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Abstract 

Background: Sepsis is a heterogeneous syndrome, and the identification of clinical subphenotypes is essential. 
Although organ dysfunction is a defining element of sepsis, subphenotypes of differential trajectory are not well stud-
ied. We sought to identify distinct Sequential Organ Failure Assessment (SOFA) score trajectory-based subphenotypes 
in sepsis.

Methods: We created 72-h SOFA score trajectories in patients with sepsis from four diverse intensive care unit (ICU) 
cohorts. We then used dynamic time warping (DTW) to compute heterogeneous SOFA trajectory similarities and 
hierarchical agglomerative clustering (HAC) to identify trajectory-based subphenotypes. Patient characteristics were 
compared between subphenotypes and a random forest model was developed to predict subphenotype member-
ship at 6 and 24 h after being admitted to the ICU. The model was tested on three validation cohorts. Sensitivity 
analyses were performed with alternative clustering methodologies.

Results: A total of 4678, 3665, 12,282, and 4804 unique sepsis patients were included in development and three 
validation cohorts, respectively. Four subphenotypes were identified in the development cohort: Rapidly Worsening 
(n = 612, 13.1%), Delayed Worsening (n = 960, 20.5%), Rapidly Improving (n = 1932, 41.3%), and Delayed Improving 
(n = 1174, 25.1%). Baseline characteristics, including the pattern of organ dysfunction, varied between subpheno-
types. Rapidly Worsening was defined by a higher comorbidity burden, acidosis, and visceral organ dysfunction. 
Rapidly Improving was defined by vasopressor use without acidosis. Outcomes differed across the subphenotypes, 
Rapidly Worsening had the highest in-hospital mortality (28.3%, P-value < 0.001), despite a lower SOFA (mean: 4.5) 
at ICU admission compared to Rapidly Improving (mortality:5.5%, mean SOFA: 5.5). An overall prediction accuracy 
of 0.78 (95% CI, [0.77, 0.8]) was obtained at 6 h after ICU admission, which increased to 0.87 (95% CI, [0.86, 0.88]) at 
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Introduction
Sepsis is defined as a dysregulated immunological 
response to infection that results in acute organ dysfunc-
tion [1, 2]. The morbidity and mortality of sepsis remain 
high despite decades of research and numerous failed 
clinical trials [3, 4]. Recent research has highlighted that 
sepsis is a complex and heterogeneous syndrome, which 
includes a multidimensional array of clinical and biologi-
cal features [5]. Identifying rigorous sepsis subpheno-
types that present with similar prognostic markers and 
pathophysiologic features has the potential to improve 
therapy  [6–9].

Recent sepsis subphenotyping studies used static 
measurements available soon after admission to the 
emergency department or intensive care unit (ICU) to 
characterize patients [5, 10–12]. However, due to the 
stochastic nature of infection and variable presentation 
to health care after developing symptoms, static assess-
ments of sepsis subphenotypes may be incomplete, ignor-
ing the dynamic nature of organ failure in sepsis [13].

More recently, subphenotypes characterized by 
dynamic patient temperature trajectories have been 
identified in sepsis. The differential pattern of tempera-
ture change may represent a varied underlying inflam-
matory response to infection [1]. The trajectory of the 
Sequential Organ Failure Assessment (SOFA) score after 
ICU admission has been used to predict outcomes and 
improve prognostic stratification in sepsis [13, 14]. In a 
recent study, Sanchez-Pinto et al. [15] leveraged a matrix 
factorization-based approach to identify multiple organ 
dysfunction syndrome subphenotypes according to 
longitudinal pediatric SOFA (pSOFA) scores, but their 
approach was focusing on the subphenotypes captured 
by the “motifs,” or frequent subsequence patterns, of the 
SOFA trajectories, which may not characterize the long 
term trends encoded in those trajectories well. How-
ever, whether the trajectory of multisystem organ failure 
is associated with distinct phenotypic patterns in sepsis 
remains largely unexplored. Identifying distinct subphe-
notypes of organ dysfunction trajectory in sepsis can 
refine our understanding of the natural history of sepsis 

in the ICU in response to standard of care treatment and 
define patterns of disease that may benefit from novel 
therapeutic strategies [16].

The objective of this study was to develop and evalu-
ate sepsis subphenotypes. The first goal was to determine 
whether distinct SOFA score trajectory-based subphe-
notypes in patients with sepsis can be identified through 
the electronic health record. The second goal was to 
understand whether those different subphenotypes are 
associated with the patterns of biomarkers and clini-
cal outcomes. The third goal was to determine whether 
the identified subphenotypes can be predicted by using 
patient baseline characteristics and early-stage clinical 
features.

