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The resistance of bacterial pathogens to commonly used anti-
biotics is a growing public health concern, threatening the 
efficacy of antibiotic drugs1,2. The use of antibiotics benefits 

resistant strains, exacerbating the problem over time3–7. At the sin-
gle-patient level, the efficacy of antimicrobial treatment is critically 
dependent on correctly matching antibiotic choice to the specific 
susceptibilities of the pathogen8–10. Ideally, correct prescription 
should be based on direct measurement of the antibiotic suscep-
tibilities of the infecting pathogen. In practice though, to provide 
rapid clinical intervention, drugs are often prescribed empirically in 
the absence of culture susceptibility measurements, risking incor-
rect and therefore ineffective treatment.

This problem is of particular importance in urinary tract infec-
tions (UTIs), one of the most frequent community-acquired infec-
tions worldwide, for which the common practice of empirical 
treatment is jeopardized by the substantial frequency of resistant 
infections. UTIs are among the most common bacterial infections, 
with over 150 million annual cases globally11. One in three women 
will have at least one symptomatic UTI by the age of 24 and more 
than half will be affected during their lifetime12. Treatment of these 
infections accounts for about 8% of non-hospital usage of antibiot-
ics, often as part of empirical prescription13–15. The common etiolog-
ical agents of UTIs are diverse, including Escherichia coli, Klebsiella 
pneumoniae and Proteus mirabilis, as well as Gram-positive bacteria 
such as Enterococcus faecalis16–21. These pathogens are often resistant 
to several antibiotics, with resistance rates of infections exceeding 
20% for commonly used drugs17,20,22, emphasizing the challenge of 
empirically prescribing the specific antibiotics to which the infect-
ing pathogen is susceptible23.

The risk of an infection being resistant to different antibiotics 
is associated with patient demographics and comorbidities. Known 
demographic factors associated with resistance include older age24, 
gender25, ethnicity26–29, residence in a retirement home25 and travel 

to developing countries28. Known comorbidities associated with 
resistance include the presence of a urinary catheter21,25,30, immu-
nodeficiency25 and diabetes25. Notably, most of these associations 
were identified based on small patient cohorts, typically with high 
frequencies of antibiotic-resistant infections, such as retirement 
homes, rehabilitation centers or hospitals.

Beyond the patient’s demographics and comorbidities, antibiotic 
resistance has also been associated with the patient’s past clinical 
history, including recurrent UTIs, hospitalizations and resistance of 
previous infections. Risk of resistance to specific drugs have been 
shown to increase for patients with recurrent UTIs25,29,31 and past 
hospitalizations25,32. Studies have further shown that resistance of 
previous infections can be used to predict resistance in future infec-
tions33,34; however, the time extent of these associations is not well 
resolved and it is also unclear whether and how these associations 
vary across resistances to different antibiotics.

The availability of antibiotic purchase data reveals patterns of 
antibiotic use15,35 and shows that the risk of resistance increases with 
short-term prior use of antibiotics5,24,25,32,36–38. Recent large-scale 
studies showed that, across geography, resistance levels can be cor-
related with past drug consumption20,39. Resistance to fluoroquino-
lones was correlated with past consumption volumes of these same 
drugs20, while resistance to trimethoprim-sulfa was correlated with 
the volume of consumption of the same drug (cognate) as well as 
of other drugs of different pharmaceutical classes (non-cognate)20. 
Such associations of usage of a given antibiotic with future resis-
tance to other antibiotics can appear indirectly through co-occur-
rence among resistance mechanisms (for example, if resistance to 
drug X and resistance to drug Y are correlated, then direct selec-
tion by drug X to X-resistance may result in an association of drug 
X with resistance to drug Y). Resolving direct and indirect selec-
tion for resistance has been challenging in the absence of resis-
tance co-occurrence data. Negative associations, where drug use is  
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anti-correlated with resistance, have also been observed, but it has 
been difficult to discern the direction of causality20,40. Finally, the 
time extent of these positive and negative associations of resistance 
with prior antibiotic usage is not well resolved.

Here, we present an analysis of a large population of patients with 
UTIs to unravel predictive features of antibiotic resistance and test 
how these features can be combined to recommend optimal drugs 
for empirical treatment. We analyze a patient-level longitudinal data 
set of community and retirement home-acquired UTI cultures col-
lected by Maccabi Healthcare Services (MHS), Israel’s second larg-
est health maintenance organization, serving a diverse population of 
~2 million patients. Analyzing demographic factors, we find strong 
drug-specific associations with resistance. Then, comparing resis-
tance data of multiple infections from the same patient, we unravel 
a decaying long-term memory-like correlation of resistance over 
time. We also combine these culture records with patient-linked 
records of antibiotic use to quantify the extent and time of direct 
and indirect correlations of antibiotic use with resistance at the 
single-patient level. Finally, combining these demographic and his-
torical factors for personalized predictions of resistance, we develop 
machine-learning models that we demonstrate can substantially 
improve upon physician-prescribed empirical antibiotic treatment.

Results
We retrieved data of all positive urine cultures of MHS patients for 
the 10-year period between 1 July 2007 and 30 June 2017, as well as 
patient demographics and records of antibiotic purchases for these 
patients (Methods). Among all ~2 million MHS patients, there were 
711,099 recorded positive urine samples from 315,047 patients in 
total. For each positive sample, one or more bacterial species were 
isolated and characterized. The data set included species-level iden-
tification of these isolates as well as resistance profiles measured 
by VITEK 2, reinterpreted in accordance with The Clinical and 
Laboratory Standards Institute (CLSI) guidelines (sensitive, inter-
mediate and resistant). Because a multi-species infection can be 
treated by a given drug only if none of the isolates is resistant to it, 
we define for each antibiotic and each sample the ‘sample resistance’: 
the maximal resistance across all isolates from the same sample 
(96.4% of samples were identified as single species and their resis-
tance profile is simply defined as the resistance profile of their single 
isolates). All of MHS’s country-wide clinical tests are performed 
centrally (Methods), allowing reliable comparison across patients 
and time. In our analysis, we focus on resistance to the six drugs 
that were most commonly prescribed as part of empirical treatment 
of these infections (identified as the drugs commonly given on the 
same day samples were sent for culture; Table 1 and Supplementary 
Table 1; Methods). Resistance measurements for these antibiotics 
were carried out routinely over the entire 10-year period (except for 
cephalexin for which measurements are available only since 2014; 
Extended Data Fig. 1).

Three species, E. coli, K. pneumoniae and P. mirabilis, account 
for 85% of isolates (70%, 10% and 5%, respectively; Fig. 1a). These 
pathogens varied in their resistance profiles (Fig. 1b). Notably, for 
all six antibiotics, the chance of resistant infection is substantial, 
indicating that antibiotic treatment efficacy could often be under-
mined. These population-level frequencies of resistance were fairly 
static over time (for example, trimethoprim-sulfa or nitrofuran-
toin) with only mild changes observed in certain antibiotics and 
specific species (Fig. 1c and Extended Data Fig. 2). The diversity 
of pathogens and resistance patterns underscores that antibiotic 
prescriptions must be tailored to match the resistance profile of the 
infection41, motivating the development of methods to better pre-
dict resistance23.

Strong antibiotic-specific correlations of resistance with demo-
graphic factors. Consistent with previous studies, UTIs were much 

more common in females than males (~88% females)11,26 and had 
qualitatively different age distributions (Fig. 2a)11,18,26,42,43. For each 
antibiotic, we performed multivariate logistic regression for the 
odds of resistance η = PResistance/(PSensitive + PIntermediate) as a function of 
age, gender, retirement home residence, pregnancy, date of sampling 
(time since July 2007) and season of sampling (Methods: Logistic 
regression ‘Demographics’ model; intermediate levels of resistance 
were classified as sensitive since they do not exclude prescription of 
an antibiotic, especially given the higher efficacy of antibiotics in 
urine infections44). We also calculated, for each of the six antibiotics, 
the frequencies of resistance of the urine samples across age, sepa-
rated by gender, pregnancy and retirement home residence (Fig. 2c 
and Extended Data Fig. 3a).

