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Abstract

Sepsis is a potentially life-threatening inflammatory response to infection or severe tissue

damage. It has a highly variable clinical course, requiring constant monitoring of the patient’s

state to guide the management of intravenous fluids and vasopressors, among other inter-

ventions. Despite decades of research, there’s still debate among experts on optimal treat-

ment. Here, we combine for the first time, distributional deep reinforcement learning with

mechanistic physiological models to find personalized sepsis treatment strategies. Our

method handles partial observability by leveraging known cardiovascular physiology, intro-

ducing a novel physiology-driven recurrent autoencoder, and quantifies the uncertainty of its

own results. Moreover, we introduce a framework for uncertainty-aware decision support

with humans in the loop. We show that our method learns physiologically explainable, robust

policies, that are consistent with clinical knowledge. Further our method consistently identi-

fies high-risk states that lead to death, which could potentially benefit from more frequent

vasopressor administration, providing valuable guidance for future research.

Sepsis is a major host response to infection which can result in tissue damage, organ damage

and death. The mortality and economic burden of sepsis is very large. In the U.S., sepsis is

responsible for 6% of all hospitalizations and 35% of all in-hospital deaths [1, 2], and an eco-

nomic burden of more than $20B per year [3]. The treatment of sepsis is extremely challeng-

ing, due to the high variability among patients, with respect to both the progression of the

disease, the host response to infection, and the response to medical interventions, suggesting

the need for a dynamic and personalized approach to treatment [4–6]. Presently, the search for

treatment strategies to optimize sepsis patient outcomes remains an open challenge in critical

care medicine, despite decades of research.
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Recently, there has been considerable interest in the application of Reinforcement Learning

(RL) [7] to extract vasopressor and intravenous (IV) fluid treatment policies (i.e., strategies)

for septic patients from electronic health records data (ex. [8–12]). Informally, the goal is to

learn a policy that maps the patient’s current state to an action (i.e., medical intervention), so

as to maximize the chances of future recovery. The RL framework is well-matched to the actual

behaviors of physicians, who continuously observe, interpret, and react to their patient’s con-

dition. The promise of RL in medicine is that we might be able to find policies that outperform

humans (as it has in other domains, ex. [13–15]), by automatically personalizing the treatment

strategy for each patient, as opposed to using one that is expected to work well on the typical
patient [16, 17]. However, there are many challenges that must be met before RL can be used

to guide medical decision making in real-life settings [18].

A particularly severe challenge is partial observability of patient state. Despite the richness

of data collected at the ICU, the mapping between true patient states and clinical observables is

often ambiguous. We believe that this ambiguity can be reduced through the use of mechanis-

tic mathematical models of physiology that relate observables to a more complete representa-

tion of the patient’s cardiovascular state. Such models are plentiful in the literature, and

embody decades of research in physiology and medicine. Our proposed solution integrates,

for the first time, a clinically relevant mechanistic model into a Deep RL framework. The spe-

cific model we use was chosen because it estimates the unobservable aspects of cardiovascular

state that are relevant to specific interventions (vasopressors and IV fluids), and the clinician’s

goals—counteracting hypovolemia, vasodilation, and other physiological disturbances. This

model is integrated into our framework using a self-trained deep recurrent autoencoder that

uses a variety of inputs, including the patient’s vital signs, organ function scores, and previous

treatments.

The second challenge addressed by our framework is uncertainty in the learned policy, and

thus the expected outcomes. Similar to previous efforts to extract sepsis treatment policies

from retrospective data (ex. [8]), our method works in the Batch Reinforcement Learning set-

ting [19], where the agent cannot explore the environment freely. In this setting, it is well

known that RL can perform poorly [20], if the agent encounters states that are rare or even

unobserved in the training data. For this reason, it has been argued that all forms of uncer-

tainty should be quantified in any application of Artificial Intelligence to Medicine [21]. Thus,

we quantify model uncertainty (This should not be confused with the model-based vs model-

free RL distinction, because once we have inferred latent states, our approach qualifies as

‘model-free’. The literature also uses the term epistemic uncertainty and parametric uncer-

tainty for model uncertainty.) via bootstrapping and take a distributional approach to factor in

environment uncertainty. We also propose a decision framework where the clinician is pre-

sented with a quantitative assessment of the distribution over outcomes for each state-action

pair.

1 Background and related work

1.1 Reinforcement learning

Reinforcement Learning is a framework for optimizing sequential decision making. In its stan-

dard form, a Markov Decision Process (MDP), consisting of a 5-tuple (S,A,r,γ,p) is the frame-

work considered. Here, S and A are state and action spaces, r : ðS;A; SÞ ! R is a reward

function, p : (S, A, S)! [0,1) denotes the unknown environment dynamics, which specifies

the distribution of the next state s0, given the state-action pair (s, a), and γ is a discount rate

applied to rewards. A policy is (a possibly stochastic) mapping from S to A. The agent aims to

compute the policy π which maximizes the expected future reward Ep,π[Stγ
trt]. In the partially
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observed setting there is a distinction between the observations, denoted as ot, and the state st,
and the environment dynamics includes the conditional probability density p(ot|st). This

extends the MDP formalism to that of Partially Observed Markov Decision Process

(POMDP).