Methods
Overview
We did a cohort study on datasets that contained granu-
lar patient level data from a total of 221 hospitals in the 
USA, whose overall workflow is illustrated in Fig. 1. Our 
goal was to derive sepsis subphenotypes of patients in 
ICU according to their SOFA organ dysfunction trajec-
tories using dynamic time warping (DTW) [17] and hier-
archical agglomerative clustering (HAC) [18]. We then 
characterized these subphenotypes using comprehensive 
patient information including demographics, comor-
bidities, use of mechanical ventilation, type of ICU unit, 
admission source, organ source of sepsis, and examined 
their associated clinical outcomes as well as clinical bio-
markers. We further built multiple random forest models 
to predict the derived subphenotypes from different time 
points’ patient clinical characteristics. To ensure replica-
bility, the same analysis pipeline was conducted in three 
validation cohorts.

Definition of sepsis and study population
The development cohort (Medical Information Mart for 
Intensive Care III database: MIMIC-III) was from Beth 
Israel Deaconess Medical Center (BIDMC) with admis-
sions dating from 2001 to 2012, which has 673 licensed 
beds, including 493 medical/surgical beds, 77 critical 

24 h. Similar subphenotypes were replicated in three validation cohorts. The majority of patients with sepsis have an 
improving phenotype with a lower mortality risk; however, they make up over 20% of all deaths due to their larger 
numbers.

Conclusions: Four novel, clinically-defined, trajectory-based sepsis subphenotypes were identified and validated. 
Identifying trajectory-based subphenotypes has immediate implications for the powering and predictive enrichment 
of clinical trials. Understanding the pathophysiology of these differential trajectories may reveal unanticipated thera-
peutic targets and identify more precise populations and endpoints for clinical trials.

Keywords: Sepsis, Subphenotype, Sequential Organ Failure Assessment (SOFA) score, Precision medicine, Dynamic 
time warping
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care beds, and 62 OB/GYN beds [19]. The first valida-
tion cohort was from Northwestern Medicine Enterprise 
Data Warehouse (NMEDW), which is a network of 

eleven hospitals located in northern Illinois with 2,554 
beds in total, with ICU admissions dating from 2012 to 
2019 [20]. The second validation cohort was from the 

Fig. 1 Workflow of study. A The MIMIC-III dataset was used as development cohort and NMEDW, eICU, and CEDAR datasets were used as validation 
cohorts. Electronic health records including laboratory tests, vital signs, and medication were extracted to compute the SOFA score every 6 h 
during 72 h after admission to ICU. B Each patient was represented as a 72-h SOFA score trajectory. Dynamic time warping (DTW) was used to 
compute heterogeneous SOFA trajectory similarities and HAC was applied to identify subphenotypes based on trajectory similarities. C To re-derive 
subphenotypes in three validation cohorts and consider sensitivity analysis to clustering method, specifically, use another method (Group-Based 
Trajectory Modeling, GBTM) to generate subphenotypes. Statistical analysis were performed among subphenotypes in terms of demographic 
factors, laboratory tests and vital signs. D The predictive model of subphenotypes at successive time points (hours 6, 24, 36, 48, 60) after ICU 
admission was constructed based on a random forest classifier by using patients’ clinical data including laboratory tests, vital signs, and SOFA 
subscores
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eICU collaborative research database, which combined 
multicenter data from patients who were admitted to 
one of 335 units at 208 hospitals located throughout the 
USA between 2014 and 2015 [21]. The third validation 
cohort was from Weill Cornell Critical carE Database for 
Advanced Research (CEDAR) with ICU admissions dat-
ing from 2001 to 2020, which was built on NewYork-Pres-
byterian/Weill Cornell Medical Center (NYP/WCMC), 
including 862 beds in total [22]. The inclusion–exclusion 
cascade for the patients are shown in Additional file  1: 
Fig. S1, where Sepsis-3 criteria are defined as in Singer 
et al. [2]

SOFA score computation and model descriptions
The SOFA score was derived from six organ-specific sub-
scores including respiration, coagulation, liver, cardio-
vascular, CNS, and renal [16], which was obtained every 
6 h within the first 72 h of ICU admission. For each 6-h 
period, the worst variable value was used to compute the 
SOFA subscores. To obtain the urine output during 6 h, 
we divided daily urine output by 4. The lowest GCS for 
each 6-h period was used irrespective of sedation. Miss-
ing values (Additional file  1: Table  S14) were imputed 
using last observation carried forward (LOCF) and next 
observation carried backward (NOCB) [23]. If there was 
no any value during the first 72 h, we used 0 to fill.

