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Abstract
Clinical trials are the gatekeepers and bottlenecks of progress in medicine. In recent years, they have become increasingly 
complex and expensive, driven by a growing number of stakeholders requiring more endpoints, more diverse patient popu-
lations, and a stringent regulatory environment. Trial designers have historically relied on investigator expertise and legacy 
norms established within sponsor companies to improve operational efficiency while achieving study goals. As such, data-
driven forecasts of operational metrics can be a useful resource for trial design and planning. We develop a machine learning 
model to predict clinical trial operational efficiency using a novel dataset from Roche containing over 2,000 clinical trials 
across 20 years and multiple disease areas. The data includes important operational metrics related to patient recruitment 
and trial duration, as well as a variety of trial features such as the number of procedures, eligibility criteria, and endpoints. 
Our results demonstrate that operational efficiency can be predicted robustly using trial features, which can provide useful 
insights to trial designers on the potential impact of their decisions on patient recruitment success and trial duration.
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INTRODUCTION

Clinical trials have become significantly more expensive due 
to their increased complexity (1), with trials now involving 
more endpoints, procedures, eligibility criteria, countries, 

sites, and patients than in the previous decade (2). The 
median cost of a phase III trial is $20 million, with an addi-
tional $670K for each month delayed (3). A study of pivotal 
trials across a decade reports that close to a quarter of studies 
fail due to cost-related issues (4) Low operational efficiency 
has contributed to decreasing approval rates for drugs, with 
only 1–3% of oncology trials reaching the approval stage (5). 
Therefore, there exists a great need to improve the opera-
tional efficiency of trials in order to reduce costs and shorten 
the lag of improving patient access to novel and innovative 
treatments. However, the efforts by investigators to curb inef-
ficiencies are hindered by several factors.

One of the main drivers of trial complexity is a grow-
ing number of stakeholders (6). For example, payers are 
increasingly requiring evidence of comparative effective-
ness in trials, leading to additional endpoints and proce-
dures (7). A rising number of targeted biomarker-based 
trials compete for overlapping patient populations, and 
efforts to increase patient diversity require more focused 
patient recruitment strategies (8, 9). The regulatory 
environment has also grown more stringent following 
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market withdrawals of high-profile pharmaceutical prod-
ucts (7). Furthermore, there has been an increased need 
for globalized drug development in order to expand patient 
access, mitigate against competition, and reach wider 
patient pools. This has led to multi-region clinical trials 
that need to satisfy multiple different regulatory require-
ments and synchronize operations across different regions 
(10, 11). Therefore, trial designers face the challenge of 
reducing operational inefficiencies while satisfying mul-
tiple competing interests.

Efforts to improve operational efficiency are often based 
on investigator experience and conventional wisdom (12). 
The expertise of the trial designer has been shown to be a 
significant factor in determining trial success (13). Cur-
rently, sponsors and investigators rely on subject matter 
experts to forecast the operational burden of each individ-
ual trial. These are mostly bespoke processes that consider 
largely ad hoc and qualitative information about the spe-
cific disease, patients, and history of sites for a particular 
trial. However, as efficiency metrics from clinical trials are 
not collected and made publicly available in large-scale 
datasets (14–17), it is difficult to produce systematic fore-
casts that can be calibrated across a large number of trials.

In this study, we develop machine learning models on 
data from over 5000 clinical trials by a large, multinational 
pharmaceutical company. Our models predict multiple effi-
ciency metrics that are typically not systematically col-
lected and made available to the public. While the features 
gathered in this analysis do not encompass all decisions 
made by clinical trial teams, our work is a validation of 
systematically gathering and organizing study features to 
predict operational efficiency.

MEASURING OPERATIONAL EFFICIENCY

Complex trials often include extensive patient recruitment 
requirements and protocol-related delays, leading to sig-
nificant operational inefficiencies. Previous studies have 
shown that 90% of all clinical trials worldwide have to 
extend their enrollment period, with average delays of 6 
weeks (18, 19). These delays can be very expensive, with 
case studies reporting costs of nearly $90,000 per patient 
and screening failures as a principal cost driver (20). Addi-
tionally, the rise in protocol procedures and amendments 
greatly increases site work burden and operational delays. 
High costs are a major reason why clinical trials fail to 
move to the next phase (12) and are a barrier to patients 
receiving the potential benefits of new drugs. In this study, 
we assess a trial’s operational efficiency through various 
metrics associated with patient recruitment and duration.

