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ABSTRACT
Recurrent Neural Networks (RNNs) are often used for sequential
modeling of adverse outcomes in electronic health records (EHRs)
due to their ability to encode past clinical states. These deep, recur-
rent architectures have displayed increased performance compared
to other modeling approaches in a number of tasks, fueling the in-
terest in deploying deep models in clinical settings. One of the key
elements in ensuring safe model deployment and building user trust
is model explainability. Testing with Concept Activation Vectors
(TCAV) has recently been introduced as a way of providing human-
understandable explanations by comparing high-level concepts to
the network’s gradients. While the technique has shown promising
results in real-world imaging applications, it has not been applied
to structured temporal inputs. To enable an application of TCAV to
sequential predictions in the EHR, we propose an extension of the
method to time series data. We evaluate the proposed approach on
an open EHR benchmark from the intensive care unit, as well as
synthetic data where we are able to better isolate individual effects.
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1 INTRODUCTION
Wider availability of Electronic Health Records (EHR) has led to
an increase in machine learning applications for clinical diagnosis
and prognosis [e.g., 1, 2]. Larger de-identified datasets and public
benchmarks have fueled the application of increasingly complex
techniques such as recurrent neural networks (RNNs) to predict
adverse clinical events [e.g., 6, 16, 23, 29, 31]. RNNs can operate over
a sequence of health information, iteratively combining input data
with internal memory states to generate new states, making them
suitable for continuous clinical predictions. While these memory-
storing networks allow for accurate and dynamic predictions, it is
often difficult to examine the mechanism by which clinical infor-
mation is being translated into outputs. In healthcare, as in other
fields in which trust is paramount, it is not sufficient to show state
of the art discriminative performance; clinicians have also deemed
it critical that models provide local and global explanations for their
behavior [30].

Multiple approaches have been proposed to provide explana-
tions for machine learning models applied to EHR data [see 19,
for a review], with a focus on attention-based methods when the
architecture relies on RNNs [e.g., 3, 22, 23]. Typically, those in-
terpretability techniques ranks the input features based on their
attention scores. However, single feature rankings might not high-
light clinical states that encompass multiple input features (e.g.
“infection”) in an intuitive manner. To address this issue of human
understandability, Panigutti et al. [18] use an ontology of diagnoses
to provide insights across single features. This approach, however,
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relies on diagnoses which are typically recorded at the end of an
admission and is therefore not suitable to identify temporal changes
across features that reflect a clinical concept, nor is it able to provide
continuous predictions.

On the other hand, human-understandable explanations have
been successfully developed for computer vision applications: Test-
ing with Concept Activation Vectors [TCAV, 15] relies on human-
understandable “concepts” to derive model explanations. Practition-
ers or end users can select examples from the data that embody
intuitive concepts (e.g. “pointy ears” or “stripes”), and these exam-
ples are then used to map concepts to the model’s activation space
in the form of concept activation vectors (CAVs). CAVs can then be
used to provide global explanations, as well as assess the presence
or absence of a concept in local examples.

In this work, we define “clinical concepts” from temporal EHR
input features to improve the human-understandability of post-
hoc explanations of continuous clinical predictions. Our approach
leverages TCAV [15] and can be applied to previously trained mod-
els without restrictions on model inputs or RNN architecture. Our
contributions are as follows:

• We extend the TCAV approach to the time series setting by
defining metrics assessing (1) whether the model encodes
the concept, (2) whether the concept is “present” in examples,
and (3) whether a concept influences the model’s predictions.

• Wedesign a synthetic time series dataset to evaluate (concept-
based) attribution methods and demonstrate that the pro-
posed technique is faithful.

• We propose a framework to define human-understandable
concepts in EHR and illustrate it using the de-identified
MIMIC-III benchmark dataset [12].

2 METHODS
Notation: We consider a set of multivariate time series X :=(

𝑥𝑖,𝑡,𝑑
)
𝑖≤𝑁,𝑡 ≤𝑇𝑖 ,𝑑≤𝐷 , where 𝑥𝑖,𝑡,𝑑 ∈ R, 𝑁 is the number of time

series (i.e. patients), 𝐷 is the number of features per time step and
𝑇𝑖 the number of time steps for patient 𝑖 . We define x𝑑 as the time
series for feature 𝑑 ∈ {1, . . . , 𝐷} for a single example. The label
y ∈ {0, 1}𝑁×𝑇 exists for all examples and all time steps. We train a
recurrent neural network 𝐹 : X → [0, 1]𝑇 with 𝐿 layers. For a given
layer 1 ≤ 𝑙 ≤ 𝐿 and time step 1 ≤ 𝑡 ≤ 𝑇 , we can write the predicted
output of 𝐹 as 𝐹𝑡 ( ®𝑥) := ℎ(𝑓𝑙 ( ®𝑥1:𝑡 )) where 𝑓𝑙 ( ®𝑥1:𝑡 ) is the activation
vector at the 𝑙-th layer after 𝑡 time steps, further referred to as ®𝑎𝑡,𝑙
and ℎ represents the operations in layers 𝑙 . . . 𝐿. Please note that
we consider binary classification settings, but the approach extends
to multi-class predictions.