After the SOFA scores were derived, each patient is 
represented as a vector of 12 SOFA scores from the first 
6 h to the last 6 h across the 72-h period after ICU admis-
sion. Then, DTW and HAC were used to derive subphe-
notypes [17]. In particular, DTW was used to evaluate 
the similarities between pairwise patient SOFA trajec-
tories (Additional file 1: Figs. S19 and S20). This method 
can capture the differences among the evolution hetero-
geneity in terms of the temporal curves, which can assess 
similarity between patients robustly. HAC was then used 
to perform clustering among patients based on the simi-
larities obtained from DTW. Multiple clustering indices 
(Supplemental Appendix 7) were calculated to determine 
the optimal numbers of subphenotypes.

Subphenotype reproducibility and prediction
To ensure the robustness of the derived subphenotypes, 
we re-derived them with group-based trajectory mod-
eling (GBTM), which is one type of latent class analysis 
(LCA) that assigns each patient a probability of belong-
ing to each particular subphenotype on the basis of maxi-
mum likelihood estimation [24].

We trained a random forest model to predict the 
derived subphenotypes from the baseline patient clini-
cal collected characteristics at successive time points 
after ICU admission, with the goal of examining whether 
the trajectory subphenotypes could be predicted early. 

Candidate predictors included demographics, comor-
bidities, SOFA subscores, laboratory tests, and vital signs. 
Predictor contributions were evaluated with the Shapley 
additive explanations (SHAP) strategy [25].

Statistical analysis
Data were analyzed using tslearn package 0.3.1 and scikit-
learn package 0.22.2 with Python 3.7. Survival analysis to 
28 days was performed using Kaplan–Meier curves. Sta-
tistical significance was set at P < 0.05, and all tests were 
2-tailed. The detailed descriptions about statistical test-
ing are shown in Supplemental Appendix 2.

Results
Cohort characteristics
Our development cohort MIMIC-III had 4,678 sepsis 
patients with the median age 65.9  years (Interquartile 
Range (IQR) [53.7–77.9]), which included 2,625 male 
(56.1%) and 3,367 white (71.9%) patients. The overall in-
hospital mortality rate was 10.9%, and the median ICU 
length-of-stay was 2.8  days (IQR [1.6–5.6]). There were 
1,893 patients (40.5%) treated with mechanical ventila-
tion during the first three days. The mean baseline SOFA 
score obtained from the first 6 h after ICU admission was 
4.96 (Standard Deviation (SD): 2.8). Most of the patients 
(2,611, 55.8%) were in the medical intensive care unit 
(MICU). The overall demographic distributions of the 
validation cohorts from NMEDW(n = 3,665) and eICU 
[21] (n = 12,282) are similar to the development cohort. 
Patients in validation cohort CEDAR (n = 4,804) were 
older (median age 77 years (IQR [66.0–88.0]) compared 
to development cohort. The overall in-hospital mortal-
ity rates of patients in NMEDW, eICU, and CEDAR were 
14.0%, 10.5%, and 199%, respectively. The median length-
of-stay were 3.8 days (IQR [1.9–7.9]), 2.8 days (IQR [1.7–
5.1]), 4.4 days (IQR [2.7–7.9]). There were 1,524 (41.6%), 
5,772 (47.0%), and 2,263 (47.1%) patients that needed 
mechanical ventilation in the first three days. The mean 
baseline SOFA scores were 5.68 (SD:2.8), 5.9 (SD:3.1), 
and 6.4 (SD:3.1) in validation cohorts.

Comparisons between survivors and nonsurvivors
In the development cohort, nonsurvivors were older than 
survivors, with a median age of 71.5  years (IQR, [59.9–
80.9]) compared with 65.2  years for survivors (IQR, 
[53.2–77.4], P-value < 0.001). Nonsurvivors had higher 
comorbidity burden with a median Elixhauser index 
score [26] 7.0 (IQR [2.0–12.0]). Median ICU length-of-
stay for nonsurvivors was 3.95 days (IQR [1.9–7.7]), and 
the rate of mechanical ventilation during the first three 
days was 59.8%. Nonsurvivors had higher baseline SOFA 
scores, with a mean value 7.1 (SD: 3.7). More nonsurvi-
vors were admitted in MICU (Additional file 1: Table S1). 
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Similar statistics in validation cohorts are shown in Addi-
tional file 1: Tables S2, S3, and S4.