Patient Recruitment

Patient recruitment success is crucial for accessing the 
appropriate patient population for a study, and insufficient 
enrollment is a common reason for trials to be suspended 
or terminated (12, 21). There can be several driving forces 
behind recruitment failure, including unnecessarily strict 
eligibility criteria, burdensome visit requirements, and 
additional investigations beyond endpoint and safety eval-
uations (1). Additionally, factors such as whether patients 
are provided with stipends, transportation, and options for 
remote/local visits which can impact the enrollment dura-
tion and dropout rate. Historically, patient recruitment suc-
cess has been hard to model and understand (21).

We use screen failure ratio and dropout ratio to meas-
ure patient recruitment success (Fig.  I). Screen failure 
ratio is the fraction of screened patients that do not end 
up enrolled in a trial and is commonly used to measure 
patient recruitment (15–17). A high screen failure ratio 
means a trial requires more money and time to acquire its 
patients. Dropout ratio is the fraction of enrolled patients 
that do not complete the trial and is an important metric 
to estimate in the study design phase (22). A patient can 
be withdrawn from a trial for a variety of reasons, such 
as adverse events, noncompliance, protocol deviations, 
and safety. Excessive dropout can lead to costly proto-
col amendments or underpowered studies (12), affecting 
the quality of data that can be used to improve patient 
outcomes.

Trial Duration

Operational delays are significant roadblocks to the overall 
success of clinical trials (1). Trial length is a key determi-
nant of the financial risk and reward of drug development 
projects, where overextended trials are at risk of being sus-
pended or terminated (5). Studies have also shown that site 
activation and regulatory approval alone can take nearly 
5 months (23), and complex trials are likely to be delayed 
(6). Additionally, increasing regulatory burdens impact 
greater resources and can cause significant delays (24).

We aim to capture operational delays using three met-
rics: pre-enrollment duration, enrollment duration, and 
study duration (Fig.  I). Pre-enrollment duration is the 
median number of days per site between site selection and 
first patient enrolled. This measures the time required to 
complete organizational prerequisites (e.g., contract nego-
tiation and site training). A lengthy pre-enrollment period 
can imply a high regulatory and organizational burden. 
Enrollment duration is the median number of days per 
site between enrolling the first patient and the last patient, 
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across sites. Extended site enrollment delays can be due 
to unnecessarily stringent eligibility criteria and screening 
protocols, rare patient populations, and competing clini-
cal trials. Study duration refers to the median days per 
site between site activation and last patient visit, and cap-
tures the end-to-end time required for a study to complete, 
across sites.

RELATED WORKS

There exists extensive literature studying the growing com-
plexity of clinical trials (25–29), including patient recruit-
ment and trial duration (1, 6, 12, 15–18, 21, 22, 24, 30–33). 
(12) provides a systematic overview of how operational 
inefficiencies impact the likelihood of overall trial success.

(34) shows that more complex trials with more proce-
dures perform worse in patient recruitment and retention 
compared to low complexity trials. (35) finds that complex 
trials discourage trial participants, while (36) finds that tri-
als with more eligibility criteria tend to be more prone to 
delays. Additionally, (37) finds that patient dropout is much 
higher in more complex trials. Our work aims to unify these 
analyses by modeling a variety of trial features on patient 
recruitment and trial durations. In doing so, we can also 
estimate the collective impact of multiple trial features on 
trial efficiency.

Prior work in applying machine learning methods to 
improving clinical trial efficiency includes natural language 

processing (NLP) methods for patient recruitment as well as 
extracting structured data from eligibility criteria (38, 39). 
Machine learning has been applied to clinical trial data for 
purposes of predicting the overall likelihood of approvals (5, 
40, 41). Our work differs from prior work in that we focus 
on specific efficiency metrics, a level of granularity that is of 
particular interest to trial designers.