2.1 Concept-based explanations over time
In this section, we extend TCAV [15] to account for the temporal
dimension. TCAV relies on two main steps: (1) Building a concept
activation vector (CAV) for each concept, and (2) assessing how the
concept influences the model’s decision.

Building a CAV:. To build a CAV, Kim et al. [15] sample positive
and negative examples for a concept, record their activations ®𝑎𝑙 at
each layer 𝑙 of the network and build a linear classifier (e.g. logistic
regression) distinguishing between activations related to positive

and negative samples. To extend this approach to timeseries, we
identify a ‘time window of interest’ [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ] that reflects a tra-
jectory corresponding to a concept, i.e. during which some features
or feature changes are present. We define a ‘control’ group as a set
of trajectories in which the concept does not manifest. We then
collect the model’s activations from 𝑡 = 𝑡𝑠𝑡𝑎𝑟𝑡 to the end of the
window 𝑡𝑒𝑛𝑑 for both groups, and training data for CAV learning is
defined based on three different strategies:

• CAV𝑡𝑒𝑛𝑑 : we record the model’s activations in each layer at
𝑡𝑒𝑛𝑑 . This reflects the assumption that the trajectory can be
represented by its end point.

• CAV𝑡𝑠𝑡𝑎𝑟𝑡 :𝑡𝑒𝑛𝑑 : we record the model’s activations at each time
step between 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 , using them as samples in the
linear classifier. This approach hypothesizes that each time
step in the trajectory represents a key component of the
concept pattern.

• CAV𝑡𝑒𝑛𝑑−𝑡𝑠𝑡𝑎𝑟𝑡 : we record the model’s activations at 𝑡𝑠𝑡𝑎𝑟𝑡
and at 𝑡𝑒𝑛𝑑 and use their difference to train the CAV. In this
case, we assume that changes in activations represent the
concept of interest.

A concept is considered as “encoded” in the model if the linear
model performs significantly above chance level. We assess the lin-
ear classifier’s performance using a bootstrap resampling scheme
(k=100, stratified where relevant) and perform random permuta-
tions (1,000 permutations, 10 per bootstrap resampling) of the labels
to obtain a null distribution of balanced accuracy and area under the
receiver-operating curve (AUROC). We assess a CAV as significant
if all metrics are higher than the estimated null distributions with
𝑝 < 0.05. We then estimate the generalizability of the classifier
across time steps by performing the classification at all time points
(𝑡 = 1, . . . ,𝑇 ), where we give a label of 1 (resp. 0) at time points
where the concept is present (resp. absent), when that information
is known (i.e. synthetic data), and a label of 1 (resp. 0) for all time
points of concept (resp. control) time series if not known (i.e. clinical
application). This measure of performance beyond the [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑 ]
window allows to understand whether concepts are represented
similarly across all time points in the sequence, or whether the
signal is specific to the window selected.

Presence of the concept in a sample: The original TCAV work
[15] computes the cosine similarity between the activations ®𝑎𝑙 of a
sample and the obtained CAV at each layer to estimate how similar
an image is to a concept. This similarity measure can be thought
of as estimating whether a concept is manifesting or “present” in
the sample. In time series, it can be computed at each time point
independently to obtain a (local) trajectory of concept presence per
layer:

tCA𝐶 ( ®𝑥𝑡 ) =
®𝑎𝑇𝑡

| | ®𝑎𝑡 | |2
®𝑣𝐶

Where ®𝑣𝐶 corresponds to the unit norm CAV of concept 𝐶 . This
formulation can be extended to estimate whether the activations
change over time in the direction of the concept by replacing ®𝑎𝑡 by
[®𝑎𝑡 − ®𝑎𝑡−𝑑𝑡 ] (following the assumption of local linearity in [15]),
where𝑑𝑡 represents a constant lag in a time shifting window. This is
relevant to investigate concepts that would vary across time, e.g. by
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becoming more severe, and this the formulation used throughout
this work.

Influence of the concept on the model’s prediction: Kim et al. [15]
define the Conceptual Sensitivity (CS), to estimate how the model’s
gradients align with the CAV. This quantity, when aggregated over
samples, represents a global explanation. Mathematically, CS can
be computed as the directional derivative:

CS𝐶,𝑙,𝑡 (𝐹, ®𝑥𝑡 ) :=
𝜕ℎ(𝑓𝑙 ( ®𝑥𝑡 ))

𝜕 ®𝑣𝐶
= ∇ℎ(𝑓𝑙 ( ®𝑥𝑡 ))𝑇 ®𝑣𝐶

Which amounts to computing the cosine similarity between the
direction of the CAV and the model’s gradients. In the present case,
CS is computed at every time step of the local trajectory by taking
the gradients of the models w.r.t. the sigmoid of the logits. The
obtained scores can be aggregated over time and/or over samples
to obtain global concept attributions.

We believe that 𝑡𝐶𝐴 and CS can be seen as providing comple-
mentary information for global explanations, i.e. how is the pres-
ence/absence of the concept varying across time, and is the model
influenced by the concept to make its decisions? Indeed, a concept
being “present” does not guarantee that the model relies on it for
prediction. On the other hand, a CS score of 0 means that affecting
how present the concept is has (locally) no influence on the model
output, but CS cannot reflect on whether the concept is present or
absent.