SOFA trajectory and the derived subphenotypes
Based on the pairwise patients’ SOFA trajectory similar-
ity matrix obtained from DTW, we generated cluster-
maps with HAC (Additional file  1: Fig. S2), where four 
distinct clusters were identified as subphenotypes. The 
number of clusters was determined according to multi-
ple clustering indexes (Additional file 1: Appendix 6 and 
Table S5).

The overall trajectory and prevalence of each sub-
phenotype across four cohorts are shown in Figs. 2 and 
3. Specifically, in the development cohort, the Rapidly 

Worsening subphenotype (n = 612, 13.1%) was character-
ized by continuously increased SOFA scores from a mean 
(SD) of 4.5 (2.8) at admission to more than 7 at 72  h. 
This subphenotype had the fewest patients. The Delayed 
Worsening subphenotype (n = 960, 20.5%) was character-
ized by decreased SOFA scores within the first 48 h from 
a mean (SD) of 5.2 (2.7) at baseline to 3.7 (2.8), followed 
by an increase over the last 24  h. The Rapidly Improv-
ing subphenotype (n = 1,932, 41.3%) was characterized 
by a consistent continuous improvement in SOFA scores 
from a mean (SD) of 5.54 (2.9) at baseline to less than 3. 
This was the most common subphenotype and it had the 
highest SOFA score at baseline. The Delayed Improving 
subphenotype (n = 1,174, 25.1%) was characterized by an 

Fig. 2 Sequential Organ Failure Assessment (SOFA) trajectories of the identified subphenotypes in development and three validation cohorts. DI: 
Delayed Improving; RI: Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening
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increase and then a gradual decrease in SOFA score over 
72 h. It had the lowest SOFA score at baseline with mean 
(SD) 4.0 (2.4). Similar trajectory trends were obtained in 
all three validation cohorts (Figs. 2 and 3, Supplemental 
Appendix  3). Individual SOFA subscore trajectories for 
each subphenotype are provided in Additional file 1: Figs. 
S3, S4, S10, and S14.

Patient characteristics comparisons across subphenotypes
Patient characteristics differed across subphenotypes 
(Table 1, Figs. 4, 5, and Additional file 1: Table S6). Spe-
cifically, Rapidly Worsening patients had the highest 
rates of mechanical ventilation (46.41%), the highest 
median Elixhauser comorbidity burden value of 5 (IQR 
[0–10]) but the lowest baseline SOFA score compared 
to the other subphenotypes. They had the highest mor-
tality rate (Fig.  4A 28.3%, P-value < 0.001) and a longer 
length of stay (Table  1, 2.9  days, P-value < 0.001). Rap-
idly Improving patients had the lowest rate of mortality 
(Fig.  4A 5.5%) and mechanical ventilation (37.9%), and 
the shortest length-of-stay (2.4  days). It had the high-
est proportion of patients meeting criteria for septic 
shock (15.5%, P-value = 0.002). Delayed Improving and 
Delayed Worsening patients had lower rates of mortal-
ity (10.7%, 10.6%) and mechanical ventilation (42.5%, 
39.3%) than the Rapidly Worsening subphenotype. The 

median age of the four subphenotypes was similar in the 
development cohort. Male patients were more common 
in all subphenotypes. Chord diagrams (Fig.  5) showed 
the differences of subphenotypes in terms of abnormal 
clinical biomarkers. The Rapidly Worsening group was 
more likely to have patients with abnormal cardiovas-
cular biomarkers (bicarbonate, troponin T or I, lactate) 
and hematologic (such as hemoglobin, INR, platelet, glu-
cose, RDW). Patients in this subphenotype had a higher 
chronic comorbidity burden and had abnormal SOFA 
subscores including respiration, coagulation and liver. 
The Rapidly Improving patients were more likely to have 
abnormal inflammatory laboratory values (temperature, 
WBC, bands, CRP, albumin, lymphocyte percent) and 
abnormal cardiovascular, CNS, and renal SOFA sub-
scores. There was a lower chronic comorbidity burden 
in this subphenotype. Delayed Worsening group had 
more abnormal hematologic and respiration, coagula-
tion, CNS, and SOFA renal subscores. Abnormal respi-
ration, coagulation, and cardiovascular SOFA subscores 
were strongly associated with Delayed Improving. The 
characteristics on validation cohorts are provided in 
Additional file 1:  Appendix 4 and Tables S7, S8, S9, S10, 
S11, and S12. The associations between all comorbidi-
ties and subphenotypes were investigated and shown in 
Additional file 1: Tables S16, S17, S18, and S19. Multiple 