DATA 

In total, the dataset contains 2051 completed clinical trials con-
ducted by Roche with starting dates from 2009 to 2020. Due 
to differing levels of missingness across efficiency metrics, 
there are N = 1922, 1395, 932, 526, and 361 trials included 
in our analyses for enrollment duration, screen fail ratio, pre-
enrollment duration, study duration, and withdrawal ratio. The 
varying levels of missingness are a result of differences in the 
data collection pipeline. For example, enrollment duration 
can be more easily estimated with start and end times, while 
withdrawal ratios require follow-up reports on each patient. 
We include a total of 23 operational features. The features 
and their detailed descriptions can be found in Supp. Table I. 
Among the full list of features included are the study phase, 
therapeutic area, experimental design, number of endpoints, 
number of eligibility criteria, and details about the planned 
procedures involved. In the data, there are 288 unique drugs 
and 219 unique indications represented across all trials and an 
average of 11.4 inclusion criteria, 15.3 exclusion criteria, and 
3.9 countries per trial.

Fig. I  Patient recruitment 
metrics displayed across the 
patient funnel from screening 
to completion and trial duration 
metrics across an abridged 
timeline of clinical trials. The 
timeline presented applies to a 
single site, and these events can 
be asynchronous between sites

Page 3 of 9 57



The AAPS Journal (2022) 24: 57

1 3

METHODS

Data Preprocessing

Categorical features such as drug names and indications are 
encoded using a one-hot encoding scheme. To handle the 
heavy tail-end of features, we group features that appear 
in less than 1% of the data into a single category labeled 
“other.” Missing values are imputed using the mean. Due 
to noise in data collection, trials with response variables 
outside two standard deviations are considered outliers and 
not included in the dataset.

Model Design

Given the different degrees of missingness across all 5 
response variables, we train a separate model for each one. 
We use LightGBM (42), an efficient implementation of gra-
dient boosted tree algorithms, due to its relative robustness 
of feature processing and strong performance on tabular 
data.

In the context of providing decision support for study 
design, we also seek to quantify the uncertainty around our 
model predictions. Not only are upper and lower bounds 
useful to understand the confidence of our estimates, but 
they can also be useful for decision-making. For example, an 
upper bound or “worst-case” prediction of trial duration can 
be more useful than a point estimate for resource planning 
purposes. To produce these predictive intervals, we use a 
quantile loss function for our gradient boosted trees (Equa-
tion 1), trained at quantiles 0.05 and 0.95 to achieve a 90% 
predictive interval. For point estimates, we use the quantile 
0.5, which is equivalent to the median. Compared to mean 
squared error, which computes the conditional mean of the 
response variable, a model trained on quantile loss at 0.5 
computes the conditional median. Similarly, a model trained 
at the quantile 0.05 should, in expectation, have residuals 
that are positive 95% of the time and negative 5% of the 
time.

Our dataset is divided into training, test, and validation 
(hyperparameter tuning) sets using a random 60/30/10% 
split. Results are reported from our test set. We perform a 
grid search over a set of hyperparameters (number of leaves, 
minimum data in each leaf, maximum depth, maximum bins, 
and learning rate) and monitor performance on the valida-
tion set before setting the model for each response variable. 
Additionally, we perform a search over algorithm selec-
tion and hyperparameter tuning using AutoSklearn (43), a 
Python package that utilizes Bayesian optimization, meta-
learning, and ensemble construction to optimize model per-
formance. We test this method on predicting screen failure 
ratio and find that the top-performing model found does not 
outperform LightGBM after running AutoSklearn. As such, 
we find evidence that our model approach is well-optimized 
across a range of algorithms and hyperparameters.

Evaluation

To provide a uniform evaluation metric across different regres-
sion tasks, we use the c-index (44), which is a generalization 
of the area under curve (AUC) to continuous response vari-
ables. The c-index is defined as the proportion of concordant 
pairs among all evaluation pairs in the test set. A c-index value 
of 1 means that for any pair of trials, the model predicts a higher 
response variable for the trial with the actual higher response 
variable. Conversely, a c-index of 0.5 implies that the model does 
not perform better than chance at correctly assigning correctly 
ordered values. For example, when interpreting the c-index of 
screen failure ratio, two trials with actual values of 0.75 and 0.90 
could have predicted values of 0.60 and 0.80 and be counted as a 
concordant pair. In practical terms, one can interpret the c-index 
as a measure of confidence that the model will correctly predict 
the direction of change in operational efficiency based on a set of 
trial features. In addition to the c-index, we report the R-squared 
score and mean absolute error (MAE) in Table IV.

