antibiotics is 

associated with higher mortality when given to patients with greater diagnostic 

uncertainty28. Arguably, the diagnostic uncertainty may be higher in elderly patients, given 

the non-specific presentations. This provides an additional argument for withholding 

antibiotic treatment until the diagnosis is clearer.  

 

We should note that our study only included patients with symptoms of sepsis. It may well 

be that early administration of antibiotics for elderly sepsis patients in practice is even less 

desirable, since this practice may even harm the patients with less specific presentations. 

Furthermore, there was only a small decrease in time to antibiotics (96 minutes) by 

intervening with antibiotics in the ambulance in this trial. In many settings, administration of 
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antibiotics in the ambulance will result in larger decreases in time to antibiotics, which is 

possibly associated with an even stronger mortality benefit. 

 

Strengths 

We examined an interaction which to our knowledge has never been reported before. The 

interaction between age and benefits of early antibiotic treatment may explain part of the 

variance in benefits of early antibiotic treatment which is observed throughout the literature 

on this subject3,29. Furthermore, we used data from the single randomized trial on this 

subject, which lowers the chance of residual. Lastly, we could evaluate the effect of potential 

confounders such as antibiotic sensitivities, while most studies on this subject lack this 

important data to evaluate adequacy of antibiotic treatments30. 

 

Limitations 

We recognize the limitations of performing secondary analyses. Subgroup effects can be 

misleading and can be explained by chance31. To minimize the risk that we found these 

results by chance, we performed several different analyses to see whether our results were 

robust. A second limitation is that we were not able to validate our findings in a similar 

cohort, since the PHANTASi trial was the only randomized trial on this subject and was 

conducted in a very specific setting. Validation of our findings in existing large observational 

cohorts could provide additional strength to our findings. However, such cohorts carry high 

risk of residual confounding and will not be able to undeniably validate or disprove our 

findings. A definite answer to whether young patients benefit from early antibiotics can only 

be given by another randomized study such as the PHANTASi trial.   
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Interpretation 

In conclusion, we have re-examined the effects of early antibiotic treatment for sepsis, 

finding a significant interaction between age and mortality benefits of this practice. Young 

sepsis patients seem to experience a significant mortality benefit from early antibiotic 

treatment in the ambulance, which reduces as age increases. This interaction has not been 

reported before. Validation studies in other cohorts are needed to confirm our findings, 

which could lead to a shift in the way we think about the pathophysiology of sepsis and the 

most optimal treatment strategies.  
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Take Home Point: 

Study question 
Are there specific subgroups of sepsis patients who are more likely to benefit from early antibiotic 
treatment? 
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Results 
We found a significant interaction between age and benefits of early antibiotics, associating early 
treatment with a significant decrease in 28-day mortality among younger sepsis patients. 
  
Interpretation 
Our results suggest that we should immediately consider antibiotic treatment in younger patients, 
while early treatment does not seem to have much beneficial effects in older sepsis patients. 
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Table 1. K-Centroids Cluster Diagnostics 

K-

Centroids 

Method 

 

Min/Max 

Cluster 

Parameter 

Number of 

Traits 

Evaluated 

Traits 

Assessed 

Number of 

Clusters (k) 

for 

Partitioning 

Diagnostic 

Results 

Cluster 

Cluster 

Results 

Adjusted 

Rand 

(Mean) 

Calinski-

Harabasz 

(Mean) 

Size 
Average 

Distance 

Max 

Distance 
Separation 

K-means 2/8 6 

Heart Rate (Ambulance); 

Systolic BP 

(Ambulance); Diastolic 
BP (Ambulance); 

Respiratory Rate 

(Ambulance); 
Temperature 

(Ambulance); Blood 

Oxygen Saturation 
(Ambulance) 

3 0.61 342.11 

1 1290 99.28 2691.1 34.4 

2 54 135.46 2694.8 982.3 

3 1175 53.94 1016 33.3 

K-means 2/8 2 

Heart Rate (Ambulance); 

Temperature 
(Ambulance) 

5 0.80 5266.8 

1 734 5.92 13.5 8.87 

2 865 3.34 8.02 7.66 

3 182 6.88 31.27 11.33 

4 130 10.31 58.13 14.49 

5 608 4.2 10.84 8.12 

K-means 2/8 3 

Age; Heart Rate 

(Ambulance); 

Temperature 
(Ambulance) 

2 0.93 4485.1 

1 1671 5.29 19.34 12.43 

2 848 8.59 39.58 11.66 
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Table 2. Baseline characteristics of the complete sepsis population. 