2.2 Synthetic timeseries
Inspired by [8], we evaluate the proposed approach on a synthetic
dataset designed to isolate individual effects.

Dataset design: In our setup, a concept 𝐶 , akin to a latent vari-
able, can manifest through a causal relationship with a time series’
features and label (see Figure 1). For simplicity, we consider a bi-
nary behavior for 𝐶 : a concept either manifests and is “present” in
a sample after a selected temporal “change point”, or it is “absent”.
When present, each feature has a predefined likelihood 𝑝 (𝑑 = 1|𝐶 =

1) = 𝑝 (𝑑 = 0|𝐶 = 0) of exhibiting the concept’s pattern, which
can be any detectable change in behavior. If that likelihood is set
to zero for a feature, the concept will not influence the feature’s
behavior. Similarly, the concept influences the label𝑦 after the same
change point with likelihood 𝑝 (𝑦 = 1|𝐶 = 1) = 𝑝 (𝑦 = 0|𝐶 = 0).
These parameters are set at the dataset level (see Supplement for
the sampling algorithm).

In this work, we define two concepts, 𝐶1 and 𝐶2, and two cor-
responding labels, 𝑦1 and 𝑦2, influenced by 𝐶1 and 𝐶2 respectively
with 𝑝 (𝑦 |𝐶) = 1. We generate 10 numerical features with Gaussian
background noise, and link 𝐶1 and 𝐶2 to non-overlapping sets of 5
features each. The pattern for all concept-activated features is the
emergence of a sinusoid with fixed frequency and amplitude added
to the Gaussian noise. The simplicity of this setup ensures that the
ground truth is well understood.

We note that our code supports more complex settings, e.g. over-
lapping concept-feature space or multi-concept label contingency
tables (see Supplement). In addition, feature/concept behaviors can

Figure 1: Illustration of the causal graph and sampling of time series
for the synthetic dataset. A concept 𝐶 affects a subset of features
𝑖 ∈ 1, 3, 5 and a label ®𝑦 after the ‘change point’.

be made more realistic (e.g. by including binary variables). There-
fore, this dataset is suitable for assessing attributions at both the
feature and concept level, and could be used in other scenarios.

Model Training: Themodel consists of a 3-layer stacked LSTM [10]
RNN, with 64 hidden units contained in each layer. These layers
are followed by a fully connected layer. The model is trained using
cross entropy loss with the Adam optimizer (fixed learning rate of
3e-4) and batch size of 32, over 10000 randomly sampled batches.
We report the model performance across all time steps and exam-
ples based on accuracy, AUROC and area under the precision-recall
curve (AUPRC).

Concept definition: We use𝐶1 and𝐶2 as our concepts. We assign
𝑡𝑠𝑡𝑎𝑟𝑡 as the change point and define the ‘time of interest’ 𝑡𝑒𝑛𝑑 as
25 samples (arbitrary choice) after the change point, to ensure the
concept is either present (concept group) or absent (control group).
We randomly select 100 samples from the validation set to build a
CAV for each concept (i.e. 𝐶1 and 𝐶2) and layer 𝑙 . To ensure that
the model is able to identify the concepts, we filter for a minimum
model accuracy of 0.8 on a per-sequence basis (arbitrary threshold).
The performance of each CAV is assessed on the held-out time steps
during the bootstrap procedure, as well as on 500 other time series
of the validation set (all time steps).

2.3 Illustration on clinical predictions
Data: We use the de-identified critical care EHR data from the

Medical Information Mart for Intensive Care (MIMIC-III) [7, 11, 12]
to investigate a real-world application of our technique. After filter-
ing out patients under the age of 18, theMIMIC-III dataset contained
47,296 patients, which were randomised across training (80%), vali-
dation (10%), and test (10%) sets. Each patient’s medical history is
converted to a time series of one-hour aggregates including different
structured data elements (medication, labs, vitals, . . . ) represented
by numerical and binary variables [29, see Supplement for details].
Importantly, our data representation is sparse at each time step, and
includes 32,170 continuous variables and 38,600 binary variables,
for a total of 70,770 features.

Model: We focus on the predictions 48 hours in advance of an
Acute Kidney Injury (AKI) event of stage 1 or more [max stage
3, as per the Kidney Disease Improving Global Outcomes clas-
sification, KDIGO, 14]. We use the same model architecture as
described in [29] which consists in a 3-layer stacked RNN with
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residual connections and add dropout probability of 0.4 to the out-
put connections of each LSTM cell. The model’s hyper-parameters
were defined based on a grid search on the validation set. The
model’s performance is then assessed on the test set using AUPRC
given the low prevalence of AKI in the dataset. For comparison
with the literature, we also report AUROC.

Concept definition: Based on clinical input, we define illustrative
concepts by relying on rule-filtering of specific clinical events from
patients included in the validation set. These events then serve to
determine 𝑡𝑠𝑡𝑎𝑟𝑡 and 𝑡𝑒𝑛𝑑 for the different CAV building strategies.
We define multiple concepts:

• ‘AKI’, that is directly related to the outcome labels for sanity
check.

• ‘Nephrotoxicity’, a known risk factor for kidney injury.
• ‘Antibiotics’. This concept aims at identifying bacterial infec-
tions, a proxy for sepsis, which is another known risk factor
for kidney injury.