The search for of an optimal policy can be performed in several ways, including the iterative

calculation of the value function, VpðsÞ ¼ Ep;p½Stg
trtðst; atÞjs0 ¼ s; p�; 8s 2 S, which returns the

expected future discounted rewards when following policy π and starting from the state s, or

the Q-function, Qpðs; aÞ ¼ Ep;p½Stg
trtðst; atÞjs0 ¼ s;p; a0 ¼ a�; 8s 2 S; a 2 A, which returns the

expected future reward when choosing action a in state s, and then following policy π. Central

to many RL algorithms is the Bellman equation [22]:

Qpðs; aÞ ¼ Ep½rðs; aÞ� þ gEp;p½Qpðs0; a0Þ�; ð1Þ

and the Bellman optimality equation:

Q�ðs; aÞ ¼ Ep½rðs; aÞ� þ gEp½max
a02A

Q�ðs0; a0Þ� ð2Þ

(where Q�(s, a) is the optimal Q function, and s0 denotes the random next state).

1.2 Distributional and uncertainty aware reinforcement learning

Distributional Reinforcement Learning [23–25] extends traditional RL methods by estimating

the entire return distribution from a given state, rather than simply an expected value. It has

been shown that distributional RL can achieve superior performance in the context of Batch

RL [26]. For this reason, and because distributions are relevant to our overall goal of providing

clinicians with an assessment of the range of possible outcomes for each state-action pair, we

employ Categorical Distributional RL [23]. Here the state, action value distribution is approxi-

mated by a discrete distribution with equally spaced support. Further, we employ Deep

Ensembles [27] to quantify the uncertainty associated with each state action pair. These

ensembles are constructed using bootstrap estimates, as explained in the methods section.

1.3 Reinforcement learning in medicine

Reinforcement Learning has been used for various healthcare applications. References [17]

and [16] provide comprehensive surveys of healthcare and critical care applications respec-

tively. In the specific context of sepsis treatment, Komorowski et al. [8] used a discrete state

representation created by clustering patient physiological readouts, and a 25 dimensional dis-

crete action space to compute optimal treatment strategies using dynamic programming based

methods. Others have considered continuous state representations [9] and partial observability

[10].

Our proposed decision support system is based on a preference score as shown in Fig 1A.

In contrast to previous work, we choose a lower dimensional action space (9 actions), to ensure

sufficient coverage in the training data, and a reduced decision time-scale, to be more aligned

with clinical practice. The short time scale also provides a clinical justification for the less gran-

ular action space. Our rewards are based on previous work [9] (see Methods), which has inter-

mediate SOFA-based rewards, and ±15 terminal rewards, depending on survival.
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Fig 1. Proposed decision support system (A): We use the compete patient history, which includes, vitals, scores, and labs, and previous treatment,

to infer hidden states. These would all combine to make the state St. Our trained agent, takes this state and outputs value distributions for each

treatment, its own uncertainty, and an approximate clinician’s policy. We then factor in all 3 to propose uncertainty-aware treatment strategies. The

electrical analog of the cardiovascular model (B) This provides a lumped representation of the resistive and elastic properties of the entire arterial

circulation using just two elements, a resistance R and a capacitance C. This model is used to derive algebraic equations relating R, C, stroke volume

(SV), filling time (T), to heart rate (F) and pressure. The Cardiac Output (CO) can be then computed as (SV)F. These equations define the decoder of

the physiology-driven autoencoder. Complete physiology-driven autoencoder network structure (C) Patient history is sequentially encoded using

three neural networks. A patient encoder computes initial cardiovascular state estimates using patient characteristics, a recurrent neural network

(RNN) encodes the past history of vitals and scores, up to and including the current time point, and a transition network which takes the previous

cardiovascular state, the action and the history representation to output new cardiovascular state estimates.

https://doi.org/10.1371/journal.pdig.0000012.g001
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2 Results

2.1 Trajectory reconstruction using a physiology-driven autoencoder

One of the key features of our method is the physiology-driven structure of the autoencoder

that represents the cardiovascular state of the patient (see Fig 1B and 1C). The decoder of this

autoencoder is a set of algebraic equations that map the latent state to observable, and clinically

relevant physiological parameters, such as heart rate and blood pressure. Fig 2 shows selected

reconstructed trajectories for one representative patient, using various levels of data corrup-

tion (see Methods). As the figure illustrates, the model successfully reconstructs the observable

outputs and their trends with corruption probabilities as high as 25%. It is only at extreme lev-

els of corruption (50%) that the model’s accuracy degrades. Such robustness to moderate levels

of corruption was typical among training and validation patient trajectories. We thus conclude

that the autoencoder has learned an effective representation of the cardiovascular state of the

patient.

Below, we present (in Table 1) average unnormalized mean square error of the four dimen-

sional output, per time step to the nearest integer.

2.2 Value distributions and expected values

We next investigated whether the learned values are generalizable, consistent with clinical

knowledge, and correlated with the risk of death in non-survivors. To do this, we examined

the value distributions that are produced at each time-step for patients in the validation set,

stratified by outcome (i.e., survivor vs non-survivor). Fig 3 plots the average value distributions

output for non-survivors (top) and survivors (bottom) at 48, 24, and 1 hour from death or dis-

charge. The individual lines in each panel correspond to the value distributions under the nine

discrete actions available to the agent. We emphasize that these plots were generated for the

purpose of analyzing the learned models. In particular, the network only sees the current state

when it outputs such distributions; it is not given with any information about the future.

