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The early prediction of deterioration could have an important role 
in supporting healthcare professionals, as an estimated 11% of 
deaths in hospital follow a failure to promptly recognize and treat 
deteriorating patients1. To achieve this goal requires predictions 
of patient risk that are continuously updated and accurate, and 
delivered at an individual level with sufficient context and enough 
time to act. Here we develop a deep learning approach for the 
continuous risk prediction of future deterioration in patients, 
building on recent work that models adverse events from electronic 
health records2–17 and using acute kidney injury—a common and 
potentially life-threatening condition18—as an exemplar. Our 
model was developed on a large, longitudinal dataset of electronic 
health records that cover diverse clinical environments, comprising 
703,782 adult patients across 172 inpatient and 1,062 outpatient 
sites. Our model predicts 55.8% of all inpatient episodes of acute 
kidney injury, and 90.2% of all acute kidney injuries that required 
subsequent administration of dialysis, with a lead time of up to 
48 h and a ratio of 2 false alerts for every true alert. In addition 
to predicting future acute kidney injury, our model provides 
confidence assessments and a list of the clinical features that are most 
salient to each prediction, alongside predicted future trajectories 
for clinically relevant blood tests9. Although the recognition and 
prompt treatment of acute kidney injury is known to be challenging, 
our approach may offer opportunities for identifying patients at risk 
within a time window that enables early treatment.

Adverse events and clinical complications are a major cause of mor-
tality and poor outcomes in patients, and substantial effort has been 
made to improve their recognition18,19. Few predictors have found their 
way into routine clinical practice, because they either lack effective 
sensitivity and specificity or report damage that already exists20. One 
example relates to acute kidney injury (AKI), a potentially life-threat-
ening condition that affects approximately one in five inpatient admis-
sions in the United States21. Although a substantial proportion of cases 
of AKI are thought to be preventable with early treatment22, current 
algorithms for detecting AKI depend on changes in serum creatinine 
as a marker of acute decline in renal function. Increases in serum cre-
atinine lag behind renal injury by a considerable period, which results 
in delayed access to treatment. This supports a case for preventative 
‘screening’-type alerts but there is no evidence that current rule-based 
alerts improve outcomes23. For predictive alerts to be effective, they 
must empower clinicians to act before a major clinical decline has 
occurred by: (i) delivering actionable insights on preventable condi-
tions; (ii) being personalized for specific patients; (iii) offering suffi-
cient contextual information to inform clinical decision-making; and 
(iv) being generally applicable across populations of patients24.

Promising recent work on modelling adverse events from electronic 
health records2–17 suggests that the incorporation of machine learning 
may enable the early prediction of AKI. Existing examples of sequential 
AKI risk models have either not demonstrated a clinically applicable 
level of predictive performance25 or have focused on predictions across 
a short time horizon that leaves little time for clinical assessment and 
intervention26.

Our proposed system is a recurrent neural network that operates 
sequentially over individual electronic health records, processing the 
data one step at a time and building an internal memory that keeps 
track of relevant information seen up to that point. At each time point, 
the model outputs a probability of AKI occurring at any stage of sever-
ity within the next 48 h (although our approach can be extended to 
other time windows or severities of AKI; see Extended Data Table 1). 
When the predicted probability exceeds a specified operating-point 
threshold, the prediction is considered positive. This model was trained 
using data that were curated from a multi-site retrospective dataset of 
703,782 adult patients from all available sites at the US Department of 
Veterans Affairs—the largest integrated healthcare system in the United 
States. The dataset consisted of information that was available from 
hospital electronic health records in digital format. The total number of 
independent entries in the dataset was approximately 6 billion, includ-
ing 620,000 features. Patients were randomized across training (80%), 
validation (5%), calibration (5%) and test (10%) sets. A ground-truth 
label for the presence of AKI at any given point in time was added 
using the internationally accepted ‘Kidney Disease: Improving Global 
Outcomes’ (KDIGO) criteria18; the incidence of KDIGO AKI was 
13.4% of admissions. Detailed descriptions of the model and dataset 
are provided in the Methods and Extended Data Figs. 1–3.