Fig. 3 The prevalence of each subphenotype in development (MIMIC-III) and other three validation cohorts (NMEDW, eICU, CEDAR). DI: Delayed 
Improving; RI: Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening
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comorbidities such as congestive heart failure, renal 
failure, liver disease, and cancer showed the differences 
among subphenotypes.

Subphenotype reproducibility and prediction
Sensitivity analysis with another clustering approach 
GBTM confirmed the four subphenotypes with the 
data from development cohort (Additional file  1: Fig. 
S8). Patients’ memberships of the four subphenotypes 
re-derived by GBTM were highly consistent with those 
obtained from HAC (Additional file 1: Fig. S9), and thus, 

we did not find substantial changes in clinical character-
istics of those subphenotypes derived from the sensitivity 
analysis (Additional file 1: Table S13).

We trained random forest models for predicting sub-
phenotypes according to early-stage patient characteris-
tics. Overall, with the first 6 h after ICU admission, the 
models obtained the accuracy of 0.78 (95% Confidence 
Interval [CI] [0.77, 0.8]) in development cohort and 0.79 
(95% CI [0.78, 0.8]), 0.81 (95% CI [0.8, 0.84]), and 0.82 
(95% CI [0.81, 0.84]) in NMEDW, eICU, and CEDAR 
validation cohorts, respectively. Predictor contributions 

Table 1 Patient characteristics among subphenotypes in the development cohort

Infection items were defined based on ICD-9 code (see Additional file 1: Table S15)

IQR interquartile range, SD standard deviation, SOFA sequential organ failure assessment, SICU surgical ICU, CCU  coronary care unit, TSICU thoracic surgery ICU, MICU 
medical ICU, CSRU cardiac surgery ICU, DI delayed improving, RI rapidly improving, DW delayed worsening, RW rapidly worsening
† P-value calculated by Chi-square test/Fisher’s exact test, or student’s t-test/Mann–Whitney test where appropriate

Characteristics Total (N = 4,678) DI (N = 1,174) RI (N = 1,932) DW (N = 960) RW (N = 612) P-value†

Age, median (IQR) 65.9 [53.7–77.9] 67.25 [54.8–79.2] 65.3 [53.3–77.2] 66.9 [53.9–78.3] 64.5 [52.5–76.7] 0.204

Sex, No. (%)

 Male 2625 (56.1) 594 (50.6) 1100 (56.9) 548 (57.1) 383 (62.6) 0.081

 Female 2053 (43.9) 580 (49.4) 832 (43.1) 412 (42.9) 229 (37.4)

Race, No. (%) 0.207

 White 3367 (71.9) 870 (74.1) 1398 (72.4) 670 (69.8) 429 (70.1)

 Black 424 (9.1) 92 (7.8) 189 (9.8) 101(10.5) 42 (6.9)

 Other 887 (18.9) 212 (18.1) 345 (17.9) 189 (19.7) 141(23.0)

 Elixhauser index, median (IQR) 4.0 [0.0–9.0] 4.0 [0.0–9.0] 4.0 [0.0–9.0] 4.0 [0.0–9.0] 5.0 [0.0–10.0] 0.015

 Length stay, median (IQR) 2.8 [1.6–5.6] 2.9 [1.8–6.2] 2.4 [1.5–4.8] 2.9 [1.7–5.3] 2.9 [1.6–6.7]  < 0.001

 Mechanical ventilation at admission, No. (%) 1893 (40.5) 499 (42.5) 733 (37.9) 377 (39.3) 284 (46.4)  < 0.001

 Baseline SOFA, mean (SD) 4.96 (2.8) 4.0 (2.4) 5.5 (2.9) 5.2 (2.7) 4.5 (2.8)  < 0.001

ICU unit at admission, No. (%) 0.037

 SICU 771 (16.5) 185 (15.8) 341 (17.7) 135 (14.1) 110 (17.9)

 CCU 443 (9.5) 117 (9.9) 167 (8.6) 94 (9.8) 65 (10.6)