Fig 2. Reconstruction of two validation patient trajectories using different levels of corruption using the physiology-driven autoencoder,

Left: Heart Rate. Right: Systolic Blood Pressure.

https://doi.org/10.1371/journal.pdig.0000012.g002

Table 1. Mean square error of reconstruction.

Corruption probability MSE per time step

0% 6

10% 45

25% 59

50% 258

https://doi.org/10.1371/journal.pdig.0000012.t001
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Fig 3 clearly exhibits bi-modal distributions over values for non-survivors as much as 48

hours in advance of death. Further, as the patient gets closer to death, the mass shifts towards

the left peak (which corresponds to death). This behavior is consistent with the patient’s deteri-

orating condition. Additionally, the distribution associated with the “no treatment” action has

a larger left peak than others, highlighting that for these states the lack of treatment for even

one hour can be fatal. The mass of the distributions for survivors, in contrast, is concentrated

closer to the right limit and there is little difference between actions. Both of these observations

are consistent with the expectation that survivors are less likely than non-survivors to enter the

highest risk states, and so the consequences of a change in action/treatment are less extreme.

We then investigated the dependence of features and inferred states on the value distribu-

tions and determined that they are explainable, and consistent with clinical expectation. For

example, Fig 4 shows two scatter plots contrasting representative pairs of variables, stratified

by an optimal expected value threshold of five. (This threshold was chosen arbitrarily, and we

could observe similar results for any reasonable threshold.) It is clear that the model associates

different states with different expected rewards/risk. For example, the model associates low

SBP (hypotension) and high SOFA scores with an increased risk of death, which is consistent

with medical knowledge. Thus the agent has learned to discriminate between low and high

risk states in an explainable manner. The ability to learn such associations is noteworthy

Fig 3. Value distributions for validation patients averaged according to different times from death or discharge, Top row: Non Survivors. Bottom row: Survivors.

https://doi.org/10.1371/journal.pdig.0000012.g003
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because the training and test data are highly imbalanced. In particular, 89% of states have the

property V� � 5.

Finally, we quantified the importance of each feature using feature permutation [28].

Briefly, for each patient we permute a selected feature while keeping others fixed. The mean

absolute value difference of the Q function (across states and actions) is taken as the impor-

tance score for that patient. The above table lists the top 5 features across the entire cohort.

The complete feature ranking can be found in the supplementary materials (Appendix C in S1

Text). The cardiovascular states and the latent lab representations are among the most impor-

tant features, highlighting the importance of representation learning.

2.3 Vasopressor treatment strategies

We observed that the RL agents consistently recommend vasopressors for near-death (non-

survivor) states, and that the percentage of such states increase closer to the patient’s eventual

death. This phenomena is also shared by validation cohort states, as illustrated in Fig 5A, sug-

gesting that this behavior isn’t due to overfitting. In contrast, clinicians have only administered

vasopressors on average around 40% of the time, and this number drops off rapidly in the last

10 hours. We investigated whether these differences are an artifact of our choice of method by

evaluating different training options and algorithms. Specifically, we: (i) trained networks with

and without weighted experience sampling scheme (explained under Methods); (ii) used a dif-

ferent distributional RL algorithm, called Quartile Regression Q Learning [29]; (iii) considered

an artificial voting ensemble agent, which only administers vasopressors if at least p% of the

ensembles agree on giving vasopressors, at a given state; and (iv) considered the expected value

Fig 4. Scatter plots of scaled features: Top row: Marker colors indicates if V̂ �ðSÞ < 5 (Blue) or V̂ �ðSÞ � 5 (Red) Bottom: Top 10 features

measured by feature permutation. Here, l_k denotes the kth component of the latent lab representation.

https://doi.org/10.1371/journal.pdig.0000012.g004
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of the ensemble agent, which takes a weighted average (weighted by the number of patients it’s

trained on) of expected values of each bootstrapped network. In each case we observed similar

results, as shown in Fig 5B.

We also investigated the relationship between vasopressor recommendation and cardiovas-

cular states, and SOFA score. As illustrated in Fig 5D, the RL agents recommend vasopressors,

much more regularly as (SV)R (product of stroke volume and resistance) and mean blood

pressure drop. This is consistent with physiological knowledge, and latest critical care research.

For example, [30] shows that hemodynamic effects of norepinephrine extends beyond blood

pressure, and it effects SV and CO, and as described earlier, increasing systemic vascular resis-

tance and blood pressure, are among the primary goals of vasopressor therapy. However, it is

interesting to note that the clinicians have not necessarily associated lower blood pressure, or

(SV)R with more frequent vasopressor administration. However they do seem to give vaso-

pressors more regularly as SOFA score increase. These results could potentially provide an

important direction and hints towards better treatment strategies.

This difference between the AI agent and human physicians is not unexpected, and does

not imply that physicians are systematically acting sub-optimally. Rather, this difference

reflects the fact that the rewards that the agents were trained on only consider the final state of

the patient. They do not, for example, incorporate decisions that were made by the patient’s

family to cease extraordinary measures, after consultation with the physician. Such status

changes are common, but were not available in the training data.

In contrast to vasopressors, RL agents and clinicians had similar frequencies of fluid admin-

istration for non-survivors. However, there were some disagreement even amongst the ensem-

bles on whether or not to administer fluids for survivors (at less risky states). We present a

more detailed analysis along with global results in the supplementary information (Appendix

C in S1 Text).