Age, gender, pregnancy and residence in a retirement home had 
strong, yet differential, association with resistances to the six antibi-
otics. For all six antibiotics, the risk of resistance strongly increased 
with age and with retirement home residence and decreased for 
females and pregnancy (Fig. 2b,c; see Supplementary Table 2 for 
regression coefficients and 95% confidence intervals (CIs)). The 
odds ratio (OR) for age (the ratio between the adjusted odds of 
resistance in the oldest and youngest age groups; Methods) differed 
widely among the six measured antibiotics, ranging from 2 in trim-
ethoprim-sulfa and amoxicillin-CA to >8 in ciprofloxacin (Fig. 2b  
and Supplementary Table 2). For some antibiotics, the risk of an 
infection being resistant were non-monotonic with age, having an 
additional peak of higher risk at infancy or childhood (for example, 
nitrofurantoin; Fig. 2c). For all antibiotics, females had lower odds 
of resistance, yet the ORs varied substantially among the different 
antibiotics (from OR = 0.95, 95% CI: 0.93–0.97 for trimethoprim-
sulfa to OR = 0.38, 95% CI: 0.38–0.39 for cefuroxime axetil). These 
lower odds of resistance for females were often lowered even further 
with pregnancy (as much as OR = 0.48, 95% CI: 0.45–0.50 for cipro-
floxacin; Supplementary Table 2). We also identified an interaction 
between gender and age leading to heterogeneous patterns for males 
and females (for example, trimethoprim-sulfa, nitrofurantoin) and 
even to opposing interactions of gender with specific age groups 
(for example, ciprofloxacin; Fig. 2c). While, across all antibiotics, 
resistance was higher for residents of retirement homes, the cor-
relation with age within this group was reversed: the frequencies 
of resistance for retirement home residence did not increase, and 
even slightly decreased, with age (Fig. 2c and Extended Data Fig. 3a; 
possibly representing differential survivorship). The date of sample 
had some association with resistance to specific antibiotics, most 
notably cefuroxime axetil, while season had a relatively weak corre-
lation with resistance for any of the drugs (Fig. 2b). Comparing the 
frequencies of resistance across the different antibiotics, we found 
that relative resistance rates changed between age groups (Extended 
Data Fig. 3b). We concluded that among the different demographic 
factors associated with risk of resistance, age, gender and residence 
in retirement homes were the strongest, with resistances to different 
antibiotics differentially correlated with these factors and the inter-
actions among them.

Table 1 | List of antibiotic resistances analyzed in the study

antibiotics Class

Trimethoprim-sulfa Dihydrofolate reductase (DHFR) inhibitor

Ciprofloxacin Fluoroquinolone

Amoxicillin-clavulanic  
acid (CA) 

Penicillin-β-lactamase inhibitor

Cefuroxime axetil Cephalosporin

Cephalexin Cephalosporin

Nitrofurantoin Nitrofuran
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Long-term correlations of resistance among same-patient urine 
samples. Moving from demographics to clinical history, we ana-
lyzed correlations of resistance across same-patient infections, 
revealing ‘memory-like’ long-term auto-correlations and a timeless 
patient-specific tendency for resistance. Analyzing all same-patient 
pairs of samples, we calculated for each antibiotic the risk ratio 
for resistance of the second sample given the resistance of the first 
sample (ζpairs = [NR→R/(NR→R + NR→S)]/[NS→R/(NS→R + NS→S)], where 
N is the number of same-patient sample pairs with the specified 
resistance phenotypes; for example, NR→S is the number of sample 
pairs in which the first sample is resistant to the antibiotic and the 
second sensitive; Methods). Calculating ζpairs as a function of the 
time difference t = t1 − t2 between the two samples in each pair, we 
find that, for all antibiotics, these risk ratios are highest for short 
time differences and decay as the time difference increases (Fig. 3  
and Supplementary Fig. 1). Sample pairs less than a week apart 
showed substantially higher risk ratios, which we interpreted as 
repeated measurements of the same infection (Supplementary Fig. 1).  
Considering only correlations between sample pairs more than 
a week apart, we found that the risk ratios decay and finally con-
verge at long time differences, to an asymptotic constant larger than 
1 (the risk ratios are well fitted by the sum of an exponent and a  

constant, ζ ≃ +τ∕
∞C Cem

t
pairs

m ; Fig. 3a,b and Supplementary Fig. 1). 
The memory-like decay time τm of correlations among samples was 
longer than 6 months for most antibiotics and even exceeded 1 year 
for ciprofloxacin resistance, which is consistent with and even longer 
than previously observed (Fig. 3c)34. The maximal risk ratios con-
sidering previous resistance reached about 8 for short time differ-
ences for some antibiotics and typically remained larger than 3 even 
for samples taken half a year apart (Fig. 3a,b and Supplementary  
Fig. 1). At much longer times, the risk ratio decayed, and ζpairs con-
verged to a constant, but interestingly it did not fully diminish, but 
rather converged to values larger than 1 (Fig. 3a,b,d, green), rep-
resenting timeless patient-specific tendencies for resistance. These 
decaying memory-like and timeless correlations could stem from 
repeated same-strain infections or from correlations with other 
patient-specific factors. In either case, these strong memory-like 
and timeless correlations can potentiate predictions of resistance.

Direct and indirect selection for resistance following past antibi-
otic purchase. Next, we linked the infection data set with patient-
resolved antibiotic purchase data. For each patient with recorded UTI 
samples, we retrieved all records of antibiotic purchase made during 
the 20- year period from 1 Jan 1998 to 30 Jun 2017. For analysis,  
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we used the 11 most purchased drugs (Supplementary Table 1). 
Antibiotics identical or highly similar to the ones used for resistance 
measurement were assigned as cognate antibiotics of these resis-
tance measurements (Methods; Supplementary Table 1). For each 
UTI sample, we counted the number of purchases made by the same 
patient of each of the 11 drugs at distinct time intervals before the 
sample (Methods). Then, we applied multivariate logistic regression 
to correlate resistance to each of the six antibiotics with these drug 
purchase counts (Methods: Logistic regression ‘Purchase history’; 
Fig. 4a and Extended Data Fig. 4a).

We identified strong long-term patient-level associations of 
resistance with past purchases of both cognate and non-cognate 
antibiotics. These purchase-resistance associations peaked at time 
differences of 1 to 2 weeks between purchase and sample, and often 
lasted for months and even longer than 1 year (Fig. 4a and Extended 
Data Fig. 4a). For example, the associations between the purchase of 
ciprofloxacin and its cognate resistance had an OR of 1.5 after half 
a year and remained as large as 1.2 even 2 years past the purchase 
(Fig. 4a). Some weak negative associations were also identified (for 
example, ciprofloxacin resistance was negatively correlated with the 

past use of amoxicillin and cefalexin; Fig. 4a). Yet, the magnitude 
of these negative correlations decreased after adjusting for demo-
graphics, suggesting that they stemmed indirectly from correlations 
of purchases and resistance with demographics (Methods: Logistic 
regression, ‘Purchase history adjusted for demographics’; Extended 
Data Fig. 4c). Notably, drug purchases were associated not only with 
their expected cognate resistances. Indeed, use of some first-line 
antibiotics, such as ciprofloxacin and ofloxacin, increased the risk 
of a future resistance to a wide range of mechanistically diverse anti-
biotics. These abundant long-term positive associations between 
resistances and past purchase of non-cognate drugs did not stem 
from correlations of purchases and resistance with patient demo-
graphics; they remained strong even when adjusting for demo-
graphics (Extended Data Fig. 4c). Together, these results support 
strong and long-lasting patient-level associations of antibiotic resis-
tance with the past use of both cognate and non-cognate antibiotics.

Exposing direct drug-to-resistance associations by disentangling 
correlations among resistances, we found that drug usage specifically 
selects for its cognate resistance at the single patient level. Across 
the sample data set, resistances to different antibiotics within class 
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and even resistances to antibiotics of different classes were highly 
correlated (cross-resistance; Extended Data Fig. 5). These inherent 
correlations among resistances suggest that observed associations 
between resistance to a given drug A and past purchase of a differ-
ent non-cognate drug B may arise indirectly through selection for 
resistance B and association between resistance to B and resistance 
to A. Mathematically discerning these direct and indirect effects is 
only possible when multiple resistances are considered20,45. As our 
data set contained measurements of multiple resistances for each 
sample, we were able to disentangle direct from indirect associations 
by adjusting the logistic regression for other measured resistances 
(Methods: Logistic regression ‘Purchase history adjusted for cross-
resistance’). In this cross-resistance-adjusted analysis of purchase-
resistance associations, the non-cognate associations between drug 
purchases and resistance substantially diminished and even disap-
peared, while the associations between cognate drug-to-resistance 
pairs persisted (Fig. 4b and Extended Data Fig. 4b). For example, 
considering the associations between purchases of trimethoprim-
sulfa and ciprofloxacin to their cognate resistances, we observed 
that the unadjusted and cross-resistance adjusted associations were 
of similar magnitude for cognate drugs (Fig. 4c,d, thick solid versus 
thick dashed lines), while the total association of drugs with their 
non-cognate resistance decreased considerably once the indirect 
effect was removed (Fig. 4c,d, thin solid versus thin dashed lines). 
Our analysis therefore identifies both direct and indirect selection 

for resistance at the single patient level lasting months and even 
1 year following drug use.