Figure 1 shows the use of our model. At every point throughout an 
admission, the model provides updated estimates of future AKI risk 
along with an associated degree of uncertainty. Providing the uncer-
tainty associated with a prediction may help clinicians to distinguish 
ambiguous cases from those predictions that are fully supported by the 
available data. Identifying an increased risk of future AKI sufficiently 
far in advance is critical, as longer lead times may enable preventative 
action to be taken. This is possible even when clinicians may not be 
actively intervening with, or monitoring, a patient. Supplementary 
Information section A provides more examples of the use of the model.

With our approach, 55.8% of inpatient AKI events of any severity 
were predicted early, within a window of up to 48 h in advance and with 
a ratio of 2 false predictions for every true positive. This corresponds 
to an area under the receiver operating characteristic curve of 92.1%, 
and an area under the precision–recall curve of 29.7%. When set at this 
threshold, our predictive model would—if operationalized—trigger a 
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daily clinical assessment in 2.7% of hospitalized patients in this cohort 
(Extended Data Table 2). Sensitivity was particularly high in patients 
who went on to develop lasting complications as a result of AKI. The 
model provided correct early predictions in 84.3% of episodes in which 
administration of in-hospital or outpatient dialysis was required within 
30 days of the onset of AKI of any stage, and in 90.2% of cases in which 
regular outpatient administration of dialysis was scheduled within 
90 days of the onset of AKI (Extended Data Table 3). Figure 2 shows 
the corresponding receiver operating characteristic and precision–recall 
curves, as well as a spectrum of operating points of the model. An oper-
ating point can be chosen to further increase the proportion of AKI that 
is predicted early or to reduce the percentage of false predictions at each 
step, according to clinical priority (Fig. 3). Applied to stage 3 AKI, 84.1% 
of inpatient events were predicted up to 48 h in advance, with a ratio of 
2 false predictions for every true positive (Extended Data Table 4). To 
respond to these alerts on a daily basis, clinicians would need to attend 
to approximately 0.8% of in-hospital patients (Extended Data Table 2).

The model correctly identifies substantial future increases in 7 aux-
iliary biochemical tests in 88.5% of cases (Supplementary Information, 
section B), and provides information about the factors that are most 
salient to the computation of each risk prediction. The greatest saliency 
was identified for laboratory tests that are known to be relevant to renal 
function (Supplementary Information, section C). The predictive per-
formance of our model was maintained across time and hospital sites, 
as demonstrated by additional experiments that show generalizability 
to data acquired at time points after the model was trained (Extended 
Data Table 5).

Our approach significantly outperformed (P < 0.001) established state-
of-the-art baseline models (Supplementary Information, section D).  

For example, we implemented a baseline model with gradient-boosted 
trees using manually curated features that are known to be relevant 
for modelling kidney function and in the delivery of routine care 
(Supplementary Information, sections E and F), combined with aggre-
gate statistical information on trends observed in the recent history 
of the patient. This yielded 3,599 clinically relevant features that were 
provided to the baseline at each step (Methods). For the same level of 
precision, this baseline model was able to detect 36.0% of all episodes 
of AKI in inpatients up to 48 h in advance, compared to 55.8% for our 
model.

Of the false-positive alerts made by our model, 24.9% were posi-
tive predictions that were made even earlier than the 48-h window 
in patients who subsequently developed AKI (Extended Data Fig. 4). 
Of these, 57.1% occurred in patients with pre-existing chronic kidney 
disease, who are at a higher risk of developing AKI. Of the remaining 
false-positive alerts, 24.1% were trailing predictions that occurred after 
an AKI episode appeared to have resolved; alerts such as these can be 
filtered out in clinical practice. For positive risk predictions in which 
no AKI was subsequently observed (in this retrospective dataset), it is 
probable that many occurred in patients at risk of AKI to whom appro-
priate preventative treatment was administered—which would have 
averted subsequent AKI. In addition to these early and trailing predic-
tions, 88% of the remaining false-positive alerts occurred in patients 
with severe renal impairment, known renal pathology or evidence in 
the electronic health record that the patient required clinical review 
(Extended Data Fig. 4).