• ‘Sex’.

The AKI concept group is defined as follows: admissions where
the patient is recorded to have normal renal function [i.e. no AKI,
based on the serum creatinine and the KDIGO criteria 14], and later
in the admission renal function degrades to an AKI stage 2 (𝑡𝑒𝑛𝑑 ).
The control group for the AKI concept is defined as: admissions
where no AKI is recorded, with at least one normal creatinine mea-
surement. In this case, a random one-hour bucket is selected as
representing the end point of the trajectory, i.e. 𝑡𝑒𝑛𝑑 . The AKI con-
cept is purposefully circular to assess how the proposed approach
scales to real-world problems.

To define the nephrotoxicity concept, we select admissionswhere
the patient has normal renal function, then receives a particular
type of nephrotoxic agent, which is followed by an AKI stage 1, 2 or
3. Please note that we do not select admissions where the nephro-
toxic agent caused the AKI, as we do not have that information.
We selected one class of nephrotoxic drugs, non-steroidal anti-
inflammatory drugs (NSAIDs). The control group for this concept
included admissions where the patient had normal renal function
followed by an AKI (stage 1, 2 or 3), without receiving an NSAID
medication before the adverse event1. This ‘relative’ concept [15]
investigates whether the model encodes the differential effect of
NSAIDs on AKI, compared to all other factors correlating with or
causing AKI.

We identified 18 antimicrobial agents (see Supplement) and de-
fined an ‘antibiotics’ concept to act as a proxy for detecting sepsis.
The selection of admissions for CAV building is similar to that of
the nephrotoxicity concept.

The ‘sex’ concept investigates whether self-reported sex affects
the model’s predictions, as the authors of [29] reported lower per-
formance of the model on women compared to men. To this end,
we build a CAV distinguishing between admissions of females and
males leading to an AKI episode. We consider time windows span-
ning 12 hours before the AKI event, 24 hours before the AKI event

1Please note that we control for the endpoint of the trajectory 𝑡𝑒𝑛𝑑 to correspond to
an AKI event. One could however control for the proportion of AKI samples across
both groups. On the other hand, not controlling for the endpoint might introduce a
confounding factor if patients receiving NSAIDs have a higher prevalence of AKI.

or the beginning of the admission to the AKI event. Importantly,
sex is not included as a feature in the model training.

To avoid potential confounding factors in the CAV, we use the
same number of patients in the concept and control groups and
choose patients to match on selected data statistics between groups.
The features we match on are age, gender, duration of hospital
admission, time between admission and AKI (or time between ad-
mission and selected 𝑡𝑒𝑛𝑑 for controls without AKI events), and
inpatient mortality. For each of the patients in the concept and
control groups we calculate the vector of features that we wish to
match on, standardising based on the training dataset mean and
standard deviation. From the pool of candidate examples for the
control group, we then select those that minimise the total L1 dis-
tance between feature vectors in the control and concept group.
The distance minimisation problem is solved using the Munkres
algorithm [17]. We then select similar numbers of time steps within
each patient (arbitrarily selected as 10), based on different sampling
strategies: random sampling across the 𝑡𝑠𝑡𝑎𝑟𝑡 : 𝑡𝑒𝑛𝑑 window, sam-
pling at equal intervals with the interval being computed based
on the number of time steps for a patient 𝑇𝑖 , and sampling among
the true positive predictions. We report results for sampling across
equal intervals, and did not identify a significant effect of the sam-
pling strategy on the results.

We build CAVs for each concept based on selected concept and
control groups from the training set. We then compute 𝑡𝐶𝐴 and CS
on patients from similarly selected groups from the test set.

Comparison with feature-based attributions: We present the re-
sults of occlusion [33] and gradient [25] analyses, computed for
features that are ‘present’ in a time step. These attribution scores
are estimated at each time step independently, as in [29, see Sup-
plement for details]. The aim of these analyses is to highlight the
differences between feature-based and concept-based techniques.
We however believe that both can potentially be useful, and do not
intend to recommend one over the other.

3 RESULTS
3.1 Synthetic dataset

Data and model: We generate 10,000 time series of 100 time
points each to predict 𝑦1 and 𝑦2. After training, the model reaches
95.34% accuracy, 0.8511 AUPRC and 0.9274 AUROC on a test set of
1,000 time series.

3.1.1 Building the CAV. The different strategies lead to significant
CAVs for both𝐶1 and𝐶2 as assessed on held-out test sets, although
CAV𝑡𝑒𝑛𝑑−𝑡𝑠𝑡𝑎𝑟𝑡 has relatively lower performance (see Figure 2a for
𝐶1 and Supplement). All CAVs generalize to time points outside
of the [𝑡𝑠𝑡𝑎𝑟𝑡 : 𝑡𝑒𝑛𝑑 ] time window used for building, on further
validation time series (Figure 2b). We however note that this result
might be driven by the simplicity of our synthetic dataset and the
high performance of the RNN model. For compactness, further
results focus on the CAV𝑡𝑠𝑡𝑎𝑟𝑡 :𝑡𝑒𝑛𝑑 strategy. All strategies however
lead to similar results in terms of CS and 𝑡𝐶𝐴 scores.