Fig 5. Top row: Percentage of states with vasopressors recommended for the training and validation states, with time

to eventual death. Here a p% voting agent, denotes an agent which only prescribes vasopressors if an only if least p% of

the Bootstrapped Ensembles have agree on giving vasopressors. Bottom row: The percentages of states with

vasopressors recommended or given with respect to cardiovascular states and SOFA score.

https://doi.org/10.1371/journal.pdig.0000012.g005
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2.4 Uncertainty aware treatment

Next, we consider representative patients, and analyze the expected values of all distributions

and model uncertainty. Fig 6A shows the evolution of expected values for a non-survivor (ICU

ID: 263969). This was typical among all non-survivors; initially there’s less variability among

the expected values, but as the patient’s health deteriorates the variation becomes more drastic,

and there is a clear preference towards vasopressor-based actions. The marker size indicates

how much the agent is uncertain of its own results. We observe that the model is less certain

when the patient’s health starts deteriorating. This can be attributed to the fact that these states

are uncommon in the training data, and that the underlying cause driving deterioration can

vary widely in septic patients.

For comparison, Fig 6B shows the expected values of a survivor (ICU ID: 279413). Here the

expected values take a downward slide at around 25 hours from admission, with the values

associated with no treatment considerably lower. This coincides with SOFA score increasing

and SBP (CO)R rapidly decreasing, clearly indicating that the patient’s health is deteriorating.

However, as SOFA score improves and the pressure and (CO)R goes up, the expected values

Fig 6. Expected value evolution of the main agent for two patients: (A) A patient who died in the ICU. (B) A survivor. The marker size indicates the

parametric uncertainty associated with a particular action. Also shown are the standardized values of SOFA score, Systolic blood pressure, and the unidentifiable

cardiovascular state (CO)R. The x-axis indicates the hours from ICU admission. Recommended treatments under various preference parameters: (see Eq 7).

(C)(E) Recommendations for the same patient as in (A). (D)(F) Recommendations for the same patient as in (B). Actual clinician treatments: (G) treatment for

the patient in (A), (H) treatment for the patient in (B).

https://doi.org/10.1371/journal.pdig.0000012.g006
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do go up, and the difference between expected values of each distribution is considerably less.

The uncertainty levels are also much lower.

The fact that expected values of different actions are close to each other in healthy patient

states can be explained by Eq 2. State-action values are calculated under the assumption that

the agent always takes the optimal action. Our agent chooses an action every hour, and the

intermediate rewards are much smaller in value than the terminal rewards. Thus, the value of

the choice of action is not likely to change very much in a healthy patient state from hour to

hour. Put another way, any mistake made by the agent is easily reversed by taking the correct

action in the next hour if the patient is non-critical. In contrast, in more critical states, a wrong

action can have irreversible consequences.

Fig 6C–6F show different treatment recommendations under our proposed framework for

uncertainty-aware decision support. Briefly, the user specifies their relative confidence in the

RL-agent and a behavior cloner (which represents the human agent) by specifying a parameter,

β. Lower values of β place more emphasis on the behavior cloner. An action preference score

(see. Methods, Eq 7) is then calculated for each action in the current state. The score is a simple

mixture of the scaled (using a softmax function) expected value of the ensembled distribution

and the behavior probability, discounted by the model uncertainty corresponding to the state-

action pair, using a parameter λ. Panels C-F illustrate that different choices are made, depend-

ing on the value of β and λ. Further, the sequence of treatments are qualitatively different for

the non-survivor (panels C and E) and the survivor (panels D and F), because the agent has

learned to identify critical states that require interventions; the average non-survivor tends to

remain in such states for longer stretches, and so the agent makes relatively few adjustments,

compared to the survivor. Once again, the agent does not know the ultimate fate of the patient.

For comparison, panels G and H show the actual clinician treatments for the two patients.

2.5 Uncertainty quantification results

We now, briefly mention some interesting results on both model and environment uncertain-

ties. Further results are available in the supplementary information (Appendix C in S1 Text).

Fig 7A and 7B present how model uncertainty changes with time to death and release for

non-survivors and survivors respectively. It is interesting to note that on average the model is a

lot more uncertain about non survivors compared with survivors. Further, as a patient gets

closer to death the uncertainty increases, whilst for survivors the model uncertainty decreases

closer they are to ICU release. This observation is not surprising since death states are rela-

tively uncommon, and also there are a wide variety of ways a septic patient may face increased

mortality risk. However for survivors, we do expect all of them to approach a healthy state as

they approach eventual discharge.

Fig 7C and 7D show the average entropy of the value distributions for each of the actions

(again with time to death and release). This can be interpreted as a form of inherent environ-

ment uncertainty over future rewards. Now, there is less of a difference between the survivors

and non-survivors and we can see a drastic drop in entropy for non-survivors as they approach

death. This is not unexpected as the environment uncertainty should reduce when a patient’s

state has deteriorated beyond a certain point. Similarly the entropy of value distributions

reduce for survivors nearer they are to release. It is also interesting to note that on average

vasopressor based actions have a lower model uncertainty but a higher entropy.

Next we fit a Gaussian Mixture model to the data, and examined the model uncertainty

with the predicted likelihood. Fig 7E shows how the average (across all actions) model uncer-

tainty for each data-point with a likelihood less than p th percentile. As one could expect the

model uncertainty is higher for data-points with low density and reduces as the likelihood
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increases. This shows how the networks are uncertain of data away from the training distribu-

tion, and the value of having a large representative dataset.