Our aim is to provide risk predictions that enable personalized pre-
ventative action to be delivered at a large scale. The way these predic-
tions are used may vary by clinical setting: a trainee doctor could be 
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Fig. 1 | Illustrative example of risk prediction, uncertainty and 
predicted future laboratory values. The first 8 days of admission for a 
male patient aged 65 with a history of chronic obstructive pulmonary 
disease. a, Patient creatinine measurements during admission. Creatinine 
measurements, showing AKI occurring on day 5. b, Model predictions 
for any AKI within 48 h. Continuous risk predictions: the model 
predicted increased AKI risk 48 h before it was observed. A risk above 0.2 

(corresponding to 33% precision) was the threshold above which AKI was 
predicted. Lighter green borders on the risk curve indicate uncertainty, 
taken as the range of 100 ensemble predictions (after these were trimmed 
for the highest and lowest 5 values). c, Laboratory value predictions 
4.5 days into admission. Predictions of the maximum future observed 
values of creatinine, urea and potassium.
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alerted in real time to each patient under their care, and specialist neph-
rologists or rapid-response teams27 could identify high-risk patients 
to prioritize their response. This is possible because performance was 
consistent across multiple clinically important groups—notably, those 
at an increased risk of AKI (Supplementary Information, section G). 
Our model is designed to complement existing routine care, as it is 
trained specifically to predict episodes of AKI that happened in this 
retrospective dataset despite existing best practices.

Although we demonstrate a model that is trained and evaluated on a 
clinically representative set of patients from the entire US Department 
of Veterans Affairs healthcare system, this demographic is not repre-
sentative of the global population. Female patients comprised 6.38% 
of patients in the dataset, and model performance was lower for this 
demographic (Extended Data Table 6). Validating the predictive 
performance of the proposed system on a general population would 
require training and evaluating the model on additional representative 
datasets. Future work will need to address the under-representation of 
sub-populations in the training data28 and overcome the effect of poten-
tial confounding factors that relate to hospital processes29. KDIGO 
is an indicator of AKI that has a long lag time after the initial renal 

impairment, and model performance could be enhanced by improve-
ments in the ground-truth definition of AKI and in data quality30.

Despite the state-of-the-art retrospective performance of our model 
compared to existing literature, future work should now prospectively 
evaluate and independently validate the proposed model to establish 
its clinical utility and effect on patient outcomes, as well as explore the 
role of the model in researching strategies for delivering preventative 
care for AKI.

In summary, we demonstrate a deep learning approach for the con-
tinuous prediction of AKI within a clinically actionable window of up 
to 48 h in advance. We report performance on a clinically diverse pop-
ulation and across a large number of sites to show that our approach 
may allow for the delivery of potentially preventative treatment—before 
the physiological insult itself, in a large number of the cases. Our results 
open up the possibility for deep learning to guide the prevention of clin-
ically important adverse events. With the possibility of risk predictions 
delivered in clinically actionable windows, alongside the increasing size 
and scope of electronic health record datasets, we now shift to a regime 
in which the role of machine learning in clinical care can grow rapidly, 
supplying tools for enhancing patient and clinician experiences and 
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Fig. 2 | Model performance illustrated by receiver operating 
characteristic and precision–recall curves. a, b, Receiver operating 
characteristic (a) and precision–recall (b) curves for the risk that AKI 
of any severity will occur within 48 h. Blue dots represent different 
model operating points (see Extended Data Table 4). Grey shaded area 
corresponds to operating points with more than four false positives 

for each true positive. Blue shaded area represents performance in the 
part of the operating space that is more clinically applicable. The model 
significantly (P < 1 × 10−6) outperformed the gradient-boosted tree 
baseline, shown in b for operating-point C using two-sided Mann–
Whitney U-test on 200 samples per model (see Methods).
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Fig. 3 | The time between model prediction and the actual AKI event. 
The models predict AKI risk within a particular time window. Within 
this, the time in hours between prediction and AKI can vary (error bars, 
bootstrap pivotal 95% confidence intervals; n = 200). a, b, Prediction 
performance for any AKI (a) and AKI stage 3 (b) 48 h ahead of time, 

shown for different precisions. A greater proportion of AKI events were 
correctly predicted closer to the time step immediately before the AKI. 
The available time window for prediction is shortened in AKI events 
which occur less than 48 h after admission. For each column, the boxed 
area shows the upper limit on possible predictions.
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potentially becoming a ubiquitous and integral part of routine clinical 
pathways.
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Any methods, additional references, Nature Research reporting summaries, source 
data, extended data, supplementary information, acknowledgements, peer review 
information; details of author contributions and competing interests; and state-
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Received: 13 November 2018; Accepted: 18 June 2019;  
Published online 31 July 2019.