Predicting antibiotic resistance at the single-patient single-infec-
tion level. As resistance is strongly associated with demographics, 
sample history and purchase history, we wanted to determine the 
predictive power of these factors individually and when combined 
together and identify potential interactions among them. Models 
of logistic regression and gradient-boosting decision trees (GBDTs) 
were trained and tested on temporally separate periods: a training 
period of 9 years from 1 July 2007 to 30 June 2016 and a testing 
period of the following year, from 1 July 2016 to 30 June 2017 (for 
cephalexin, the training period was modified to avoid a time period 
during which resistance to this drug was not routinely measured, 
Extended Data Fig. 1). This temporal separation between training 
and testing data emulates forecasting resistance, as would be the 
case in real-life implementation of such a method. The area under 
the curve (AUC) of receiver operating characteristic was used as a 
standard measure for predictive power46.

Logistic regression and GBDT models provided personal-
ized drug-specific prediction of resistance. Individually consider-
ing demographics, sample history and purchase history, we find 
that each of these sets of features had significant predictive power, 
with their relative prominence varying across the different antibi-
otics (Extended Data Fig. 6). Combining all these feature sets in 
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a complete logistic regression model (Methods: Logistic regres-
sion ‘Complete’), greatly increased the predictability of resistance 
(AUC ranged from 0.7 for amoxicillin-CA to 0.83 for ciprofloxacin;  

Extended Data Fig. 6). Predictability of resistance was slightly 
increased by the GBDT models (Methods). For each given antibi-
otic k, considering the model-assigned resistance probabilities Pk

m 
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of each sample m, we can define threshold values Pk
threshold that allow 

substantial reduction in the risk of resistance, while allowing treat-
ment of the vast majority of the infections (Fig. 5a). Setting this 
threshold to allow treatment of 75% of samples by each of the six 
drugs, the vast majority of infections can be treated with at least 
one of the drugs (92%, Extended Data Fig. 7). Finally, we found 
that these model-assigned probabilities of resistance can markedly 
differentiate samples resistant to one drug and sensitive to another 
(Fig. 5b, OR of 3.9 for nitrofurantoin versus cefuroxime axetil, 
P < 10−100, Fisher’s exact test; see Supplementary Fig. 3 for all other 
drug pairs). In total, these results demonstrate that machine-learn-
ing models can provide high and specific predictability of antibiotic 
resistance at the single-patient and single-infection levels, motivat-
ing the development of algorithmic drug recommendations and 
comparison of their performance with current standard of care.

Algorithmic drug recommendations substantially reduce mis-
matched treatments. Analyzing prescriptions given by physicians as 
part of current standard of care, we found that these prescriptions 
significantly, yet not strongly, reduced the rate of mismatched treat-
ments, compared with null random expectations. We identified all 
cases of ‘same-day empirical treatments’ (SDETs), where a patient 
purchased an antibiotic on the same day they had a UTI sample sent 
for culture (11,952 cases within the 1-year test period; since culture 
tests take 2–4 d, these prescriptions were necessarily given empiri-
cally). Retrospectively contrasting these empirically prescribed 
drugs with the measured resistance of their corresponding samples, 
we found an overall 8.5% (95% CI: 8.03–9.05) rate of mismatched 
treatments (the sample was resistant to the prescribed antibiotic). 
This rate was significantly, yet not strongly, lower than expected by 
chance in two different null models. First, randomly choosing for 
each of these SDET cases, one of the six drugs with equal probabili-
ties, we found an expected null mismatched treatment rate of 10.2%  
(95% CI: 9.88–10.52), which is 20% higher than observed in phy-
sicians’ prescriptions (P < 10−10, Bootstrapping, Methods; Fig. 5c). 
Second, randomly permuting among the SDET cases the same pool 
of drugs prescribed by the physicians, we found an expected null mis-
matched rate of 9.4% (95% CI: 9.00–9.71), namely 10% higher than 
observed (P = 2.3 × 10−5, Bootstrapping, Methods; Fig. 5c). Together, 
these results indicate statistically significant, but mild, patient- 
specific optimization of treatment in standard clinical practice.

Developing algorithmic drug recommendations based on the 
machine-learning predictions of resistance, we found that they 
can greatly improve on these standard-of-care rates of mismatched 
empirical treatments. To computationally recommend drugs based 
on the machine-learning assigned probabilities of resistance Pk

m, we 
considered two algorithms, unconstrained and constrained (cost-
adjusted; Extended Data Fig. 8). In the unconstrained model, we 
simply chose for each of the SDET cases the antibiotic for which 
the model predicted the risk of resistance was lowest (minimal Pk

m,  
‘Unconstrained algorithm for drug choice’, Methods). Comparing 
these recommendations to the measured antibiotic susceptibility 
of the sample, we found a mismatched rate as low as 5.1% (95% 
CI: 4.69–5.48) namely 42% lower than observed in the physician-
prescribed treatment of the same cases (P < 10−10, Bootstrapping, 
Methods; Fig. 5c). The chance of mismatched treatment was lower 
than expected not only in total, but across each of the prescribed 
drugs (Fig. 5d, top). Importantly though, the distribution of drugs 
recommended by this unconstrained algorithm was very different 
to the distribution of drugs prescribed by physicians (Fig. 5d, bot-
tom). In particular, the algorithm almost entirely refrained from 
prescribing trimethoprim and cefalexin, for which population-level 
rates of resistance were high. Optimal unconstrained algorithmic 
recommendations can thus dramatically reduce the chance of mis-
matched treatments, yet do so by drastically changing the overall 
distribution of prescribed drugs.

A model constrained to prescribe each drug at the same fre-
quency used by physicians can still greatly reduce the rate of mis-
matched treatments. The overall rate of prescription of each drug 
could reflect considerations other than minimizing mismatched 
treatment (for example, ease of use, side effects and tendency to 
avoid drugs for which population-level resistance rates are low). 
To address these considerations, here referred to as costs, we devel-
oped a constrained, cost-adjusted, algorithm (‘Constrained (cost-
adjusted) algorithm for drug choice’, Methods). To recommend 
drugs that best minimize the population rate of mismatched treat-
ments while maintaining a given population-level frequency of use 
of each drug, the algorithm assigns an effective cost for each drug 
and adjusts their values to match the required distribution of drug 
use (Methods). Applying this model to the SDET cases while adjust-
ing the drug-specific costs, such that the overall distribution of rec-
ommended drugs precisely matches the distribution of the drugs 
prescribed by physicians, this model gave a mismatched treatment 
rate of 5.9% (95% CI: 5.47–6.33), slightly above the unconstrained 
model but still 30% lower than the physicians’ rate (P < 10−10, 
Bootstrapping, Methods). The improvements in mismatch rate were 
general across the population and robust to the clinical definition of 
resistance (Extended Data Fig. 9). These results show that algorith-
mically suggested drug prescriptions can substantially reduce the 
risk of mismatched treatments even when allowed to barely per-
mute the same pool of drugs among patients.

discussion
Analyzing a large longitudinal medical data set, we demonstrate a 
high predictability of antibiotic resistance in UTIs, which can guide 
culture-free recommendation of treatment to lower the chance 
of mismatched empirical treatment. The best predictive power of 
resistance comes from combining patient-specific data of demo-
graphics, antibiotic resistance profiles of past UTIs and purchase 
history of antibiotic drugs. Considering demographics, we found 
that age, gender, pregnancy and residence in a retirement home 
were strongly associated with resistance, showing complex and 
non-monotonic patterns specific to each of the different antibiot-
ics. Utilizing repeated same-patient cultures in our database, we 
identified and characterized a personal component of memory-like 
correlations of resistance, lasting for many months and even over 
1 year. These long-term correlations can represent recurrent infec-
tions with the same strain or correlations with other patient-specific 
factors. Either way, we showed that they further contribute to pre-
dictability of resistance.