3.1.2 Presence of the concept over time. 𝑡𝐶𝐴 is estimated at each
time step, using a lag of 25 time steps (arbitrary choice) for both
concepts. Figure 2c displays the average across aligned time series.
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a b

c d

Figure 2: Synthetic data results. Accuracy of the𝐶1 CAV in bootstrap (a) and test (b) evaluations for CAV𝑡𝑒𝑛𝑑
, CAV𝑡𝑠𝑡𝑎𝑟𝑡 :𝑡𝑒𝑛𝑑 and CAV𝑡𝑒𝑛𝑑−𝑡𝑠𝑡𝑎𝑟𝑡 ,

in %. c 𝑡𝐶𝐴 scores (layer 2) averaged across time series, and bootstraps (mean±std) when a concept (𝐶1 green,𝐶2 purple) is absent (light shade,
dotted line) or present (dark shade). All timeseries are aligned to have their changepoint at 𝑡 = 50. d CS scores for target 𝑦1 (left) and 𝑦2 (right).

We observe that 𝑡𝐶𝐴 has a negative score when the concept is
absent, and then sharply transitions to positive scores when the
concept becomes present (𝑡 = 50).

3.1.3 Influence of the CAV. We compute CS at each time point and
display global trajectories of the obtained scores in Figure 2d. The
results display the expected behavior: for target 𝑦2, only concept𝐶2
has CS scores that are not tightly distributed around zero at all time
points. In addition, CS scores are low before the change point (here
aligned across all time series as 𝑡 = 50), reflecting the “absence” of
𝐶1, while they become positive at the change point, when the label
and concept manifest. These results are replicated for target 𝑦1 and
𝐶1 (see Supplement).

3.2 MIMIC dataset
3.2.1 Data and model. Our model predicts AKI of any severity
within the next 48 hourswith aAUPRC of 0.491 andAUROCof 0.798.
It is difficult to make direct comparisons with the literature as, to
our knowledge, comparable continuous AKI predictions on MIMIC
have not been reported on to date. However, there are a number
of similar studies on different EHR datasets: Simonov et al. [24]
report an AUROC of 0.74 for AKI within 24 hours using a discrete
time logistic regression triggered after every new measurement;
while Kate et al. [13] report up to 0.724 with a similar setup. Flechet
et al. [5] predict AKI within the next 7 days in an ICU population
with AUROC ranging from 0.80-0.95 depending on the window of
input data.

3.2.2 AKI concept.

Building the CAV:. The AKI concept was built using 161 in-
patient episodes selected from the validation set. We tested different
building strategies, namely CAV𝑡𝑒𝑛𝑑 with 𝑡𝑒𝑛𝑑 being the time of AKI,
CAV𝑡𝑠𝑡𝑎𝑟𝑡 :𝑡𝑒𝑛𝑑 using time steps included in the 12 or 24 hours before
AKI and CAV𝑡𝑒𝑛𝑑−𝑡𝑠𝑡𝑎𝑟𝑡 by subtracting the activation at time of ad-
mission from that of the time of AKI. The obtained linear classifier
was then evaluated on examples selected from the test set, on the
same points as used for training (i.e. 𝑡𝑒𝑛𝑑 , last 12 hours, ...) as well
as on all other time points. We observe high training accuracy for
all models, as evaluated per the bootstrap scheme (Figure 3a (left),
Supplement). When evaluating on the test examples, we observe
high accuracy on the equivalent time steps as used for training.
This accuracy decreases for the concept group when evaluating on
test time series (all time steps), with CAV𝑡𝑒𝑛𝑑 and CAV𝑡𝑒𝑛𝑑−𝑡𝑠𝑡𝑎𝑟𝑡
seemingly overfitting to the training time steps (Figure 3a (right)).
This result suggests that time steps outside of the selected window
might not reflect the same signals as time steps within the selected
window.

Presence of the concept over time: We select the model with best
generalization across time steps to compute the alignment, i.e. using
the last 24 hours before AKI and compute 𝑡𝐶𝐴 with a lag 𝑑𝑡 of 24
hours. We present the results using the test examples at time 48
hours before 𝑡𝑒𝑛𝑑 (our prediction horizon, 𝑡0 on Figure 3b (left)) and
at time 𝑡𝑒𝑛𝑑 (corresponding to time of AKI stage 2 for the concept
group and a random no AKI event for the control group, 𝑡1).

As previously observed on the synthetic data, using the difference
in activations on a 24 hour sliding window leads to higher 𝑡𝐶𝐴
scores when the concept is present compared to when it is absent,
with an increase from 𝑡𝑠𝑡𝑎𝑟𝑡 to 𝑡𝑒𝑛𝑑 . We plot the time series of

40



ACM CHIL ’21, April 8–10, 2021, Virtual Event, USA Mincu et al.