	1.	 Thomson, R., Luettel, D., Healey, F. & Scobie, S. Safer Care for the Acutely Ill 
Patient: Learning from Serious Incidents (National Patient Safety Agency, 2007).

	2.	 Henry, K. E., Hager, D. N., Pronovost, P. J. & Saria, S. A targeted real-time early 
warning score (TREWscore) for septic shock. Sci. Transl. Med. 7, 299ra122 
(2015).

	3.	 Rajkomar, A. et al. Scalable and accurate deep learning with electronic health 
records. npj Digit. Med. 1, 18 (2018).

	4.	 Koyner, J. L., Adhikari, R., Edelson, D. P. & Churpek, M. M. Development of a 
multicenter ward-based AKI prediction model. Clin. J. Am. Soc. Nephrol. 11, 
1935–1943 (2016).

	5.	 Cheng, P., Waitman, L. R., Hu, Y. & Liu, M. Predicting inpatient acute kidney 
injury over different time horizons: how early and accurate? In AMIA Annual 
Symposium Proceedings 565 (American Medical Informatics Association, 2017).

	6.	 Koyner, J. L., Carey, K. A., Edelson, D. P. & Churpek, M. M. The development of a 
machine learning inpatient acute kidney injury prediction model. Crit. Care Med. 
46, 1070–1077 (2018).

	7.	 Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C. & Faisal, A. A. The Artificial 
Intelligence Clinician learns optimal treatment strategies for sepsis in intensive 
care. Nat. Med. 24, 1716–1720 (2018).

	8.	 Avati, A. et al. Improving palliative care with deep learning. In 2017 IEEE 
International Conference on Bioinformatics and Biomedicine (BIBM) 311–316 
(2017).

	9.	 Lim, B. & van der Schaar, M. Disease-Atlas: navigating disease trajectories with 
deep learning. Proc. Mach. Learn. Res. 85, 137–160 (2018).

	10.	 Futoma, J., Hariharan, S. & Heller, K. A. Learning to detect sepsis with a 
multitask Gaussian process RNN classifier. In Proc. International Conference on 
Machine Learning (eds Precup, D. & Teh, Y. W.) 1174–1182 (2017).

	11.	 Miotto, R., Li, L., Kidd, B. A. & Dudley, J. T. Deep Patient: an unsupervised 
representation to predict the future of patients from the electronic health 
records. Sci. Rep. 6, 26094 (2016).

	12.	 Lipton, Z. C., Kale, D. C., Elkan, C. & Wetzel, R. Learning to diagnose with LSTM 
recurrent neural networks. Preprint at https://arxiv.org/abs/1511.03677 
(2016).

	13.	 Cheng, Y. P. Z. J. H. & Wang, F. Risk prediction with electronic health records: a 
deep learning approach. In Proc. SIAM International Conference on Data Mining 
(eds Venkatasubramanian, S. C. & Meria, W.) 432–440 (2016).

	14.	 Soleimani, H., Subbaswamy, A. & Saria, S. Treatment-response models for 
counterfactual reasoning with continuous-time, continuous-valued 
interventions. In Proc. 33rd Conference on Uncertainty in Artificial 
Intelligence (AUAI Press Corvallis, 2017).

	15.	 Alaa, A. M., Yoon, J., Hu, S. & van der Schaar, M. Personalized risk scoring for 
critical care prognosis using mixtures of Gaussian process experts. IEEE Trans. 
Biomed. Eng. 65, 207–218 (2018).

	16.	 Perotte, A., Ranganath, R., Hirsch, J. S., Blei, D. & Elhadad, N. Risk prediction for 
chronic kidney disease progression using heterogeneous electronic health 
record data and time series analysis. J. Am. Med. Inform. Assoc. 22, 872–880 
(2015).

	17.	 Bihorac, A. et al. MySurgeryRisk: development and validation of a machine-
learning risk algorithm for major complications and death after surgery. Ann. 
Surg. 269, 652–662 (2019).

	18.	 Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron 
Clin. Pract. 120, c179–c184 (2012).