Long-term associations were also observed between resistance 
and past drug purchases. Resistance to a given drug had long-lasting 
associations not only with past usage of this same drug, but also 
with other, even mechanistically unrelated, drugs. Yet, adjusting for 
correlations among resistances exposed direct selection, where drug 
use led specifically to its own cognate resistance at the single-patient 
level. These results are consistent with drug use directly selecting, at 
the single-patient level, for strains resistant to it and thereby select-
ing indirectly, likely through frequent co-occurrence, to resistance 
to other antibiotics.

Combining these demographic, sample history and drug history 
data can guide algorithmic recommendations for empirical treat-
ment that substantially improve on the current standard of care. 
Comparing empirical prescriptions given by physicians to random 
prescriptions, we found that physicians personalize drug prescrip-
tions in ways that significantly reduce the chance of mismatched 
treatment. However, machine-learning models could still substan-
tially improve on these already reduced rates. Indeed, the rates of 
mismatched treatment would have been reduced by over 40% were 
the drugs with lowest machine-learning predicted chance of resis-
tance chosen. These machine-learning recommendations are inher-
ently biased towards recommending drugs with overall low levels of 
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resistance, for example ciprofloxacin, which is often intentionally 
avoided in standard clinical practice precisely to hinder the spread 
of resistance. We therefore also developed a model that assigns a 

cost for each drug, thereby constraining the rate of recommenda-
tion of each drug to the rate at which it was prescribed by physicians. 
Importantly, even when constrained to merely permute among the 
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patients the exact same pool of drugs prescribed by physicians, the 
model could still reduce the rate of unmatched treatment by over 
30% compared with standard care.

Some aspects of the data may complicate the interpretation of 
our results. As purchase of a drug does not fully guarantee its con-
current use, later usage of a purchased drug may bias our results 
towards a higher OR for purchases made long before infection. 
Conversely, we can not exclude that some patients have used antibi-
otics they did not purchase through MHS, which will bias our results 
towards lower ORs for drug purchases. Additionally, past antibiotic 
purchase and treatment might be associated with different clinical 
conditions, not considered in this study, such as comorbidities, hos-
pitalizations and catheter use. While these factors are less likely to 
directly affect resistance rates, they are likely associated with risk 
of infections. Also, although culture data are routine for suspected 
UTIs, sending urine for a culture test is not obligatory. As a result, we 
assume some UTIs would be empirically treated without any culture 
record, and there is likely higher propensity towards culture test-
ing of infections suspected of being resistant. This would generate 
bias towards the measurement of more resistant samples, resulting 
in an overestimation of the total frequency of resistance, especially 
for first-line treatment and potentially in overestimation of the gen-
eral rate of mismatched treatment. Another bias due to elective cul-
ture testing would be for cultures taken following treatment failure. 
Such bias can again generate bias towards measurements of more 
resistant samples and it can further contribute to the strong short-
term association of drug purchases with resistance, especially for 
first-line antibiotics. Lastly, the extent of this bias towards culture 
testing specifically following treatment failure could itself depend 
on demographics, which can bias correlations of demographics with 
resistance. While we can not exclude these biases, our analysis dem-
onstrates that, with all of these potential biases, resistance of urine 
infections can be well predicted based on the specific demographics 
and clinical history of the patient, and that algorithmic drug recom-
mendations can substantially reduce the chance of prescribing an 
antibiotic to which the infection is resistant.

The substantial reduction in the rate of mismatched treat-
ment enabled by machine-learning recommendations based on 
the patient’s record and clinical history lays the basis for a future 
paradigm where clinicians will routinely consult such algorithms 
for prescription of patient-tailored antibiotic treatment. We expect 
that algorithmic approaches similar to the one described here will 
be implemented, either centralized or locally, in healthcare systems 
where vast longitudinal electronic health records are available. 
While the key factors identified here can serve as the basis of such 
an approach, the specific model, the exact coefficients and relative 
weights of predictors, will have to be adjusted for each country or 
region. Indeed, these algorithms can also be dynamically and adap-
tively updated in real time as new data are acquired. We expect 
that inclusion of additional patient-specific factors, such as comor-
bidities and hospitalizations, as well as of real-time information on 
infections, resistance and drug usage in other patients in a range of 
geographical proximities39, can further increase resistance predict-
ability. These models could also be used to adjust for patient-specific 
drug ‘costs’, thereby accounting for allergies and other patient-spe-
cific drug restrictions. In the longer term, these clinical-record and 
epidemiological data-based approaches could be integrated with 
genomics of the patient as well as of the pathogen47–53. Implemented 
in the clinic, machine-learning-guided personalized empirical pre-
scription can reduce treatment failure as well as lower the overall 
use of antibiotics, thereby assisting in the global effort of impeding 
the antibiotic resistance epidemic.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 

associated accession codes are available at https://doi.org/10.1038/
s41591-019-0503-6.

Received: 6 August 2018; Accepted: 30 May 2019;  
Published online: 4 July 2019

References
 1. Ventola, C. L. The antibiotic resistance crisis: part 1: causes threats. P T. 40, 

277–283 (2015).
 2. Rossolini, G. M., Arena, F., Pecile, P. & Pollini, S. Update on the antibiotic 

resistance crisis. Curr. Opin. Pharmacol. 18, 56–60 (2014).
 3. Goossens, H., Ferech, M., Vander Stichele, R. & Elseviers, M., ESAC Project 

Group. Outpatient antibiotic use in Europe and association with resistance: a 
cross-national database study. Lancet 365, 579–587 (2005).

 4. Bronzwaer, S. L. A. M. et al. A European study on the relationship  
between antimicrobial use and antimicrobial resistance. Emerg. Infect. Dis. 8, 
278–282 (2002).

 5. Costelloe, C., Metcalfe, C., Lovering, A., Mant, D. & Hay, A. D. Effect of 
antibiotic prescribing in primary care on antimicrobial resistance in individual 
patients: systematic review and meta-analysis. BMJ 340, c2096 (2010).

 6. Fridkin, S. K. et al. The effect of vancomycin and third-generation 
cephalosporins on prevalence of vancomycin-resistant enterococci in 126 U.S. 
adult intensive care units. Ann. Intern. Med. 135, 175–183 (2001).

 7. Malhotra-Kumar, S., Lammens, C., Coenen, S., Van Herck, K. & Goossens, H. 
Effect of azithromycin and clarithromycin therapy on pharyngeal carriage of 
macrolide-resistant streptococci in healthy volunteers: a randomised, 
double-blind, placebo-controlled study. Lancet 369, 482–490 (2007).

 8. Kang, C.-I. et al. Bloodstream infections caused by antibiotic-resistant 
Gram-negative bacilli: risk factors for mortality and impact of inappropriate 
initial antimicrobial therapy on outcome. Antimicrob. Agents Chemother. 49, 
760–766 (2005).

 9. Kumar, A. et al. Initiation of inappropriate antimicrobial therapy results  
in a fivefold reduction of survival in human septic shock. Chest 136, 
1237–1248 (2009).

 10. Huang, A. M. et al. Impact of rapid organism identification via matrix-
assisted laser desorption/ionization time-of-flight combined with 
antimicrobial stewardship team intervention in adult patients with bacteremia 
and candidemia. Clin. Infect. Dis. 57, 1237–1245 (2013).

 11. Stamm, W. E. & Norrby, S. R. Urinary tract infections: disease panorama and 
challenges. J. Infect. Dis. 183, S1–4 (2001).

 12. Engel, J. D. & Schaeffer, A. J. Evaluation of and antimicrobial therapy for 
recurrent urinary tract infections in women. Urol. Clin. North. Am. 25, 
685–701 (2005).

 13. Geerlings, S. E. Clinical presentations and epidemiology of urinary tract 
infections. Microbiol. Spectr. 4 https://doi.org/10.1128/microbiolspec.
UTI-0002-2012 (2016).

 14. Shapiro, D. J., Hicks, L. A., Pavia, A. T. & Hersh, A. L. Antibiotic prescribing 
for adults in ambulatory care in the USA, 2007–09. J. Antimicrob. Chemother. 
69, 234–240 (2014).

 15. Low, M. et al. Infectious disease burden and antibiotic prescribing in primary 
care in Israel. Ann. Clin. Microbiol. Antimicrob. 17, 26 (2018).

 16. Kahlmeter, G. An international survey of the antimicrobial susceptibility of 
pathogens from uncomplicated urinary tract infections: the ECO/
textperiodcentered SENS Project. J. Antimicrob. Chemother. 51, 69–76 (2003).

 17. Farrell, D. J., Morrissey, I., De Rubeis, D., Robbins, M. & Felmingham, D. A 
UK multicentre study of the antimicrobial susceptibility of bacterial 
pathogens causing urinary tract infection. J. Infect. 46, 94–100 (2003).