Figure 3: MIMIC results, AKI concept. a CAV linear model performance on held-out samples (left) and on test samples for concept (top)
and control (bottom) samples. Each bar represents a CAV building strategy. b 𝑡𝐶𝐴 global scores, averaged across patients (mean±std) for the
concept (purple) and control (green) groups 48 hours before AKI (𝑡0) and at time of AKI stage 2 (𝑡1). c 𝐶𝑆 scores. d Single patient timeseries,
displaying the label (AKI 1+ within 48h) andmodel’s output, as well as 𝑡𝐶𝐴 for each layer, and its null hypothesis (shaded). The yellow shaded
area represents the prediction horizon of the model, i.e. within 48 hours of AKI 2.

concept alignment for an example patient in Figure 3d for each layer
of the model, along with the distribution of 𝑡𝐶𝐴 scores when using
permuted CAV vectors (i.e. built from randomized concept/control
labels) for an example from the evaluation group with AKI. The
𝑡𝐶𝐴 scores per time step seem to reflect the risk as predicted by the
model: the 𝑡𝐶𝐴 score starts increasing around time 𝑡 30, i.e. around
48 hours before the AKI stage 2 event detected by the KDIGO label.

Influence of the CAV:. We observe a positive influence of the CAV
on the target, as displayed by strictly positive values of CS on the
different samples and time points considered (Figure 3c). This is
expected due to the circularity in the definition of this concept.

3.2.3 NSAIDs concept.

Building the CAV:. Similarly to the AKI concept, we train three
variants of the linear classifier2, where we use all samples between
24 hours before AKI to the time of AKI (𝑡𝑒𝑛𝑑 ), all samples between
the time of NSAIDs and the time of AKI, or the difference in ac-
tivation between the time of AKI and the time of NSAIDs. While
all classifiers are assessed as significant per non-parametric per-
mutation testing, model performance is overall lower than for the
AKI concept both for the held-out and validation time steps (Figure
4a and Supplement). As previously, we select CAV𝑡𝑠𝑡𝑎𝑟𝑡 :𝑡𝑒𝑛𝑑 with
𝑡𝑠𝑡𝑎𝑟𝑡 being 24 hours before AKI to evaluate 𝑡𝐶𝐴 and 𝐶𝑆 scores.

Presence of the concept over time: When using a 24-hour sliding
window of activation differences, we obtain higher 𝑡𝐶𝐴 scores
directly before the AKI event (𝑡1, 2 hours before AKI) when the

2Given that the end point (AKI 1+) is controlled for, CAV𝑡𝑒𝑛𝑑
is not built.
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Figure 4: MIMIC results, NSAIDs concept. a CAV linear model performance on held-out samples (left) and on test samples for concept (top)
and control (bottom) samples. Each bar represents a CAV building strategy. b 𝑡𝐶𝐴 global scores, averaged across patients (mean±std) for the
concept (purple) and control (green) groups 48 hours before AKI (𝑡0) and at time of AKI stage 2 (𝑡1). c 𝐶𝑆 scores. d Single patient timeseries,
displaying the label (AKI 1+ within 48h) andmodel’s output, as well as 𝑡𝐶𝐴 for each layer, and its null hypothesis (shaded). The yellow shaded
area represents the prediction horizon of the model, i.e. within 48 hours of AKI 1+. The administration of NSAIDs is displayed by a grey
vertical line.

concept is present compared to at time of NSAIDs (𝑡0, Figure 4b).
This difference is however small and similar scores are obtained
close to the AKI endpoint on control patients. Figure 4d displays
an example trajectory from the evaluation set for CAV𝑡𝑠𝑡𝑎𝑟𝑡 :𝑡𝑒𝑛𝑑 .
We discern an increase in alignment, outside of the ±1× standard
deviation, after the time of NSAIDs administration on the three
layers. See the Supplement for more positive local examples. We
observe no or negative alignment for negative predictions (Figure 5,
a,b). On the other hand, we observe an increase in alignment at
time of NSAIDs administration, simultaneous to a false positive
prediction (around 𝑡 = 40, Figure 5c).

Influence of the CAV:. Consistent with our observations, CS dis-
plays a small effect of the concept on the predictions at the time of
AKI, but the pattern is not as clear as for the AKI concept (Figure 4c).

This could reflect either that the CAV does not properly represent
the NSAIDs direction, or that the model is not only marginally influ-
enced by this direction when making predictions. Further work will
investigate other nephrotoxic agents as well as involve a clinical
evaluation of patients to ensure that the agent caused the AKI.

3.2.4 Antibiotics concept.

Building the CAV:. Given previous results, we select CAV𝑡𝑠𝑡𝑎𝑟𝑡 :𝑡𝑒𝑛𝑑
with 𝑡𝑠𝑡𝑎𝑟𝑡 being 24 hours before AKI to build CAVs and evaluate
𝑡𝐶𝐴 and 𝐶𝑆 scores. The classifiers are assessed as significant per
non-parametric permutation testing, with accuracies of 61.04%,
64.77% and 63.38% and ROC AUC of 0.6891, 0.7275 and 0.7325 for
layers 1, 2 and 3, respectively (𝑝 < 0.001).
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a

b

c

Figure 5: Local MIMIC results, NSAIDs concept. a,b Negative predictions, c false positive prediction at time of NSAIDs. Similar to Figure 4d.

Presence of the concept over time: When using a 24-hour sliding
window of activation differences, we obtain higher 𝑡𝐶𝐴 scores at 𝑡1
when the concept is present compared to at time 𝑡𝑠𝑡𝑎𝑟𝑡 (Figure 6).
As for the NSAIDs concept, we observe increases in local tCA scores
when the concept is present (Figure 6 and Supplementary).