2.6 A comment on off policy evaluation

Off policy evaluation (OPE) is the quantitative or statistical evaluation of the value of a learned

policy, usually using another dataset. Although attractive in theory, most unbiased OPE meth-

ods use importance sampling, and are therefore dependent on a known behavior policy. This

is not the case when the data were generated by human clinicians. Even if a suitable behavior

policy were known, an obviously bad policy can result in a very high OPE value in our setting.

For example, an agent that always prescribes no treatment for critical patients would, in effect,

eliminate most of the rewards accumulated by non-survivors which are, of course, the source

of the majority of the negative rewards. Such a policy would have a misleadingly high OPE,

Fig 7. (A) Model Uncertainty with time to death for non-survivors, (B) Model Uncertainty with time to discharge for survivors (C) Averaged entropy of value

distributions for non-survivors with time to death, (D) Averaged entropy of value distributions for survivors with time to release. (E) Average Model Uncertainty for

data points with density less than the p-th percentile.

https://doi.org/10.1371/journal.pdig.0000012.g007
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because human clinicians rarely withhold treatment for critical patients (the one exception

being a conscious decision by the family to terminate extraordinary interventions), and so the

the importance weights for such trajectories will tend towards 0.

We note that previous research has also argued at all OPE methods are unreliable in the

context of sepsis management, and state-of-the-art OPE methods may fail to differentiate

between obviously good and obviously bad policies [31]. However, we mention OPE results in

the supplementary material (Appendix C in S1 Text). We do note that developing OPE tech-

niques suited for the critical care domain is an important area of research to explore in the

future.

3 Discussion and conclusion

We present an interdisciplinary approach which we believe takes a significant step towards

improving the current state of data-driven interventions in the context of clinical sepsis, in

terms of improving both outcome and interpretability. Indeed, we believe that the maximum

benefit of Artificial Intelligence applied to medicine is best realized through the integration of

mechanistic models of physiology whenever possible, uncertainty quantification, and human

expert knowledge into sequential decision making frameworks.

Our contribution improves the status quo in several ways. Compared to prior work, our

approach deals with partial observability of data, yet known physiology, by leveraging a low-

order two-compartment Windkessel-type cardiovascular model in the context of self-super-

vised representation learning. As mentioned previously, this has several benefits. First, in the

context of sepsis treatment, estimating the cardiovascular state is essential because the clinical

decision to administer intravenous fluids or vasopressor is driven by an implicit differential

diagnosis by the clinician, as to whether insufficient organ perfusion and shock are secondary

to insufficient circulating volume (thus requiring fluids), vasoplegia (thus requiring vasopres-

sors), or some combination of both fundamental pathophysiologies. Second, there is typically

insufficient data to determine whether heart function is adequate (contractile dysfunction),

but a mechanistic model provides an indirect means for estimating cardiac function by impos-

ing known physiology. Finally, the incorporation of physiologic models improves model

explainability, while deep neural networks and stochastic gradient-based optimizers make it

possible to learn robust and generalizable representations from large data. We expect the unifi-

cation of models based on first-principles and data-driven approaches will provide a powerful

interface between traditional computational sciences and modern machine learning research,

mutually benefiting both disciplines. We have not fully examined the association between

inferred physiological state and treatment recommendation to confirm whether recommended

actions are indeed clinically sensible. Such work is currently underway.

We also introduce an approach to quantifying model uncertainty, which is essential in any

practical application of RL-based inference using clinical data. To the best of our knowledge,

this is the first time uncertainty quantification is used to quantify epistemic uncertainty in RL-

based optimization of sepsis treatment, and of critical care applications more generally. (Previ-

ous approaches ex. [11] have considered inherent environment uncertainty). The method’s

uncertainty estimates, combined with the recommended action comprise a simple framework

for automated clinical decision support. This principle aligns with the larger goal of combining

different forms of expertise and knowledge for better decision making, a philosophy consistent

with the rest of this work.

We chose a decision time step of one hour. Compared to similar work, this is much more

compatible with the time scale of medical decision making in sepsis, where fluid and vasopres-

sor treatments are titrated continuously. Accordingly, on such a time scale, there does not
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appear to be large differences in the relative merit of different dosing strategies. This makes

intuitive sense: there is presumably a lesser need for major treatment modifications if decisions

are made more frequently. Yet, a frequent finding across patients, especially the sickest ones,

was that inaction (no intervention) was a consistently worse strategy. This also meets clinical

intuition.

Reducing the time scale of decisions is not only appealing clinically in situation of rapidly

evolving physiological states, such as is the case in early sepsis, but it also provides a more com-

pelling basis for a less granular action space. Indeed, if decisions are made hourly, it does meet

clinical intuition to have fever discrete actions. Few physicians will argue that there is likely to

be little difference in administering 100cc or 200cc of fluids in the next hour. In the extreme, if

time were continuous, the likely decision space at any given time, is whether a fluid bolus

should be administered or not. A similar reasoning applies to vasopressors (increase, reduce,

status quo). We further notice that our methods consistently identify high risk, non-survivor

patient states which can potentially benefit from more frequent vasopressor treatment. These

results should of course, be subject to clinical verification.