 Control 
(N=1113) 

Intervention 
(N=1504) 

Total (N=2617) p 
value 

Age, years    0.509 

   Median (IQR) 75.0 (65.0, 
83.0) 

76.0 (66.0, 83.0) 76.0 (65.0, 
83.0) 

 

Sex    0.763 

   Male 638 (57%) 871 (58%) 1509 (58%)  

   Female 475 (43%) 633 (42%) 1108 (42%)  

Youngest or oldest half of the patients    0.536 

   Under 76 years 559 (50%) 737 (49%) 1296 (50%)  

   76 years or above 554 (50%) 767 (51%) 1321 (50%)  

Sepsis severity    0.341 

   Non-severe Sepsis 424 (38%) 576 (38%) 1000 (38%)  

   Severe Sepsis 653 (59%) 863 (57%) 1516 (58%)  

   Septic shock 36 (3%) 65 (4%) 101 (4%)  

Charslon Comorbidity Index    0.988 

   Median (IQR) 1.0 (1.0, 3.0) 1.0 (0.0, 3.0) 1.0 (1.0, 3.0)  

Do not resuscitate order    0.307 

   No 666 (61%) 862 (59%) 1528 (60%)  

   Yes 425 (39%) 598 (41%) 1023 (40%)  

quick Sequential Organ Failure Assessment Score 
(qSOFA) 

   0.003 

   2 or more 176 (17%) 310 (22%) 486 (20%)  

   Smaller than 2 855 (83%) 1109 (78%) 1964 (80%)  

Use of immunosuppressiva medication    0.799 

   No 960 (86%) 1292 (86%) 2252 (86%)  

   Yes 153 (14%) 212 (14%) 365 (14%)  

Patient already on oral antibiotics before randomisation    0.241 

   No 864 (79%) 1189 (81%) 2053 (80%)  

   Yes 224 (21%) 274 (19%) 498 (20%)  

Pathogen resistant to ceftriaxone    0.015 

   Sensitive 1106 (100%) 1483 (99%) 2589 (100%)  

   Resistant 0 (0%) 8 (1%) 8 (0%)  

Blood culture results from ambulance/emergency 
department 

   < 
0.001 

   Negative 829 (75%) 1239 (83%) 2068 (80%)  

   Positive 277 (25%) 252 (17%) 529 (20%)  

28-day mortality    0.753 

   Survived 1021 (92%) 1386 (92%) 2407 (92%)  

   Died 91 (8%) 118 (8%) 209 (8%)  
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 Table 3. Associations of various traits with 28-day mortality through logistic regression modelling  

Characteristics Age continuous Age dichotomous 

 Raw model Adjusted model Full model Raw Adjusted model Full Model 

 OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P 

Intervention (Y) 0.13 (0.02-1.10) 0.061 0.07 (0.01-0.79) 0.031 0.07 (0.01-0.80) 0.031 0.68 (0.02-1.10) 0.126 0.63 (0.36-1.06) 0.082 0.59 (0.34-1.03) 0.063 

Age 1.03 (1.01-1.05) 0.001 1.03 (1.01-1.05) 0.008 1.00 (0.99-1.03) 0.583 1.77 (1.14-2.77) 0.012 1.60 (1.00-2.59) 0.053 0.90 (0.54-1.51) 0.679 

Age * intervention  1.03 (1.00-1.05) 0.066 1.03 (1.00-1.06) 0.033 1.03 (1.00-1.07) 0.030 1.65 (0.90-3.05) 0.110 1.89 (0.99-3.63) 0.055 2.17 (1.11-4.30) 0.025 

Sex (F)     0.91 (0.66-1.24) 0.543     0.92 (0.67-1.26) 0.613 

Charlson comorbidity 
index (per point increase) 

  1.17 (1.09-1.25) 0.001 1.12 (1.04-1.20) 0.002   1.18 (1.10-1.26) <0.001 1.12 (1.04-1.20) 0.003 

qSOFA (lower than 2)   0.46 (0.33-0.63) 0.001 0.56 (0.40-0.78) <0.001   0.45 (0.33-0.62) <0.001 0.55 (0.39-0.77) <0.001 

Do not resuscitate order 
(Y) 

    3.75 (2.58-5.55) <0.001     4.17 (2.88-6.14) <0.001 

Antibiotics prior to 
hospital visit (Y) 

    1.34 (0.93-1.91) 0.111     1.32 (0.91-1.88) 0.132 

Immunosuppressive 
comedication (Y) 

    1.48 (1.00-2.16) 0.046     1.46 (0.98-2.13) 0.056 

Positive blood culture (Y)     1.37 (0.95-1.96) 0.088     1.38 (0.95-1.97) 0.084 

Ceftriaxone resistant 
pathogen (Y) 

    2.83 (0.38-14.00) 0.235     2.55 (0.33-13.35) 0.230 Jo
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Figure 1. Three two-dimensional visualizations of the same clusters with k-means clustering based on age, 

heart rate and temperature.  
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Figure 2a. Visualization of clusters with k-means clustering based on age and heart rate (with 

temperature as the third clustering variable) segmented by intervention status and mortality outcome.  

2b –. Mortality rate summary percentages with k-means clustering based on age, heart rate and 

temperature segmented by intervention status.  
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