Influence of the CAV:. As per CS, the ‘antibiotics’ concept has an
influence on AKI predictions (Figure 6b).

3.2.5 Sex concept. None of the considered strategies to build CAVs
leads to significant results, with balanced accuracy ranging between
0.4727 and 0.5905 (𝑝 = 0.19), and ROC AUC between 0.4516 and
0.6190 (𝑝 = 0.18, see Supplement for details). Interestingly, model
performance on subgroups display no striking imbalance between
male and female subgroups (0.5953 PRAUC for females and 0.5809
for males, with ROCAUC of 0.8624 and 0.8445 respectively). This
result could suggest that features related to AKI are not significantly
different between sexes, or that the model does not encode sex to
predict AKI using the MIMIC benchmark dataset. On the other

hand, non-significant CAVs could also arise from technical factors
such as, e.g. the patient selection being too heterogeneous, or the
time window selected for CAV building not including the feature
changes between sexes. Therefore, a non-significant CAV does not
allow to conclude that the model is not relying on the considered
signal.

3.2.6 Comparison with feature-based attributions. Table 1 displays
the top 15 features ranked by their attribution scores, computed
from the test set. We observe little overlap between the two lists3,
apart from Serum urea nitrogen and Serum creatinine. While it
is reassuring to see these features in both rankings given their
direct relationship to the definition of the AKI label [14], they do
not represent the ‘cause’ of the adverse event, and are hence not
‘actionable’ from a clinical perspective. Interestingly, the ranking for

3Please note that the behavior of gradient and occlusion attribution techniques under
feature heterogeneity (i.e. binary vs numerical), as well as sparsity, has not been
extensively investigated and the results presented here could be affected by those
factors.
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Figure 6: MIMIC results, Antibiotics concept. tCA (a) and CS (b) results at time of antibiotics, and at time of AKI. c Local patient trajectory
with time of antibiotics displayed as a vertical grey line.

gradients highlights an antibiotic (Nafcillin), used in our definition
of the ‘Antibiotics’ concept.

For the patient presented in Figure 6, the predicted risk at time
of antibiotics is low, and the model does not include this feature
in its top 10 according to occlusion. Gradients however display
Vancomycin, as well as heart rate and respiratory rate in the top
10, features that can be related to microbial infections. We see
in Figure 6c that the alignment with the model’s prediction does
not happen at the time of antibiotics, but closer to the AKI event,
highlighting the fact that TCAV alignment scores are not acting as
‘feature detectors’.

4 DISCUSSION AND FUTUREWORK
In this work, we explore the use of TCAV for RNNs, by defining
concepts as trajectories over time. Across datasets and concepts,
we notice that CAV𝑡𝑠𝑡𝑎𝑟𝑡 :𝑡𝑒𝑛𝑑 consistently leads to better generaliza-
tion across time points. This result suggests that a majority of time
steps in the time windows selected were relevant for the consid-
ered concepts. We note that extending this window or increasing
the variability of the signals within this window might lead to dif-
ferent results. Nevertheless, we show that this approach provides
meaningful CAVs and that both 𝑡𝐶𝐴 and CS scores are consistent
with our expectations on the synthetic data. We observe that 𝑡𝐶𝐴
computed as a temporal “derivative” saturates if the concept’s pres-
ence or absence does not vary over the time window [𝑡 − 𝑑𝑡, 𝑡].
Similarly, CS highlights transitions in the model’s predictions when
taking the gradients w.r.t. the sigmoid of the logits, as the sigmoid
saturates when the prediction is further away from the decision
boundary. This could suggest a better use case of 𝑡𝐶𝐴 and CS in
alert-based settings, where predictions/explanations are provided at
specific time points, e.g. when the predicted risk passes the decision
threshold.

This work focuses on explaining predictions from RNNs and is
hence bound by themodel architecture. Recent works have however
investigated other architectures for EHR predictions, including
transformers [27] and point-wise convolutions [21]. While RNNs
are adapted to the large number of features considered in the present
model (tens of thousands compared to a couple of hundreds or less
in newer architectures), future work could investigate how the
approach developed here could be applied to other architectures.

While our approach factors in temporality in the construction of
CAVs and 𝑡𝐶𝐴, CS would need to be extended to be able to account
for how differences in model predictions relate to changes in the
presence/absence of a concept over time. In this regard, a potential
direction of work would be to refer to Temporal Integrated Gradi-
ents [9]. Such a method based on integrated gradients [28] would
also enable the use of the proposed approach for local explana-
tions, as integrated gradients estimate the difference between the
obtained prediction and a “neutral decision”.