An important open problem in the application of offline RL to medicine is the means by

which one evaluates learned treatment policies, given the obvious ethical issues associated with

allowing an AI to exert some control over treatment. Still, proper clinical trials will be neces-

sary, eventually, so the critical care community should define for itself the standards by which

an AI would be deemed safe enough to enter clinical trials [32]. In this work, we have largely

relied on a combination of medical expertise, and the fact that our model leverages prior

knowledge in the form of a simple model of cardiovascular physiology, to argue that the

learned policy is reasonable. We make no claim that the policy is expected to produce superior

outcomes in sepsis patients, relative to human clinicians. One important area for future work

may be the incorporation of more detailed models of physiology into our framework, or per-

haps using such models in the context of in silico trials (ex. [33]) as a first step towards demon-

strating that a learned policy is safe, and perhaps suitable for pre-clinical and clinical trials.

Additional areas for future work include the design of alternative rewards (ex. based on time-

dependent hazard ratios for death), and the application of risk-averse offline RL (ex. [34]).

4 Methods

4.1 Data sources and preprocessing

Our cohort consisted of adult patients (� 17) who satisfied the Sepsis 3 [35] criteria from the

Multi-parameter Intelligent Monitoring in Intensive Care (MIMIC-III v1.4) database [36, 37].

We excluded patients with more than 25% missing values after creating hourly trajectories,

and patients with no weight measurements recorded. The starting point of trajectories is ICU

admission.

We further excluded patients who got discharged from the ICU but ended up dying a few

days or weeks later at the hospital. Since we don’t have access to their patient data after the

ICU release, treating the final ICU data as a terminal state would damage generalizability. We

cannot treat those patients as survivors, however, as they were not released from the hospital.

Actions were selected by considering hourly total volume of fluids (adjusted for tonicity),

and norepinephrine equivalent hourly dose (mcg/kg) for vasopressors. In computing the

equivalent rates of each treatment, we followed the exact same queries as Komorowski et al [8].

When different fluids were administrated, we summed up the total fluid intake within the

hour, and discretized the resulting distribution. For vasopressors, we considered the maximum

norepinephrine equivalent rate administered within the hour to infer the hourly dose. We

used 0.15 mcg/kg/min norepinephrine equivalent rate, and 500 ml for fluids, as the 1,2 cutoff
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when discretizing. These were chosen, considering the mean, median of non zero rates and

medical knowledge, We also observe that due to the low dimensional action space, there is

flexibility in choosing the cutoffs. A separate 0 action for each was added to denote no

treatment.

Missing vitals and lab values were imputed using a last value carried forward scheme, as

long as missingness remained less than 25% of values. A detailed description on extracting,

cleaning and implementation specific processing as well as additional cohort details are

included in the supplementary information (Appendix A and Appendix B in S1 Text).

4.2 Models

4.2.1 Physiology-driven autoencoder. Autoencoders are a type of neural networks which

learn a useful latent, typically lower-dimensional representation of input data, while assessing

the fidelity of this representation by minimizing data reconstruction error. Our autoencoder

architecture provides an implicit regularization by constraining the latent states to have physi-

ological meaning, and the decoder to be a fixed physiologic model described in the next sec-

tion. We further use a denoising scheme by randomly zeroing out input with a probability of

10–25%, when feeding into the network. This random corruption forces the network to take

the whole patient trajectory (prior to the current time point) and previous treatment into

account when producing its output, because it prevents the network from memorizing the cur-

rent observation. In essence, we ask the inference network to predict observable blood pres-

sures and the heart rate using corrupted versions of itself, by first projecting it into the

cardiovascular latent state, and then decoding that to reconstruct.

More precisely, at time t, suppose the full history up to and including t is represented by ht.
Then, the output of the system ôt satisfies,

ôt ¼ f ðgð ~ht ; at; dÞÞ:

Here ~ht is the corrupted history computed as,

~ht ¼ htð�Þp

where p is a vector of same dimensions as ht such that each element is sampled independently

from a Bernoulli distribution, and (�) denotes element wise multiplication. g, f are the encoder

and the decoder respectively, at denotes the treatment at time t and d denotes the demographic

variables. The decoder f is detailed out in the next section, and g is the composition of neural

networks as shown in Fig 1.

Fig 1C, shows the complete architecture of our inference network. As shown in the figure,

the encoder is comprised of three neural networks, a patient encoder which computes initial

hidden state estimates, a gated recurrent unit (GRU) [38] based recurrent neural network to

encode the past history of vitals and scores up to and including the current time point, and a

transition network which takes the previous state, the action and the history representation to

output new cardiovascular state estimates. We train this structure end-to-end by minimizing

the reconstruction loss, using stochastic gradient-based optimization. The supplementary

material (Appendix B in S1 Text) provides a detailed description of model and architecture

hyper-parameters, and training details.

Cardiovascular model. The cardiovascular model, is based on a two-element Windkessel

model illustrated using the electrical analog in Fig 1B. This model provides a lumped represen-

tation of the resistive and elastic properties of the entire arterial circulation using just two ele-

ments, a resistance R and a capacitance C, which represent the systemic vascular resistance

(SVR), and the elastance properties of the entire systemic circulation, respectively. Despite it’s
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simplicity, this model has been previously used to predict hemodynamic responses to vaso-

pressors [39] and as an estimator of cardiac output and SVR [40].