 TSICU 593 (12.7) 173 (14.7) 226 (11.7) 119 (12.4) 75 (12.3)

 MICU 2611 (55.8) 634 (54.0) 1087 (56.3) 569 (59.3) 321 (52.5)

 CSRU 260 (5.6) 65 (5.5) 111 (5.8) 43 (4.5) 41 (6.7)

Admission location, No. (%) 0.196

 Transfer from other hospital 810 (17.3) 213 (18.1) 304 (15.7) 165 (17.2) 128 (20.9)

 Emergency room 1497 (32.0) 355 (30.2) 628 (32.5) 328 (34.2) 186 (30.4)

 Clinic referral 1985 (42.4) 493 (41.9) 847 (43.8) 396 (41.3) 249 (40.7)

 Transfer from ward 4 (0.1) 2 (0.2) 1 (0.1) 1 (0.1) 0 (0.0)

 Physician referral 367 (7.9) 106 (9.0) 145 (7.5) 69 (7.2) 47 (7.7)

 Transfer from skilled nursing facility 15 (0.3) 5 (0.4) 7 (0.4) 1 (0.1) 2 (0.3)

Infection item, No. (%)

 Central nervous system 56 (1.2) 10 (0.9) 27 (1.4) 8 (0.8) 11 (1.8) 0.189

 Intra-abdominal 880 (18.8) 230 (19.6) 363 (18.8) 172 (17.9) 115 (18.8) 0.808

 Pneumonia 1257 (26.9) 328 (27.9) 494 (25.6) 262 (27.3) 173 (28.3) 0.385

 Septicemia bacteremia 1587 (33.9) 359 (30.6) 717 (37.1) 300 (31.3) 211 (34.5)  < 0.001

 Skin soft tissue 276 (5.9) 60 (5.1) 140 (7.3) 42 (4.4) 34 (5.6) 0.008

 Urinary tract 1044 (22.3) 276 (23.5) 439 (22.7) 228 (23.8) 101 (16.5) 0.003

 Septic shock, No. (%) 635 (13.6) 148 (12.6) 299 (15.5) 101 (10.5) 87 (14.2) 0.002



Page 8 of 13Xu et al. Critical Care          (2022) 26:197 

Fig. 4 Survival analysis in terms of the identified subphenotypes in development and three validation cohorts. DI: Delayed Improving; RI: Rapidly 
Improving; DW: Delayed Worsening; RW: Rapidly Worsening. The A, B, C, and D show the survival analysis results in development and three 
validation cohorts, respectively
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on four cohorts are shown in Fig.  6 and Additional 
file 1: Figs. S5, S11, and S15, which demonstrated differ-
ent patterns when predicting different subphenotypes. 
For example, creatinine, bicarbonate, RDW, and BUN 

contribute more for predicting the Rapidly Improving 
group, while platelet, INR, AST, and lactate contributed 
more to the prediction of the Rapidly Worsening group. 
The prediction performance at successive time points 

Fig. 5 Chord diagrams showing abnormal variables by subphenotype in development cohort. a abnormal biomarkers vs. all subphenotypes; I: 
abnormal biomarkers vs. DI; II: abnormal biomarkers vs. RI; III: abnormal biomarkers vs. DW; IV: abnormal biomarkers vs. RW; b abnormal subscores 
vs. all subphenotypes; V: abnormal subscores vs. DI; VI: abnormal subscores vs. RI; VII: abnormal subscores vs. DW; VIII: abnormal subscores vs. RW. DI: 
Delayed Improving; RI: Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening
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are shown in Additional file  1: Fig. S18. The accuracy 
increased to 0.87 (95% CI [0.86, 0.88]) in development 
cohort and 0.86 (95% CI [0.85, 0.88]), 0.86 (95% CI [0.85, 
0.87]), and 0.84 (95% CI [0.83, 0.85]) in NMEDW, eICU, 
and CEDAR validation cohorts at the 24  h after ICU 
admission, respectively.