One limitation of TCAV arises from the difficulty of defining a
concept through examples from real-world EHR data. While toy
datasets or ImageNet applications seem intuitive, healthcare data
can be difficult to separate into clinical concepts. In the present
work, we computed relative CAVs by selecting concept and control
examples using simple rules, typically based on one (‘sex’) or an
ensemble of features. Our results suggest that the proposed ap-
proach can capture correlated signals and trajectories based on this
proxy definition, and do not act as ‘feature detectors’. Based on
their definition, concepts can be defined to represent ‘actionable’
clinical concepts and can investigate signals that would not be di-
rectly represented as features in the model training set (e.g. gender).
This is in contrast to feature-based attributions, that are tied to the
features present in the samples used to compute attributions. How-
ever, concepts, while designed to be human-understandable, will
typically encompass multiple features, as well as potential changes
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Occlusion Gradients

Feature type Score Feature Name Feature type Score Feature Name

Vitals, presence 0.0193 Bair hugger Prescription, presence 0.0148 Nephrocaps
Vitals, presence 0.0177 Nitric Oxide PPM Prescription, presence 0.0042 Sulfameth/Trimethoprim (IV)
Vitals, presence 0.0176 Nitric tank pressure Admission, domain 0.0038 -
Labs, presence 0.0132 Serum urea nitrogen Labs, value 0.0036 Serum creatinine
Vitals, presence 0.0127 Dialysis Access Type: catheter Prescription, presence 0.0035 Nafcillin (IV)
Vitals, presence 0.0120 Dialysis Type: peritoneal Vitals, presence 0.0034 System Integrity: clots present
Vitals, presence 0.0116 Emesis [Appearance] Prescription, presence 0.0033 Furosemide
Vitals, presence 0.0114 GI Tube Place Method: gastric ph Vitals, presence 0.0030 Heparin Dose (per hour)
Labs, presence 0.0103 Serum creatinine Prescription, presence 0.0030 Atropine Sulfate (IV)
Vitals, presence 0.0098 Diagnosis/op: hyperglycemia Labs, value 0.0026 tbili
Vitals, presence 0.0093 Dialysis Access Site: abdomen Prescription, presence 0.0025 NS Epidural Bag
Labs, value 0.0087 Serum urea nitrogen Prescription, presence 0.0023 Midodrine HCl
Vitals, presence 0.0085 PA Catheter Waveform Appear: unable

to wedge
Vitals, presence 0.0021 Impaired Skin: extremities, lo

Vitals, presence 0.0080 Allergy 1: thiazides Prescription, presence 0.0018 Heparin (Hemodialysis)
Vitals, presence 0.0077 Micro-Neb Treatment: alb/neb Prescription, presence 0.0017 Nitroglycerin (IV drip)

Table 1: Occlusion and gradient attribution scores, averaged across patients and time steps for global explanations.

Occlusion Gradients

Urine Output, pres Lorazepam, pres
Potassium Chloride, pres Heart Rate, value
Syringe (Neonatal), value Vancomycin, pres
Noninvasive Systolic, value Safety Measures, family, pres
Normocarb, pres Calcium Gluconate, value
Potassium Chloride, value Lactulose, pres
Docusate Sodium, pres Respiratory Rate, value
Sodium Fluoride, pres Soln., pres
Sodium Fluoride, value D5W, pres
Urine Output, value Senna, pres

Table 2: Occlusion and gradient attribution scores, at time of antibi-
otics for the patient presented in Figure6.

in patterns of those features across time. Therefore, feature-based
attributions could be used in conjunction with concept-based at-
tributions to understand which specific features could affect the
model’s alignment with a concept, e.g. which physiological fea-
tures have been affected by the microbial infection as treated by
the antibiotics.

We further matched control examples for a number of criteria.
We note that other matching criteria and methods could be used, e.g.
propensity score matching or other optimal transport techniques.
While we reported promising results on multiple concepts using
these CAVs, a danger is to miss confounding factors that then lead
to a significant CAV. A future direction could be to generate coun-
terfactuals, as in [8, 20, 26]. Given the dimensionality of the data,
training and evaluating such a counterfactual generative model
however remains challenging. Another risk lies in potential confir-
mation bias during the process of building the CAV and estimating
𝑡𝐶𝐴 and CS scores, as the user might be tuning the CAV building
until a concept surfaces. It could hence be desirable to know how
much signal is covered by a set of concepts, as proposed in [32].
On the other hand, the clinical user might want to define a limited
set of “actionable” concepts, e.g. “dehydration” or “nephrotoxicity”,
for which a clinical action could prevent the predicted outcome.

This would alleviate the concerns around building the “complete”
set of concepts, and provide a path to action, especially in the case
of local explanations. We also note that defining concepts requires
the involvement of clinicians. We believe that this is a strength
of the method rather than a weakness, as it allows clinicians to
define what “actionable” or “trustworthy” mean in the selected use
case, leading to increased transparency in the machine learning
development pipeline.

Finally, we evaluate the proposed approach empirically, based
on the ‘ground truth’ present in the synthetic data, as well as on
a clinical benchmark. Our concepts and results for MIMIC were
assessed by a clinician. Future work should however assess the
clinical relevance and utility of TCAV for EHR more rigorously,
using human and task grounded evaluations, as suggested in [4]. In
particular, it would be useful to investigate whether concept-based
explanations can help guide clinical actions taken in response to
a prediction, and, ultimately, whether these explanations improve
outcomes for patients.

SOFTWARE AND DATA
The Python and TensorFlow code to generate the synthetic dataset,
models, and compute CS and 𝑡𝐶𝐴 is available on Github at https:
//github.com/google/ehr-predictions/tree/master/tcav-for-ehr. The
de-identified EHR data is available based on a user agreement at
https://physionet.org/content/mimiciii/1.4/.
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