The differential equation representing this model is:

dPðtÞ
dt
¼ �

1

RC
PðtÞ þ

QðtÞ
C

ð3Þ

were Q(t) represents the volume of blood in the arterial system. As explained in [39], over the

interval [0, T] (where T is the filling time of the arterial system) we can write Q(t) as Q(t) =

SVδ(t), where SV stands for Stroke Volume, the volume of blood ejected from the heart in a

heartbeat. When the system is integrated over the interval [0, T] we obtain the following

expressions for Psys, Pdias, PMAP, i.e., the systolic,diastolic, mean arterial pressure, respectively,

Psys ¼
SV
C

1

1 � e� T=RC
; Pdias ¼

SV
C

e� T=RC

1 � e� T=RC
; PMAP ¼

ðSVÞR
T
¼
ðSVÞFR

60
ð4Þ

T is the filling time and F is the heart rate, which is determined by T. This system of alge-

braic equations is used for the decoder of our autoencoder. Since heart rate can itself be

affected by vasopressors and fluids, we added heart rate (F) as an additional cardiovascular

state despite it being observable.

Therefore we have a multivariate function f: {R, C, SV, F, T}! {Psys, Pdias, PMAP, F}, repre-

sented by the equations above, and the trivial relationship F = F (Despite the obvious relation-

ship we used both F and T, for ease of training and stability.) As stated previously, to prevent it

from just using the current observations, we use a denoising scheme for training. This ensures

at a fixed time, the model cannot memorize the current observation and learn to invert f, since

there is a nonzero probability of corruption. Thus it has to learn to factor in the history and

the treatments when determining the cardiovascular states. Once SV is inferred, the cardiac

output (CO), can be computed as CO = (SV)F.

Since f is not one to one, typically not all states are identifiable. To arrive at a better approxi-

mation we used the latent space to only model deviations from fixed baselines. We also posit

that identifiable combinations of states, when trained with a denoising scheme, should provide

important cardiovascular representations in the POMDP setting.

4.2.2 Denoising GRU autoencoder for representing Lab history. We use another recur-

rent autoencoder to represent patient lab history, motivated by the fact that labs are recorded

only once every 12 hours. Forward filling the same observation for 12 time points, is almost

certainly sub-optimal, and the patterns of change in lab history can be helpful in learning a

more faithful representation. Thus, we use a denoising GRU autoencoder constructed by

stacking three multi-layer GRU networks on top of each other, with a decreasing number of

nodes in each layer, the last 10 dimensional hidden layer was used as our representation. This

architecture is motivated by architectures used in speech recognition [41].

This model was also trained by corrupting the input, where each data-point was zeroed

with a probability of up to 50%. (The rate was gradually increased from 0 to 50%). As with the

previous autoencoder, this provides an extra form of regularization, and forces the learned

representation to encode the entire history.

Model architecture and training details and presented in the supplementary materials

(Appendix B in S1 Text).

4.2.3 Behavior cloner. We use a standard multi-layer neural network as our imitation

learner. This model is trained using stochastic gradient-based optimization by minimizing the

negative log-likelihood loss, between the predicted action and the observed clinician action,

with added regularization to prevent overfitting.
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We do mention that there are many other options that could be used as a imitation learner,

including nearest neighbor-based method as in [10].

4.3 POMDP formulation

States. A state is represented by 41 dimensional real-valued vector consisting of:

• Demographics: Age, Gender, Weight.

• Vitals: Heart Rate, Systolic Blood Pressure, Diastolic Blood Pressure, Mean Arterial Blood

Pressure, Temperature, SpO2, Respiratory Rate.

• Scores: 24 hour based scores of, SOFA, Liver, Renal, CNS, Cardiovascular

• Labs: Anion Gap, Bicarbonate, Creatinine, Chloride, Glucose, Hematocrit, Hemoglobin,

Platelet, Potassium, Sodium, BUN, WBC.

• Latent States: Cardiovascular states and 10 dimensional lab history representation.

Actions. To ensure each action has a considerable representation in the dataset, we discre-

tize vasopressor and fluid administrations into 3 bins, instead of 5 as in previous work [9], [8]

[10]. This results in 9 dimensional action space.

Timestep. 1 hour.

Rewards. We use the reward structure that was suggested by Raghu et. al [9], with a minor

modification. Since lactate was very sparse amongst out cohort we only considered SOFA

based intermediate rewards. Specifically, whenever st+1 is not terminal, we use reward of the

form:

rðst; a; stþ1Þ ¼ � 0:025IððsSOFAtþ1
¼ sSOFAt & sSOFAtþ1

> 0Þ � 0:125IðsSOFAtþ1
� sSOFAt Þ; ð5Þ

For terminal rewards we put r(st, a, st+1) = 15 for survival and r(st, a, st+1) = −15 for non-

survival.

4.3.1 Training. We only mention important details of training the RL algorithms here.

Representation Learning related training and implementations are detailed out in the supple-

mentary information (Appendix B in S1 Text).

We train the Q networks using a weighted random sampling-based experience replay, anal-

ogous to the prioritized experienced replay [42], which has resulted in superior performance

in classical DRL domains, such as Atari games.

In particular for each batch, we sample our transitions from a multinomial distribution,

with higher weights given to terminal death states, near death states (measured by time of

eventual death), and terminal surviving states. We used a batch size of 100, and adjusted

weights such that on average there is 1 surviving state, and 1 death state in each batch.