(1)𝜌𝜏(y, ŷ) = (ŷ − y)(�{y ≤ ŷ} − 𝜏)

Table I  Model Performance 
Results

Main results reporting c-index across all trials and stratified by therapeutic area and study phases. The ther-
apeutic area “I2O” is an abbreviation for immunology, infectious diseases, and ophthalmology. The average 
across metrics is reported at the bottom of each column

Overall Therapeutic area (C-index) Study phase (C-index)

Efficiency metric C-index I2O Neuroscience Oncology Other I II III IV

Screen failure ratio 0.801 0.795 0.765 0.789 0.808 0.622 0.788 0.802 0.771
Dropout ratio 0.791 0.750 0.651 0.715 1.000 0.784 0.801 0.804 0.771
Pre-enrollment duration 0.705 0.724 0.635 0.611 0.687 0.675 0.565 0.587 0.597
Enrollment duration 0.706 0.680 0.709 0.683 0.672 0.764 0.692 0.647 0.609
Trial duration 0.728 0.644 0.766 0.624 0.756 0.808 0.656 0.610 0.666
Average 0.746 0.719 0.705 0.684 0.784 0.731 0.700 0.690 0.683
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RESULTS

Main Results

We report the performance of our models on each efficiency 
metric over all trials in the test set, as well as subsets cor-
responding to therapeutic area and study phase (Table I 
and Supp. Table II). Trial features can explain a substan-
tial proportion of the variance in efficiency in total, while 
study duration is harder to predict on average compared to 
patient recruitment (Table IV). The models had excellent 
performance in predicting patient recruitment, with c-index 
values around 0.80 for both metrics in this category. Mod-
els that predicted trial duration response metrics also per-
formed relatively well with c-index values of around 0.70 
in all three metrics in this category. In addition to the point 
predictions, our model uses quantile regression to provide 
the 90% predictive interval for each prediction, which is 
empirically well-calibrated (Supp. Table III, Supp. Fig. I). 
The performance results are consistent across therapeutic 
areas and study phases.

Validation on Unseen Drugs

Clinical trials that study the same drug can potentially be 
very similar in their levels of operational efficiency, which 
may lead our models to overfit when trials on the same drug 
appear in both the training and test set. We seek to meas-
ure the effect of this by splitting the training and test sets 
based on randomly selected sets of drugs. Out of 288 total 
unique drugs in our full dataset, we train the model on 209 
unique drugs and test the model on 79 different unique drugs 
which are chosen at random. Within the training drug set, 
we perform an additional training/test/validation split and 
report the results on the test split. The results are reported 
in Table II and show that our model performs worse slightly 
without knowledge of the drug being evaluated, revealing 
that knowledge of operation efficiency of a prior drug trial 
can help in predicting the efficiency of future trials involving 
the same drug. At the same time, the difference is not large, 

meaning that even without this knowledge, our model still 
performs reasonably well.

Validation on Temporally Separate Trials

In deployment, these models would be run on trials occur-
ring after the trials used in the training data. In order to eval-
uate time-specific biases, we divide our data into two time 
periods such that the sample sizes from each time period 
are roughly equal. We train our models on trials from the 
first period (2009–2012) and evaluate on trials beyond this 
period (2012 onward) (Table III). For the trials from 2009 to 
2012, we split our training data into training/test/validation 
sets and report the results on the test set. Similarly, while we 
observe lower overall performance due to a smaller training 
set size, we do not observe large differences in performance 
when our models are evaluated on trials occurring after the 
trials they were trained on.