 18. Foxman, B. Epidemiology of urinary tract infections: incidence, morbidity, 
and economic costs. Am. J. Med. 113, 5S–13S (2002).

 19. Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary 
tract infections: epidemiology, mechanisms of infection and treatment 
options. Nat. Rev. Microbiol. 13, 269–284 (2015).

 20. Pouwels, K. B. et al. Association between use of different antibiotics and 
trimethoprim resistance: going beyond the obvious crude association.  
J. Antimicrob. Chemother. 73, 1700–1707 (2018).

 21. Ashkenazi, S., Even-Tov, S., Samra, Z. & Dinari, G. Uropathogens of various 
childhood populations and their antibiotic susceptibility. Pediatr. Infect. Dis. J. 
10, 742–746 (1991).

 22. Kahan, N. R. et al. Empiric treatment of uncomplicated urinary tract 
infection with fluoroquinolones in older women in Israel: another lost 
treatment option? Ann. Pharmacother. 40, 2223–2227 (2006).

 23. Hooton, T. M., Besser, R., Foxman, B., Fritsche, T. R. & Nicolle, L. E. Acute 
uncomplicated cystitis in an era of increasing antibiotic resistance: a proposed 
approach to empirical therapy. Clin. Infect. Dis. 39, 75–80 (2004).

 24. Arslan, H., Azap, O. K., Ergönül, O. & Timurkaynak, F. Urinary Tract 
Infection Study Group. Risk factors for ciprofloxacin resistance among 
Escherichia coli strains isolated from community-acquired urinary tract 
infections in Turkey. J. Antimicrob. Chemother. 56, 914–918 (2005).

NaTuRe MedICINe | VOL 25 | JULY 2019 | 1143–1152 | www.nature.com/naturemedicine 1151

https://doi.org/10.1038/s41591-019-0503-6
https://doi.org/10.1038/s41591-019-0503-6
https://doi.org/10.1128/microbiolspec.UTI-0002-2012
https://doi.org/10.1128/microbiolspec.UTI-0002-2012
http://www.nature.com/naturemedicine


Articles NATurE MEDiciNE

 25. Ikram, R., Psutka, R., Carter, A. & Priest, P. An outbreak of multi-drug 
resistant Escherichia coli urinary tract infection in an elderly population: a 
case-control study of risk factors. BMC Infect. Dis. 15, 224 (2015).

 26. Foxman, B. & Brown, P. Epidemiology of urinary tract infections: 
transmission and risk factors, incidence, and costs. Infect. Dis. Clin. North 
Am. 17, 227–241 (2003).

 27. Tenney, J., Hudson, N., Alnifaidy, H., Li, J. T. C. & Fung, K. H. Risk factors 
for aquiring multidrug-resistant organisms in urinary tract infections: a 
systematic literature review. Saudi Pharm J. 26, 678–684 (2018).

 28. Colgan, R., Johnson, J. R., Kuskowski, M. & Gupta, K. Risk factors for 
trimethoprim-sulfamethoxazole resistance in patients with acute 
uncomplicated cystitis. Antimicrob. Agents Chemother. 52, 846–851 (2008).

 29. Burman, W. J. et al. Conventional and molecular epidemiology of 
trimethoprim-sulfamethoxazole resistance among urinary Escherichia coli 
isolates. Am. J. Med. 115, 358–364 (2003).

 30. Kang, M.-S., Lee, B.-S., Lee, H.-J., Hwang, S.-W. & Han, Z.-A. Prevalence of 
and risk factors for multidrug-resistant bacteria in urine cultures of spinal 
cord injury patients. Ann. Rehabil. Med. 39, 686–695 (2015).

 31. Lee, G., Cho, Y.-H., Shim, B. S. & Lee, S. D. Risk factors for antimicrobial 
resistance among the Escherichia coli strains isolated from Korean patients 
with acute uncomplicated cystitis: a prospective and nationwide study.  
J. Korean Med. Sci. 25, 1205–1209 (2010).

 32. Johnson, L. et al. Emergence of fluoroquinolone resistance in outpatient 
urinary Escherichia coli isolates. Am. J. Med. 121, 876–884 (2008).

 33. Paul, M. et al. Improving empirical antibiotic treatment using TREAT, a 
computerized decision support system: cluster randomized trial. J. Antimicrob. 
Chemother. 58, 1238–1245 (2006).

 34. MacFadden, D. R., Ridgway, J. P., Robicsek, A., Elligsen, M. & Daneman, N. 
Predictive utility of prior positive urine cultures. Clin. Infect. Dis. 59, 
1265–1271 (2014).

 35. Olesen, S. W., Barnett, M. L., MacFadden, D. R., Lipsitch, M. & Grad, Y. H. 
Trends in outpatient antibiotic use and prescribing practice among US older 
adults, 2011–15: observational study. BMJ 362, k3155 (2018).

 36. Ena, J., Amador, C., Martinez, C. & Ortiz de la Tabla, V. Risk factors for 
acquisition of urinary tract infections caused by ciprofloxacin resistant 
Escherichia coli. J. Urol. 153, 117–120 (1995).

 37. Brown, P. D., Freeman, A. & Foxman, B. Prevalence and predictors of 
trimethoprim-sulfamethoxazole resistance among uropathogenic Escherichia 
coli isolates in Michigan. Clin. Infect. Dis. 34, 1061–1066 (2002).

 38. Metlay, J. P., Strom, B. L. & Asch, D. A. Prior antimicrobial drug exposure: a 
risk factor for trimethoprim-sulfamethoxazole-resistant urinary tract 
infections. J. Antimicrob. Chemother. 51, 963–970 (2003).

 39. Low, M. et al. Association between urinary community-acquired 
fluoroquinolone-resistant Escherichia coli and neighbourhood antibiotic 
consumption: a population-based case-control study. Lancet Infect. Dis. 19, 
419–428 (2019).

 40. Wang, A., Daneman, N., Tan, C., Brownstein, J. S. & MacFadden, D. R. 
Evaluating the relationship between hospital antibiotic use and antibiotic 
resistance in common nosocomial pathogens. Infect. Control Hosp. Epidemiol. 
38, 1457–1463 (2017).

 41. Gupta, K. et al. International clinical practice guidelines for the treatment of 
acute uncomplicated cystitis and pyelonephritis in women: a 2010 update by 
the Infectious Diseases Society of America and the European Society for 
Microbiology and Infectious Diseases. Clin. Infect. Dis. 52, e103–e120 (2011).

 42. Lipsky, B. A. Urinary tract infections in men. Epidemiology, pathophysiology, 
diagnosis, and treatment. Ann. Intern. Med. 110, 138–150 (1989).

 43. Ginsburg, C. M. & McCracken, G. H. Jr. Urinary tract infections in young 
infants. Pediatrics 69, 409–412 (1982).

 44. Edlin, R. S., Shapiro, D. J., Hersh, A. L. & Copp, H. L. Antibiotic resistance 
patterns of outpatient pediatric urinary tract infections. J. Urol. 190,  
222–227 (2013).

 45. Kahlmeter, G. & Menday, P. Cross-resistance and associated resistance in 
2478 Escherichia coli isolates from the Pan-European ECO/textperiodcentered 
SENS Project surveying the antimicrobial susceptibility of pathogens from 
uncomplicated urinary tract infections. J. Antimicrob. Chemother. 52,  
128–131 (2003).

 46. Hanley, J. A. & McNeil, B. J. The meaning and use of the area  
under a receiver operating characteristic (ROC) curve. Radiology 143,  
29–36 (1982).

 47. Lieberman, T. D. et al. Parallel bacterial evolution within multiple  
patients identifies candidate pathogenicity genes. Nat. Genet. 43,  
1275–1280 (2011).

 48. Didelot, X., Bowden, R., Wilson, D. J., Peto, T. E. A. & Crook, D. W. 
Transforming clinical microbiology with bacterial genome sequencing.  
Nat. Rev. Genet. 13, 601–612 (2012).

 49. Bradley, P. et al. Rapid antibiotic-resistance predictions from genome 
sequence data for Staphylococcus aureus and Mycobacterium tuberculosis.  
Nat. Commun. 6, 10063 (2015).

 50. Khoury, M. J. & Ioannidis, J. P. A. Medicine. Big data meets public health. 
Science 346, 1054–1055 (2014).

 51. Beam, A. L. & Kohane, I. S. Big data and machine learning in health care. 
JAMA 319, 1317–1318 (2018).

 52. Grad, Y. H. & Lipsitch, M. Epidemiologic data and pathogen genome 
sequences: a powerful synergy for public health. Genome Biol. 15,  
538 (2014).