	19.	 Stenhouse, C., Coates, S., Tivey, M., Allsop, P. & Parker, T. Prospective evaluation 
of a modified early warning score to aid earlier detection of patients developing 
critical illness on a general surgical ward. Br. J. Anaesth. 84, 663P (2000).

	20.	 Alge, J. L. & Arthur, J. M. Biomarkers of AKI: a review of mechanistic relevance 
and potential therapeutic implications. Clin. J. Am. Soc. Nephrol. 10, 147–155 
(2015).

	21.	 Wang, H. E., Muntner, P., Chertow, G. M. & Warnock, D. G. Acute kidney injury 
and mortality in hospitalized patients. Am. J. Nephrol. 35, 349–355 (2012).

	22.	 MacLeod, A. NCEPOD report on acute kidney injury—must do better. Lancet 
374, 1405–1406 (2009).

	23.	 Lachance, P. et al. Association between e-alert implementation for detection of 
acute kidney injury and outcomes: a systematic review. Nephrol. Dial. Transplant. 
32, 265–272 (2017).

	24.	 Johnson, A. E. W. et al. Machine learning and decision support in critical care. 
Proc. IEEE Inst. Electr. Electron Eng. 104, 444–466 (2016).

	25.	 Mohamadlou, H. et al. Prediction of acute kidney injury with a machine learning 
algorithm using electronic health record data. Can. J. Kidney Health Dis. 5, 1–9 
(2018).

	26.	 Pan, Z. et al. A self-correcting deep learning approach to predict acute 
conditions in critical care. Preprint at https://arxiv.org/abs/1901.04364 
(2019).

	27.	 Park, S. et al. Impact of electronic acute kidney injury (AKI) alerts with 
automated nephrologist consultation on detection and severity of AKI: a quality 
improvement study. Am. J. Kidney Dis. 71, 9–19 (2018).

	28.	 Chen, I., Johansson, F. D. & Sontag, D. Why is my classifier discriminatory? 
Preprint at https://arxiv.org/abs/1805.12002 (2018).

	29.	 Schulam, P. & Saria, S. Reliable decision support using counterfactual models. 
In Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) 
1697–1708 (2017).

	30.	 Telenti, A., Steinhubl, S. R. & Topol, E. J. Rethinking the medical record. Lancet 
391, 1013 (2018).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

1  A U G U S T  2 0 1 9  |  V O L  5 7 2  |  N A T U RE   |  1 1 9

https://doi.org/10.1038/s41586-019-1390-1
https://doi.org/10.1038/s41586-019-1390-1
https://arxiv.org/abs/1511.03677
https://arxiv.org/abs/1901.04364
https://arxiv.org/abs/1805.12002


LetterRESEARCH

Methods
Data description. The clinical data used in this study were collected by the US 
Department of Veterans Affairs and transferred to DeepMind in a de-identified 
format. No personal information was included in the dataset, which met HIPAA 
‘Safe Harbor’ criteria for de-identification.

The US Department of Veterans Affairs serves a population of over nine million 
veterans and their families across the entire United States of America. The US 
Department of Veterans Affairs is composed of 1,243 healthcare facilities (sites), 
including 172 Veterans Affairs Medical Centers and 1,062 outpatient facilities31. 
Data from these sites are aggregated into 130 data centres, of which 114 had data 
from inpatient admissions that we used in this study. Four sites were excluded 
because they had fewer than 250 admissions during the 5-year time period. No 
other patients were excluded based on location.

The data comprised all patients aged between 18 and 90 who were admitted 
for secondary care to medical or surgical services from the beginning of October 
2011 to the end of September 2015 (including laboratory data) and for whom 
there was at least one year of electronic health record data before admission. The 
data included medical records with entries up to ten years before each admission 
date and up to two years afterwards, where available. Where available in the US 
Department of Veterans Affairs database, data included outpatient visits, admis-
sions, diagnoses as International Statistical Classification of Diseases and Related 
Health Problems (ICD9) codes, procedures as Current Procedural Terminology 
(CPT) codes, laboratory results (including—but not limited to—biochemistry, 
haematology, cytology, toxicology, microbiology and histopathology), medica-
tions and prescriptions, orders, vital signs, health factors and note titles. Free 
text and diagnoses that were rare (fewer than 12 distinct patients with at least 
1 occurrence in the US Department of Veterans Affairs database) were excluded 
to ensure all potential privacy concerns were addressed. In addition, conditions 
that were considered sensitive were excluded before transfer, such as patients with 
HIV/AIDS, sexually transmitted diseases, substance abuse and those admitted to 
mental health services.