Correlation Between Actionable Trial Features 
and Operational Efficiency

We perform additional analyses to quantify how actionable 
features of trial design correlate with the five response met-
rics of operational efficiency. In particular, we only report 
the effects of features that can be changed during trial design 

Table II  Validation on Unseen Drugs Across Five Efficiency Metrics

Validation on unseen Roche 
drugs (C-index)

Training drug set (N 
= 339)

Testing drug 
set (N = 359)

Screen failure ratio 0.781 0.712
Dropout ratio 0.757 0.738
Pre-enrollment delay 0.674 0.634
Enrollment duration 0.673 0.665
Trial duration 0.699 0.679
Average across metrics 0.717 0.686

Table III  Validation of Trials from Two Time Periods Across Five 
Efficiency Metrics

Validation across time 
(C-index)

Trials completed 
2009–2012 (N = 
439)

Trials completed  
2012–2020 (N = 
376)

Screen failure ratio 0.742 0.726
Dropout ratio 0.630 0.682
Pre-enrollment delay 0.673 0.680
Enrollment duration 0.711 0.669
Study duration 0.704 0.717
Average 0.692 0.695

Table IV  R-Squared Values and Mean Absolute Error from Our 
Model, Across 5 Efficiency Metrics

Efficiency metric R-squared Mean 
absolute 
error

Screen failure ratio 0.463 0.097
Dropout ratio 0.513 0.179
Pre-enrollment duration 0.319 60.0
Enrollment duration 0.26 245
Study duration 0.32 405
Average 0.375 -
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(i.e., the number of eligibility criteria, endpoints, countries, 
and procedures), as opposed to fixed features such as a trial’s 
phase, drug, and therapeutic area. Because it is challeng-
ing to interpret the nonlinear relationships captured by our 
GBM, we fit a separate multivariate regression model to 
all trial features and directly assess the association between 
these features and the trial’s operational outcomes. Supp. 
Table IV reports the total list of actionable features, their 
respective coefficients, and the p values.

First, we find that the number of countries is associated 
with efficiency metrics in several ways. A larger num-
ber of planned countries are connected with longer pre-
enrollment duration (p = 0.01) and longer study duration 
(p = 0.005), possibly reflecting the underlying difficulties 
of satisfying multiple regulatory requirements inherent in 
multi-regional clinical trials. Additionally, a larger num-
ber of countries are connected to higher screening failure 
ratios (p < 1e-3), which may reflect the tendency for stud-
ies with more complex patient recruitment requirements 
to extend across multiple countries. On the other hand, 
as the number of countries increases, we observe shorter 
site-specific enrollment durations (p < 1e-3) at the cost 
of longer total durations across sites. Specifically, for 
each country added, the linear model expects a shortened 
enrollment duration by almost 8 days while simultane-
ously making overall study duration over 10 days longer.

Second, having more primary and secondary end-
points, which could suggest that the trial is more complex, 
is associated with higher screen fail ratio (p = 0.006 and 
p < 1e-3 for primary and secondary endpoints). Third, 
a higher number of planned patient visits are correlated 
with increased dropout ratio (p < 1e-3) and longer study 
duration (p < 1e-3), possibly due to higher burdens on 
patients and site investigators. Each additional examina-
tion procedure is associated with more than one percent-
age point increase in dropout ratio.

Finally, as expected, having higher planned patient 
enrollment is correlated with longer enrollment duration 
(p = 0.003), with an average of 1 extra day per 60 patients 
added. Additionally, in Fig. II, we use accumulated local 
effects (ALE) to directly visualize the effects of a sub-
set of features on our GBM predictions (45). ALE is a 
method of understanding the average influence certain 
features have on a model’s predictions that is more robust 
given highly correlated covariates. We find the interpre-
tations from ALE are consistent with our interpretation 
of the linear coefficients. Furthermore, we provide the 
importance of a subset of actionable features used in our 
GBM, defined as the information gained from using the 
feature in the model (Fig. III). Interestingly, we find that 
planned patient enrollment and the number of eligibil-
ity criteria are among the most important features, even 
though they are not significant in our linear model in most 

metrics. This suggests a strong nonlinear relationship, 
affecting operational efficiency through their interac-
tions with other features. We also report that the number 
of planned visits has a disproportionate effect on dropout 
ratio as compared to other metrics, reflecting the impact 
of the undue patient burden on patient retention.