 53. Sandora, T. J., Gerner-Smidt, P. & McAdam, A. J. What’s your subtype? The 
epidemiologic utility of bacterial whole-genome sequencing. Clin. Chem. 60, 
586–588 (2014).

acknowledgments
We thank M. Datta, A. McAdam, G. Priebe and P. Ramesh for thorough reading of the 
manuscript and important comments. This work was supported in part by US National 
Institutes of Health grant no. R01 GM081617 (to R.K.) and European Research Council 
FP7 ERC grant no. 281891 (to R.K.) as well as The Ernest and Bonnie Beutler Research 
Program of Excellence in Genomic Medicine (to R.K.).

author contributions
V.S. and R. Kishony perceived the study. I.Y., O.S., G.K., V.S. and R. Kishony designed 
the study. R. Katz, M.P., O.T. and V.S. retrieved and interpreted electronic health records. 
I.Y., O.S., G.N. and R. Kishony analyzed the data. I.Y., O.S., G.C., V.S. and R. Kishony 
interpreted the results. I.Y. and R. Kishony wrote the manuscript with comments from 
all authors.

Competing interests
The authors declare no competing interests.

additional information
Extended data is available for this paper at https://doi.org/10.1038/s41591-019-0503-6.

Supplementary information is available for this paper at https://doi.org/10.1038/
s41591-019-0503-6.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to R.K.

Peer review information: Michael Basson was the primary editor on this article and 
managed its editorial process and peer review in collaboration with the rest of the 
editorial team.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

NaTuRe MedICINe | VOL 25 | JULY 2019 | 1143–1152 | www.nature.com/naturemedicine1152

https://doi.org/10.1038/s41591-019-0503-6
https://doi.org/10.1038/s41591-019-0503-6
https://doi.org/10.1038/s41591-019-0503-6
http://www.nature.com/reprints
http://www.nature.com/naturemedicine


ArticlesNATurE MEDiciNE

Methods
Data. Anonymized clinical records of urine culture tests (culture reports) and 
records of antibiotic purchases (purchase reports) were obtained from MHS from 
July 2007 to June 2017. Randomly generated patient identifiers were used to link 
culture reports and antibiotic purchase reports.

Culture reports. Antibiotic resistance profiling of bacterial pathogens isolated 
from urine cultures was carried out centrally (in two locations until 2010 and 
in one central lab from 2010). We retrieved 711,099 culture reports of positive 
samples from 315,047 patients total (positive samples indicated bacteriuria, and 
as samples were most often sent for patients presenting symptoms, we considered 
these samples as representing UTIs). Each report included the following. (1) 
Unique patient code. (2) Date of sample. (3) List of isolates cultured with species 
identification (typically one isolate per sample; 3.6% of samples had more than one 
isolate). (4) Resistance profile of the isolates from processed results of a VITEK 2 
system given as ‘sensitive’, ‘intermediate’ and ‘resistant’ for each drug tested. We 
focused on resistance to the six antibiotics most commonly prescribed in empirical 
treatment of these UTIs, with empiric prescription defined as a prescription on the 
same day the sample was taken, excluding any chance of the measurements being 
available. (NResistances = 6, Supplementary Table 1 and Table 1; ofloxacin resistance 
was excluded as measurements were not available as of 2013). Resistance to these 
antibiotics was routinely measured across the 10-year period, except for cephalexin 
that was only measured from 2014 (Extended Data Fig. 1). (5) Demographics: age, 
gender, pregnancy of the patient, as well as an identifier of patients residing in 
retirement homes.

Antibiotic purchase reports. All drug purchases by prescription are routinely 
recorded in MHS databases. We identified and retrieved all purchases made by 
patients with culture reports by converting internal MHS drug codes to Anatomical 
Therapeutic Chemical (ATC) classifications of antibiotics (Supplementary Table 1). 
Each purchase record included: (1) unique patient code to be linked to the code of 
the culture record; (2) internal MHS product code, which was translated to an ATC 
drug code; and (3) date of purchase.

Choice of drugs for analysis. We focused on the 11 antibiotic compounds 
(NATC = 11), most purchased in the data set (Supplementary Table 1).

Feature definition. For each urine sample m, we define the following parameters 
used for the logistic regression and the GBDTs.

Sample resistance profile. For each urine sample m, we defined Yk
m as 0 for sensitive 

and intermediate and 1 for resistant to the antibiotic k (1 ≤ k ≤ NResistances). If the 
sample had multiple isolates, Yk

m was assigned as 1 if at least one isolate was 
resistant. Missing resistance measurements are defined as not available (N/A), and 
for each antibiotic k only samples that have defined resistance to it are used when 
training or testing its logistic regression or GBDT.

Demographics. Xm
Gender, 0/1 for males/females; Xm

Pregnancy, 0/1 indicating pregnancy; 
.Xm

Ret Home, 0/1 indicating residence in retirement homes; Xm j,
Age, 0/1 indicating 

patient age at the time of UTI sampling in group j = 1,2,...,10 standing for 0–10,11–
20,…,91–100 years; Xm

Date, date of sample in units of annual quarters starting 2007; 
Xm j,

Season, 0/1 indicating the quarter of the sample within the calendar year, with 
j = 1,2,3,4.

Sample history. For a given sample, we consider all earlier samples of the same 
patient (if any). We assigned the time difference between any such earlier  
sample and the current sample, t = tPast sample − tSample (t is negative, designating  
past events), into 1 of 16 time bins (i = 1,2,...,16). A bin i was defined by ti ≤ t < ti − 1, 
with {t0,...,t16} = −{1,2,4,8,16,24,32,...,112} weeks. Boundary choice in integer 
number of weeks is important to avoid effects of weekends and of patient 
preference for a specific week day. Previous samples within 1 week of the current 
sample were not included as they likely represent data on the same infection  
that might not have been available yet to the physician at the time of the second 
sample. We then calculated Xm i k, ,

Previous Resist and Xm i k, ,
Previous Sensitive

 as the number of 
prior cultures within time bin i, whose resistance Yk

m equals 1 or 0 (resistant or 
sensitive), respectively.

Drug purchase history. For each urine sample, we considered all earlier drug 
purchases made by the same patient. We assigned the time difference between 
the urine sample date and a given past purchase, tPurchase − tSample, into eight 
logarithmically spaced time bins (i = 1,2,...,8). A bin i was defined by ti ≤ t < ti − 1, 
where the boundaries of these time bins were {t0,...,t8} = −{1,2,4,8,...,128} weeks 
(the logarithmic binning was chosen to increase statistical power at large time 
differences where purchase density is lower). For each sample, we then calculated 
Xm i j, ,

ATC
 as the number of purchases of a given drug j (1 ≤ j ≤ NATC; Supplementary 

Table 1) made by the patient during time bin i. For the distribution of purchases 
per these logarithmically spaced bins, see Supplementary Fig. 5.

Cross-resistance. To resolve direct versus indirect associations of drug purchase 
and resistance, we adjusted the logistic regression of resistance to a given antibiotic 
k as a function of past drug purchases by the resistances to all other drugs j that 
are non-analogous to k. We defined Ak,j as a binary variable equal to 0 and 1 for 
analogous versus non-analogous drug pairs, respectively. ‘Analogous’ pairs were 
defined as antibiotics that have exceptionally high cross-resistance (Ak,j = 0 for 

>Y Y Acorr( , )k
m

k
m

threshold; we used Athreshold = 0.7 that corresponded to drug pairs of 
the same class; see pairs labeled with ‘x’ in Extended Data Fig. 5). We then added 
as features for each sample m in the regression analysis of a given antibiotic k the 
resistance measurements Yk

m to all antibiotics j for which Ak,j = 1. Note that these 
cross-resistance features provided information from the focal sample and were 
used only in the analysis of direct/indirect effect of purchases (Fig. 4b) and not for 
the evaluation of resistance predictability.

Logistic regression. Logistic regression of resistance for each antibiotic was 
performed via the Matlab glmfit function. For each of the resistances k = 1,2,...,6, 
the probability of resistance Pk was fitted to the sample resistance Ym,k for all urine 
samples that had measurement of resistance to k either across the entire 10-year 
data set (for Figs. 2and 4) or across the ‘training period’ (for the analysis of the 
predictive power of Fig. 5; see Extended Data Fig. 1 for a definition of the training 
period for each of the six antibiotics). The different logistic models included 
combinations of the following ten terms:
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Different combinations of the above terms were used in the different regression 
models as shown in Supplementary Table 3 (each row in the table represents a 
logistic model that was applied to each of the six antibiotics).