Discussion
We reported four sepsis subphenotypes based on 
dynamic organ dysfunction trajectories using a data-
driven methodology. DTW was used to calculate 
patients’ SOFA trajectory similarities because of its capa-
bility of capturing heterogeneous evolution among the 
temporal sequences robustly, based on which HAC was 
leveraged to identify patient groups with similar tra-
jectories. The subphenotypes identified were Rapidly 
Worsening, Delayed Worsening, Rapidly Improving, and 
Delayed Improving. Patients in the Rapidly Worsening 

subphenotype had progressive organ dysfunction with 
the ongoing ICU stay. The two Delayed groups had 
unstable organ dysfunction over the study period and 
the Rapidly Improving group had the highest admission 
organ dysfunction but quickly improved. Outcomes fol-
lowed SOFA trajectory across each subphenotype were 
irrespective of traditional baseline SOFA score and septic 
shock categories.

A major strength of this analysis is that we have iden-
tified time-dependent progression patterns that may be 
related to the differential response of specific organ dys-
function to standard of care interventions. For example, 
the Rapidly Improving group had cardiovascular and res-
piratory failure at admission that resolved over 72 h. The 
Rapidly Worsening groups developed multisystem organ 
failure including visceral organ dysfunction, specifically 
liver failure in addition to cardiovascular and respira-
tory failure. These differential patterns suggest varying 

Fig. 6 SHAP value-based predictor contribution to the subphenotype prediction of the predictive model in development cohort. Features’ 
importance is ranked based on SHAP values. In this figure, each point represented a single observation. The horizontal location showed whether 
the effect of that value was associated with a positive (a SHAP value greater than 0) or negative (a SHAP value less than 0) impact on prediction. 
Color showed whether the original value of that variable was high (in red) or low (in blue) for that observation. For example, in RW, a low platelets 
value had a positive impact on the RW subphenotype prediction; the “low” came from the blue color, and the “positive” impact was shown on the 
horizontal axis. DI: Delayed Improving; RI: Rapidly Improving; DW: Delayed Worsening; RW: Rapidly Worsening
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time-dependent, treatment responsive organ dysfunc-
tion pathophysiology in sepsis. The cardiovascular and 
respiratory subscores are driven by the vasopressor dose 
and PaO2/FiO2, respectively, which may respond to 
therapeutic interventions such as corticosteroids, vol-
ume resuscitation, and the application of PEEP or thera-
peutic suctioning [27]. However, as demonstrated by our 
analysis, sepsis-related renal and liver failure may be less 
modifiable with our current therapeutic strategies over 
the past twenty years [28, 29]. Our study highlights that 
patterns of organ dysfunction in patients with sepsis are 
Rapidly Improving, Rapidly Worsening, and Delayed. 
Each of these patterns may be due to a different patho-
physiology and benefit from different treatments in the 
future. However, these findings have immediate impli-
cations for those designing clinical trial endpoints such 
as change in SOFA subscore [30]. Moreover, enrolling 
patients with a Rapidly Improving phenotype into a trial 
evaluating a therapeutic agent to reduce the duration of 
organ dysfunction will unlikely reveal a difference.

It deserves noting that our Rapidly Improving patients 
had better outcomes across all patients studied, but still 
represented 21%, 36%, 21%, and 24% of all deaths in our 
development and validation cohorts (NMEDW, eICU, 
and CEDAR cohorts), respectively, despite an overall 5%, 
10%, 5%, and 9% in-hospital mortality. This low mortal-
ity rate but high numbers of absolute deaths highlights 
that further research is needed to understand the cause 
of death in patients with rapidly improving organ dys-
function in sepsis [31]. The Rapidly Worsening subphe-
notype was less common compared to rapidly improving 
and may represent patients with our classical under-
standing of septic shock [32]. More recent evidence sug-
gests that the pathophysiology of early, progressive organ 
dysfunction in our Rapidly Worsening patients may be 
due to over exuberant activation of necroinflammatory 
cell death pathways in multiple organs, highlighting the 
need for novel treatment strategies [33–35]. The Delayed 
Worsening and Improving subphenotypes had interme-
diate outcomes across our cohorts, and more nuanced 
differences in clinical characteristics. These trajectories 
may be influenced by non-resolving inflammation or 
immune paralysis [36, 37]. Further understanding of the 
biology underlying these subphenotypes will be critical to 
develop the next generation of treatments for sepsis in all 
its forms.