DISCUSSION

Our results suggest that trial features can be relatively 
robust predictors of a trial’s operational efficiency. We 
support our results through analyses by drug names, time 
periods, and sponsor companies. The results are also con-
sistent across therapeutic areas and study phases. Cor-
relations found in the data generally support findings in 
previous studies that complex trials perform worse in 
patient recruitment and trial durations (34). However, this 
large-scale analysis of trials shows that this relationship 
is not straightforward, as some types of trial complexity 
are correlated with improvements in operational efficiency.

We find models that predict patient recruitment metrics 
using trial features have higher performance than models 
that predict trial duration metrics. Additionally, more fine-
grained time metrics like pre-enrollment duration can be 
subject to regulatory burdens that are out of the scope of trial 
design. As a whole, operational efficiency is multifaceted 
and must be evaluated in the context of the interaction of 
multiple trial features. In practice, investigators and sponsors 
face tradeoffs between operational and scientific efficiency 
(e.g., smaller studies may be shorter but have less statistical 
power). Additionally, trial features do not have strictly linear 
relationships with efficiency — adding or subtracting certain 
features does not lead to efficiency improvements across the 
board. Furthermore, our count-based features for eligibility 
criteria and procedures do not take into account the specific 
content but instead capture a relative scale of complexity. 
Nonetheless, our analysis underscores the importance of a 
data-driven approach to modeling and understanding clinical 
trial design, as well as the large-scale curation and collection 
of efficiency metrics for clinical trials.

Our model provides a proof-of-concept for using machine 
learning to forecast trial operational metrics such as study 
duration and screen fail ratio. Such predictions can provide 
trial designers and companies with additional information 
while planning and designing trials. In improving the opera-
tional efficiency of a trial, care should be taken not to impact 
the scientific utility of the trial or affect patient safety. A 
priority of the trial design is to deliver robust answers to the 
scientific questions it is addressing and to generate impor-
tant data for key stakeholders. Any actions taken to increase 
the operational efficiency should be taken in the context of 
ensuring the scientific objectives of the trial can still be met. 
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Computational predictions and models like ours should not 
be used in isolation but rather in combination with interac-
tions with patient advocacy groups, investigators, payers, 
and health authorities.

As with most machine learning and forecasting models, 
the predictions are made based on correlations rather than 
causal relationships. For example, our model learns that tri-
als with a larger number of primary endpoints tend to have 
longer durations, a relationship that is not necessarily causal. 
Moreover, some of the trial features that our model takes as 
input (e.g., therapeutic area, phase) are not design decisions 
that can be modified by the study team. Finally, the current 
trial features do not reflect all characteristics of a clinical 
trial, specifically those that are subjective like specific regu-
latory or ethical characteristics. Despite these limitations, 
model forecasts can still be useful for operational planning 

and fill an existing gap in the design process, which is to 
improve trial design decisions without full dependence on 
conventional wisdom or legacy norms.

CONCLUSION

The operational efficiency of clinical trials is inexplicably 
tied to the rate of progress of medicine. In this study, we 
show that data-driven forecasts of efficiency metrics are fea-
sible using commonly collected study design features. Addi-
tionally, we use our model to examine relationships between 
trial features and operational outcomes, which help in under-
standing the impact of clinical trial design on efficiency. We 
hope that these results can reinforce the systematic collec-
tion and modeling of clinical trial data at a large-scale. We 

Fig. II  We directly analyze the effects of a subset of actionable fea-
tures in our LightGBM model using accumulated local effect (ALE) 
plots, which show the average effect of features on the prediction of 
a machine learning model. The x-axis represents the observed val-
ues of a feature, while the y-axis represents the effect of that feature 
compared to an average prediction. For example, in the top left plot, 
an ALE estimate of 20 days when the number of countries is 10 

means that the model predicts the pre-enrollment duration to be 20 
days more than the average prediction when there are 10 countries. 
The 95% confidence intervals are provided as the gray area around 
the blue lines. The black lines on the x-axis represent a rug plot that is 
denser around values that are more represented in the dataset. These 
directions of the influence found in the plots are in concordance with 
our simpler linear model
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anticipate the predictive power and reliability of such models 
to improve as more rich data is collected over time.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1208/ s12248- 022- 00703-3.
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