Calculating odds ratios from logistic regression. For each antibiotic k, ORs were 
calculated from the coefficients of above logistic regressions.

Binary variables. For the binary variables gender, pregnancy and 
retirement home, ORs were defined as: = COR exp( )k k

Gender Gender  female 
versus male, = COR exp( )k k

Pregnancy Pregnancy  pregnant versus non-pregnant, 
=. .COR exp( )k k

Ret Home Ret Home  retirement home residence versus patients not residing 
in retirement homes.

Categorical variables. For the categorical variables age and season, ORs for each 
category relative to the reference (age group of of 0–10 years, fourth quarter, 
respectively) is given by = COR exp( )k j k j,

Age
,
Age  and = COR exp( )k j k j,

Season
,
Season , where 

Ck j,
Age and Ck j,

Season are reported in Supplementary Table 2. In Fig. 2, we report for age 
= COR exp( )k k j

Age max
,
Age

max , with jmax = 10 standing for the 91–100 year group; and for 
season, = COR exp( )k k j

Season max
,
Season

max
, with jmax = 2 standing for the second quarter 

(most contrast to the reference, which is the fourth quarter).

Quadratic variables. For date, which is fitted quadratically, the individual regression 
coefficients and their CIs are reported in Supplementary Table 2. In Fig. 2b, we 
also report, for each antibiotic k, effective ORs defined as the ratios between the 
maximal and minimal expected odds taken across the relevant date range of 
(0 ≤ XDate ≤ 40):

= + − +≤ ≤ ≤ ≤C x C x C x C xOR exp[max ( ) min ( )]k x k k x k k
Date

0 1
Date Date 2

0 1
Date Date 21 2 1 2

Note that when these quadratic dependencies are monotonic 
within the relevant range (0 ≤ x ≤ 1), the above formula becomes simply 

= +C COR exp( )k k k
Date Date Date1 2 .
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Analysis of ‘memory’ across sample pairs. To analyze ‘memory’ of resistance 
across samples, we considered all pairs of samples from the same patient (across 
all patients with 2–10 samples) and binned them according to their time difference 
t = t1 − t2 (where t1 and t2 are the sample dates of the early and late sample; t is 
always negative, indicating information on current sample from past samples) into 
time bins as indicated by the bars in Fig. 3. In each time bin and for each antibiotic, 
we counted NR→R, NR→S, NS→R and NS→S as the number of urine sample pairs where 
the early and late samples were resistant, or sensitive (for example NR→S was the 
number of same-patient sample pairs, within the time difference bin, where first 
sample was resistant and the second sensitive to the given focal antibiotic. For each 
antibiotic, only samples for which resistance was measured were considered). We 
then calculated for each time difference bin the risk ratio ζpairs = [NR→R/(NR→R + 
NR→S)]/[NS→R/(NS→R + NS→S)].

Gradient-boosting decision trees. GBDTs are an ensemble method combining 
regression trees with weak individual predictive performances, into a single 
high-performance model. This is done by iteratively fitting decision trees with 
each iteration targeting the prediction residuals of the preceding tree. The 
final model is built by combining weighted individual tree contributions, with 
weights proportional to their performances. For each of the six antibiotics, a 
boosted decision tree ensemble was fitted using all features as defined above 
(demographics, sample history and drug purchase history) on the training set 
as defined by the training time period (Extended Data Fig. 1, green bars). This 
training data set was sampled to balance resistant/sensitive label frequency. For 
parameter tuning, a validation data set was sampled from the training set to be 
used for model selection (20%). For the estimator of the ith iteration, a decreasing 
learning rate ηi was used such that ηi = η0αi, with an annealing rate α = 0.99 and an 
initial learning rate η0 = 0.1. To further promote a diverse ensemble of individual 
estimators, a 0.9 feature-sampling and observation-sampling rates were used. 
Fitting of interaction effects is controlled by varying the size of the individual 
regression trees, with tree estimator of depth k producing models with up to 
k-way interactions. The model was tuned to match data complexity by iteratively 
increasing tree depth limit of all ensemble estimators while evaluating performance 
on the validation set, selecting the best depth for each antibiotic.

Unconstrained algorithm for drug choice. Given the complete-model machine-
learning assigned probabilities of resistance Pk

m of each same-day empirically 
treated infection m = 1,2,...,Nsamples to each of the antibiotics k = 1,...,NResistances, the 
unconstrained model simply recommends for each infection, the antibiotic Krec

m  
for which the model predicted probability of resistance is lowest. Namely, Krec

m  is 
defined by =P Pmin ( )K

m
k k

m
rec
m .

Constrained (cost-adjusted) algorithm for drug choice. The constrained, 
cost-adjusted, algorithm for drug choice takes as input the complete-model 
machine-learning assigned probabilities of resistance Pk

m of each same-day 
empirically treated infection m = 1,2,...,Nsamples to each of the antibiotics = 
1,...,NResistances, as well as the target total number of uses of each drug nk

target (with 
∑ =

=
n N

k

N
k1
target

samples
Resistances

). The algorithm needs to return as output the optimal 
recommended drug treatments Krec

m  for each infection m such that the overall 

expected rate of mismatched treatment∑ =
P

m

N
K
m

1
samples

rec
m  is minimized while the 

overall usage of each drug ∑ δ≡
=

n k K( , )k m

N
rec
m

1
samples

 (where δ(i,j) = 1 for i = j 
and 0 otherwise) satisfies =n nk k

target for all the antibiotics k. This constrained 
optimization problem can be solved exactly. First, we adjust the machine-learning 
model probabilities of resistance to each antibiotic by an additive drug-specific 
value Ck accounting for an assigned ‘cost’ of using this drug: = +Q P Ck

m
k
m

k. Then, 
given a set of cost values for all the antibiotics {Ck}, the recommended antibiotic 
Krec

m  for each infection m is defined by =Q Qmin ( )K
m

k k
m

rec
m  and given these drug 

choice Krec
m

 for all the infections, we then calculate the overall drug distribution 
∑ δ=

=
n k K( , )k m

N
rec
m

1
samples

. These drug distribution counts are therefore a function 
of the cost values nk = nk({Ck}). We then numerically solve for the set of cost 
values C{ }k

target  for which the drug distribution satisfies =n C n({ })k k k
target target. For 

NResistances = 6, this amounts to numerically solving six equations with the six Cks as 
variables (the degeneracy due to ∑ == n Nk

N
k1
target

samples
Resistances  is offset by an added 

normalization ∑ =C 0k k ). Once we solved for the cost values C{ }k
target , the specific 

drug recommendations Krec
m  for each infection were defined by =Q Qmin ( )K

m
k k

m
rec
m  

with = +Q P Ck
m

k
m

k
target.

It is easy to prove mathematically that this solution optimally minimizes risk of 
resistance given the constraints of the total usage of each drug. Let us assume that 
there exists an alternative solution Kalt

m that has the same distribution of drug usage 

but with a lower predicted chance of resistance ∑ ∑<
= =

P P
m

N
K
m

m

N
K
m

1 1alt
m

rec
msamples samples

. As 
the two solutions have the same overall number of uses of each drug, there must 
exist a set of pairwise swapping steps that transforms the ‘rec’ solution to the ‘alt’ 
solution, where each step consists of taking two infections m1 and m2 and swapping 

their recommended prescriptions Krec
m1 and Krec

m2 (an operation that maintains the 
same overall use of the drugs). But, given that the recommended prescriptions Krec

m1 
and Krec

m2 are defined by =Q Qmin ( )K
m

k k
m

rec
m1
1 1

 and =Q Qmin ( )K
m

k k
m

rec
m2
2 2

, swapping them 
necessarily leads to equal or higher overall probability of mismatched treatment:

+ = − + − ≥

− + − = +

P P Q C Q C

Q C Q C P P
K
m
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m
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m
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Therefore, any swap among the set of infections of the drugs recommended by 
the algorithm leads to an increased predicted rate of mismatched treatment. The 
solution we provide is therefore optimal.

Finally, we note that an important added value of this approach is that it also 
provides the cost values C{ }k

target  for each of the antibiotics. Namely, given the 
distribution of antibiotics prescribed by physicians, we can deduce effective cost 
values that effectively account for the different global considerations physicians 
take such as ease of use, and tendency to avoid drugs of last resort. Once these 
cost values are determined, such as based on the 1-year test period, they can be 
used for future algorithmic recommendations of drug prescriptions. Namely, for a 
given new case with machine-learning probability of resistance Pk for each of the 
antibiotics k, the algorithm will simply recommend the antibiotic Krec for which 

=Q Qmin ( )K k krec
, where = +Q P Ck k k

target.