This does introduce bias, with respect to the existing transition dataset, however we argue

that this would correspond to sampling transitions from a different data distribution, which is

closer to the true patient transition distribution, we are interested in, as we are necessarily

interested in reducing mortality. We empirically observe that, when using such a weighting

scheme the value distributions align more closely to clinical knowledge in identifying risky

states, and near death states.

A same weighting scheme was used for all ensemble networks, which are trained to estimate

uncertainty. As mentioned previously, we verified that the main results on vasopressor treat-

ment strategies hold even for pure random sampling.
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4.4 Uncertainty

In this section, we consider model uncertainty, and not the inherent environment uncertainty.

Model uncertainty stems from the data used in training, neural network architectures, training

algorithms, and the training process itself.

Inspired by statistical learning theory [43], and the associated structured risk minimization

problem [44], we define the model uncertainty, (conditioned on a state s and a action a), given

our learning algorithm, and model architecture as:

Ey;D½lðy;ED½y�Þjs; a� ¼
R
lðy;ED½y�Þjs;apðy;DÞdydD ¼

R
lðy;ED½y�Þjs;apðyjDÞpðDÞdydD ð6Þ

Here, D denotes the unknown distribution of ICU patient transitions that we are attempt-

ing to learn our policies with respect to. θ is a random variable which characterizes the value

distributions. (For the C51 algorithm this can be interpreted as an element in R51
). This is out-

putted by our networks trained on a dataset sampled from D, for a given state action pair. This

random variable is certainly dependent on the training data, and the randomness stems from

the inherent randomness of stochastic gradient based optimization [45] and random weights

initialization. The quantity l is a divergence metric appropriate for comparing probability dis-

tributions. We use the Kullback–Leibler divergence [46] for l.
4.4.1 Estimating the uncertainty measure. We construct a Monte-Carlo estimate of the

integral in (6) by bootstrapping 25 different datasets, each substantially smaller than the full

training dataset, and training identical distributional RL algorithms in each. This can be done

efficiently due to the sample efficiency of distributional methods. Additionally, we can approx-

imate E½y� either by the ensemble value distribution, or by the value distribution of the model

trained on the full training dataset.

4.5 Uncertainty aware treatment

In this section, we describe a general framework for choosing actions that factors in uncer-

tainty. Notice that, because our RL algorithm learns (an approximation of) the optimal value

distributions, making decisions by considering additional information does not violate any

assumption underlying the learning process.

When suggesting safe treatment strategies, we want the proposed action to have high

expected value, however we would also like our agent flexible enough to propose an action

with less model uncertainty, if two actions have very close expected values to each other.

Another important factor to consider is how likely an action is to be taken by a human clini-

cian. This will have significance in a situation where human expertise is scarce. Large retro-

spective datasets subsume experience of hundreds of clinicians, and knowing what previous

clinicians have done in similar situations, will be valuable such situations. Therefore we use

behavior cloning to learn an approximate behavior policy of clinicians on average.

To satisfy all three goals, we propose a general framework for choosing actions, based on an

action preference score, Pðs; aÞ, parameterized by two parameters. This general framework is

flexible, yet simple, and the end-user can choose the parameters to reflect their own expert

knowledge, and confidence of the framework.

Let G(s, a) be a human behavior likelihood score function. In this work we equate G(s, a)

with the probabilities outputted by the behavior cloning network described in section 6.2.3.

Given a state s, we define Pðs; aÞ associated with each action a, as:

Pðs; aÞ ¼ bðSoftmaxð ~Q�ðs; aÞÞ þ ð1 � bÞGðs; aÞ � luðs; aÞ ð7Þ

where β, λ� 0, u(s, a) is the parametric uncertainty associated with the state-action pair, s, a,
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G(s, a) is the behavior likelihood probability and ~Q�ðs; aÞ is the Q function computed from the

ensembled value distributions. When human expertise is available, G(s, a) can be modified or

even re-defined to factor in expert opinion. λ penalizes uncertainty, and a low β forces the

action to be close to a clinician action. We could recover the expected value criteria by setting

β = 1, λ = 0, and we could use the system as a pure behavior cloner, by setting β = 0, λ = 0.

Therefore β controls how far from the highest expected value/behavior likelihood score can

the agent choose an action.

Supporting information

S1 Text. In this section, we provide brief descriptions of the supplementary text file, S1 text.

This provides additional exposition on results and methods complimenting the main text and

is divided into 4 sections. Cohort Details (Appendix A): This appendix summarizes our

cohort presenting summary statistics on the patients. Neural Network Architectures and

Implementation Details (Appendix B): This section presents a detailed description of the

neural networks used, implementation details and hyper-parameters involved. These include

the representation learning, RL and uncertainty quantification. Additional Results (Appendix

C): This section presents further results. We do this in three sub sections. RL Results: We pres-

ent additional results of Reinforcement Learning. This section also include figures showing

feature importance scores for all the features, heat maps presenting the recommended actions

under different schemes, and expected value evolution for validation patients. Uncertainty

Quantification Results: We continue our discussion on uncertainty quantification results.

The section presents a table which shows the mean model uncertainties for non survivors

and survivors, stratified by cohort and the action. OPE Results: This subsection includes

results from OPE. The results include value estimates under different preference scores and

cover all the ensembles. However, these results are subject to the caveats mentioned previously.

Limitations and Open Problems (Appendix D): We conclude with a high-level discussion of

limitations of both our and general RL methods. We further detail out some ideas for future

work.
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