The potential for distinct pathophysiologic etiologies 
for the differential trajectories is supported by the dif-
ferential patterns of organ dysfunction, infectious source, 
vital signs, inflammatory, hematologic, and cardiovascu-
lar variables at admission to the ICU. As shown in Fig. 5, 
and Additional file 1: Figs. S6, S7, S12, S13, S16, and S17, 
there were different variables associated with different 

groups over the course of the study. For example, those 
patients of Rapidly Improving were more likely to have 
more abnormal inflammatory markers (such as WBC, 
bands, albumin, temperature, and lymphocyte) and more 
abnormal values on cardiovascular, and CNS subscores. 
They were also more likely to have urosepsis. There was a 
lower comorbidity score in patients with this subpheno-
type, which suggests that sepsis outcomes may be more 
dependent on underlying illness. The Rapidly Worsening 
patients had more comorbidities and distinct derange-
ments in clinical variables associated with metabolic 
acidosis and hypoperfusion, e.g., a low bicarbonate and 
higher lactate, and disseminated intravascular coagula-
tion, e.g., low platelets and a higher INR and respiratory 
failure. Both of the Delayed subphenotypes had less spe-
cific variables associated with group membership, includ-
ing inflammatory, hepatic, hematologic, and pulmonary 
associated with Delayed Improvement and hemato-
logic, cardiovascular and renal variables associated with 
Delayed Worsening. These differences may be related to 
secular trends in therapeutics and differing case mixes in 
each cohort.

We built multivariable prediction models for the iden-
tified trajectory subphenotypes from patient baseline 
characteristics and early-stage clinical features. Several 
interesting findings were obtained. (1) A high comor-
bidity score tended to predict the subphenotypes of 
Rapidly Worsening because patients with high comor-
bidity burden were more likely to present worse organ 
dysfunction in ICU; (2) the roles of laboratory tests and 
vital signs were different on prediction. For example, low 
platelets had a positive impact on the Rapidly Worsen-
ing prediction and high platelets had a positive impact 
on the Rapidly Improving prediction. These prediction 
models may enhance the clinical utility of the identified 
subphenotypes in practice, as they can be predicted with 
the EHR information captured within the early hours of 
ICU admission, especially for Rapid Improving and Rapid 
Worsening subphenotypes, which has important clini-
cal implications as discussed above. Our model can be 
implemented within the EHR system as a risk calculator 
for subphenotype assignments.

Our manuscript complements and adds to other recent 
study of sepsis subphenotypes. For example, Seymour 
et al. and Knox et al. each identified four subphenotypes 
that were associated with organ dysfunction patterns and 
clinical outcomes in patients with sepsis using a panel of 
baseline clinical variables [5, 10]. There is some overlap 
in our high risk groups, notably both include liver injury 
and shock. However, our work demonstrates that the 
difference in outcome in this group is due to progres-
sive non-resolving organ dysfunction that calls for novel 
treatments. Prior work by Ferreira et  al. and Sakr et  al. 
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used changes in the SOFA score after ICU admission to 
improve prognostic stratification in sepsis, but did not 
use these changes to establish subphenotypes. Bhavani 
et al. used longitudinal temperature trajectories to iden-
tify four sepsis subphenotypes, with significant variabil-
ity in inflammatory markers and outcomes, highlighting 
the potential for novel immune signatures to be uncov-
ered through trajectory analysis [1]. Differential organ 
dysfunction trajectory may be related to the immune 
response but may also be explained by differences in pre-
existing frailty, effective source control, resuscitation, and 
processes of care.

This study has several limitations. First, our sepsis 
subphenotypes were identified based on the data-driven 
method, which may not be directly related to underly-
ing differences in biology. Integration of biological data 
may help refine our understanding of differential dis-
ease progression and the potential for therapeutics to 
alter the course. Second, although we used many sepa-
rate hospitals in validation, all of them are located in the 
USA, which may limit generalizability to other locations 
of care. Moreover, these observational cohorts may not 
directly reflect sepsis clinical trial populations but are 
representative of academic and community hospitals 
across the USA. Third, we did not evaluate the effect of 
specific randomized interventions on SOFA score tra-
jectory. Fourth, this identified sepsis subphenotypes 
only focused on patients admitted to an ICU, which is 
subject to differences in ICU admission practices across 
institutions. Last but not the least, we did not investigate 
the association between care processes and the subphe-
notypes, which would be an important topic in future 
research.

Conclusion
We discovered four sepsis subphenotypes with different 
natural histories following admission to the ICU. Our 
results suggest that these subphenotypes represent a dif-
ferential host pathogen response in the setting of cur-
rent standard of care therapy. Understanding differential 
trajectory has implications for the design and predictive 
enrichment of therapeutic clinical trials [38]. Further 
understanding of the underlying biology of subpheno-
types may reveal insights into sepsis pathophysiology and 
improve the personalization of sepsis management.
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