Analysis of same-day empirical treatments. We identified all cases across 
the 1-year test period where patients purchased one (and only one) of the six 
antibiotics on the same day they had a sample sent for culture and for which 
resistances to all six antibiotics were measured (SDET). We then retrospectively 
annotated each SDET prescription as ‘matched’ or ‘unmatched’ according 
to whether the sample was sensitive or resistant to the prescribed antibiotic, 
respectively. The rate of mismatched treatment was then defined across all of these 
SDET patients (Fig. 5c), as well as separately across all of the patients treated with a 
given drug (Fig. 5d, top). A similar analysis was done for the drugs recommended 
by either the unconstrained or the constrained (cost-adjusted) models (Fig. 5c,d). 
Mismatch rates were also compared with two models of null expectations. In the 
‘dice’ model, we randomly chose, for each SDET case, one of the six drugs with 
equal probability. In the ‘Random permutation’ model, we randomly permuted 
across the SDET cases the same overall pool of drugs prescribed by the physicians 
(thereby maintaining the exact same frequency of use of each of the six drugs). For 
each of these models, we repeated 1,000 random simulations and calculated the 
average mismatched treatment rate (Fig. 5c, horizontal lines).

Statistical significance of mismatched treatment rates. We performed 10,000 
bootstrapping simulations in which we randomly sampled, with replacement, 
11,952 cases from the 11,952 SDET cases and calculated for each of these 10,000 
simulations the mismatch rate for the prescriptions given by physicians, the 
constrained machine-learning model (CML), the unconstrained machine-learning 
model (UCML), the random permutation model (RP) and the random dice model 
(RD). For each of these five models, we reported the 95% CI of the mismatched 
treatment rate based on the 2.5th and 97.5th percentile values of the mismatched 
treatment rate of the specified model across the 10,000 bootstrapping simulations. 
When comparing two models, we consider the difference between the mismatched 
treatment rates of the two models for each of the 10,000 simulations. For all 
reported model comparisons (physicians–RD, physicians–RP, UCML–physicians 
and CML–physicians), the mismatch rate in the first model was lower than 
the mismatched rate in the second model in virtually all 10,000 bootstrapping 
simulations (representing P values lower than 10−4). As an estimate for the  
P value, we reported the error function based on the average and standard 
deviation of the difference of mismatch rate between the two models across the 
10,000 bootstrapping simulations.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Ethical approval. The study protocol was approved by the ethics committee of 
Assuta Medical Center, Tel-Aviv, Israel.

data availability
The data that support the findings of this study are available from Maccabi 
Healthcare Services but restrictions apply to the availability of these data, which 
were used under license for the current study, and so are not publicly available. 
Access to the data is, however, available upon reasonable request and signing an 
MTA agreement with Maccabi Healthcare Services.

Code availability
Code used for data analysis is available upon request.
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Extended Data Fig. 1 | availability of resistance measurements over time. For each of the six antibiotics, the fraction of urine samples for which resistance 
was measured, overall (black) and for each of the three most common species (colors), is plotted across the 10-year sampling period. Also indicated 
are the time ranges used for model training (green horizontal bars) and testing (red bars). Time periods during which measurements of resistance to 
cephalexin were scarce and were removed from analysis (gray bar).
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Extended Data Fig. 2 | Frequency of resistance over time. Frequencies of resistance for each of the three common species (colored lines) and the 
overall sample (black lines) over the 10-year data set. Empty time intervals correspond to periods during which resistance was not frequently measured 
(matching the gray horizontal bar of Extended Data Fig. 1).
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Extended Data Fig. 3 | Frequency of resistance as a function of age for different demographic groups. Frequency of resistance to each of the six antibiotics, 
in each of ten age bins (0,10,…,100 years). a, Frequencies of resistance for five non-overlapping demographic groups: men not residing in retirement homes 
(blue), men residing in retirement homes (dotted blue), women not pregnant and not residing in retirement homes (magenta), women in retirement homes 
(magenta dotted) and pregnant women (red). b, Comparing the overall frequency of resistance to the six drugs for women and men across age.
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Extended Data Fig. 4 | Odds ratios of resistance to each of the antibiotics for past purchases of different drugs across a range of purchase-to-sample 
time intervals: adjustments for demographics and cross-resistance. a, Multivariate logistic regression models for the association of each antibiotic 
resistance with past purchases of the indicated drugs not accounting for cross-resistance (Methods: Logistic regression ‘Purchase history’. Same graphical 
scheme as in Fig. 4a,b). b, Logistic regression model as in a adjusted for cross-resistance (Methods: Logistic regression ‘Purchase history adjusted 
for cross-resistance’). c, Logistic regression model as in a adjusted for demographics (Methods: Logistic regression ‘Purchase history adjusted for 
demographics’. Gray asterisks indicate statistical significance and non-significant values, with Bonferroni corrected P > 0.05, are blanked.
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Extended Data Fig. 5 | Correlations among resistances to different antibiotics. Correlation among resistance measurements for each pair of antibiotics 
across all samples for which both resistances were measured. Cephalexin and cefuroxime axetil, which have a particularly high correlation (marked with 
‘x’), were treated as ‘analogous’ in the analysis of indirect effects of purchases on resistance (Methods: Logistic regression ‘Purchase history adjusted for 
cross-resistance’).
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Extended Data Fig. 6 | Model performance on test and training data. AUC for receiver operator characteristic for prediction of resistance based on 
demographics, sample history and purchase history, individually and in a complete model combining all feature sets. Each feature set was modeled using 
LR, and the complete model was modeled by both LR and GBDT. To identify overfitting, model performance on the testing data set (gray) was contrasted 
with model performance on the training data set (black; Extended Data Fig. 1 for definition of training and test time periods). A low level of overfitting is 
seen for all drugs except trimethoprim, which showed no overfitting. See Supplementary Fig. 4 for feature importance in GBDT models.
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Extended Data Fig. 7 | The fraction of samples that can be treated by at least one drug given set thresholds on the single-drug resistance probability 
scores. Given the complete-model-assigned probabilities of resistance Pk

m of each sample m to each antibiotic k, we calculated the fraction of samples, 
within the 1-year test period, that have at least one drug with resistance score below a threshold. a,b, This fraction is calculated assuming that the 
threshold used to determine resistance of single drugs is either: the same probability threshold Pthreshold for all drugs (counting all samples for which 

<P Pk
m threshold for at least one antibiotics k) (a) or the same rank threshold rthreshold for all drugs, counting all samples for which <P P r( )k

m
k
threshold threshold  for at 

least one antibiotics k, where P r( )k
threshold threshold  is the probability threshold of drug k that includes a fraction rthreshold of the samples (b).
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Extended Data Fig. 8 | Schematic diagram of machine-learning-trained prescription models. A set of samples with features of demographics, sample 
resistance history and antibiotic purchase history labeled for resistance to each antibiotic k (‘train set’) is used to train an antibiotic resistance prediction 
model (Methods: Logistic regression, terms 1–9). The model is applied to an SDET set of cases from the test period to calculate the probabilities of 
resistance to each antibiotic. In an unconstrained model the antibiotic with minimal probability for resistance is suggested. The calculated probabilities of 
resistance together with the respective prescriptions of the SDET set of cases are used to add a ‘cost’ term. In a constrained drug prescription model, the 
antibiotic with the minimal cost-adjusted probability is suggested.
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Extended Data Fig. 9 | Robustness of machine-learning-trained prescription models across age and gender and with respect to the clinical definition of 
resistance. a, Frequency of mismatched treatment across all SDET cases, comparing physician’s prescriptions (dark bar) to algorithmic recommendations 
by the constrained and unconstrained models (cyan and magenta hatched, respectively) for females (top) and males (bottom) separated into three major 
age groups. b, Frequency of mismatched treatment across all SDET cases (Methods), when classifying ‘Intermediate’ level of resistance as ‘resistant’. 
Comparing mismatch frequencies of physicians’ prescriptions (dark bar) to algorithmic recommendations (light bars), either unconstrained (magenta 
hatched) or constrained for recommending drugs at the same ratio as physicians (cyan hatched). Also presented are the null expectations for randomly 
prescribing drugs with equal probabilities (random ‘dice’, magenta dashed) or for random drug permutations (random permutations, cyan dashed).
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