The final dataset consisted of all eligible patients following this set of inclu-
sion criteria, and comprised 703,782 patients, which provided 6,352,945,637 
clinical-event entries. Each clinical entry denoted a single procedure, laboratory 
test result, prescription, diagnosis and so on: 3,958,637,494 entries came from 
outpatient events and the remaining 2,394,308,143 events came from admissions. 
Extended Data Table 6 contains an overview of patient demographics in the data 
as well as the prevalence of conditions that are associated with AKI across the 
data splits. The final dataset was randomly divided into training (80% of observa-
tions), validation (5%), calibration (5%) and testing (10%) sets. All data for a single 
patient were assigned to exactly one of these splits. The test population consisted 
of 70,681 individual patients and 252,492 unique admissions. A sample size of 179 
patients would be required to detect sensitivity and specificity at 0.05 marginal 
error and 95% confidence. When assigning patients randomly to test, calibration, 
validation and training groups investigators were blinded to patient covariates 
and all features in the electronic health record that were not required to perform 
the research (for example, creatinine was required to label AKI as a ground truth). 
Patient recruitment was conducted by independent members of the Department 
of Veterans Affairs National Data Center; research team members were blinded 
to this recruitment.
Data preprocessing. Feature representation. Every patient in the dataset was repre-
sented by a sequence of events, with each event providing the patient information 
that was recorded within a six-hour period; that is, each day was broken into four 
six-hour periods and all records that occurred within the same six-hour period 
were grouped together. The available data within these six-hour windows, along 
with additional summary statistics and augmentations, formed a feature set that 
was used as input to our predictive models. Extended Data Figure 1 provides a 
diagrammatic view of a patient sequence and its temporal structure.

We did not perform any imputation of missing numerical values, because 
explicit imputation of missing values does not always provide consistent improve-
ments to predictive models based on electronic health records32. Instead, we associ-
ated each numerical feature with one or more discrete ‘presence’ features to enable 
our models to distinguish between the absence of a numerical value and an actual 
value of zero. Additionally, these presence features encoded whether a particu-
lar numerical value is considered to be normal, low, high, very low or very high. 
For some data points, the explicit numerical values were not recorded (usually 
when the values were considered normal), and the provision of this encoding of 
the numerical data allowed our models to process these measurements even in 
their absence. Discrete features, such as diagnostics or procedural codes, were also 
encoded as binary presence features.

All numerical features were normalized to the [0, 1] range after capping the 
extreme values at the 1st and 99th percentile. This prevents the normalization 
from being dominated by potentially large data entry errors, while preserving most 
of the signal.

Each clinical feature was mapped onto a corresponding high-level concept, such 
as procedure, diagnosis, prescription, laboratory test, vital sign, admission, transfer 
and so on. In total, 29 such high-level concepts were present in the data. At each 
step, a histogram of the frequencies of these concepts among the clinical entries 
that took place at that step was provided to the models, along with the numerical 
and binary presence features.

The approximate age of each patient in days (as well as the six-hour period in 
the day to which the data were associated) were provided as explicit features to 
the models. In addition, we provided some simple features that made it easier for 
the models to predict the risk of developing AKI. In particular, we provided the 
median yearly creatinine baseline and the minimum 48-h creatinine baseline as 
additional numerical features. These are the baseline values that are used in the 
KDIGO criteria and help to give important context to the models regarding how to 
interpret new serum creatinine measurements as they become available.

We additionally computed 3 historical aggregate feature representations at each 
step: one for the past 48 h, one for the past 6 months and one for the past 5 years. All 
histories were optionally provided to the models and the decision on which com-
bination of historical data to include was based on the model performance on the 
validation set. We did this historical aggregation for discrete features by including 
whether these features were observed in the historical interval or not. For numer-
ical features, we included the count, mean, median, standard deviation, minimum 
and maximum value observed in the interval, as well as simple trend features such 
as the difference between the last observed value and the minimum or maximum 
and the average difference between subsequent steps (which measures the temporal 
short-term variability of the measurement). Supplementary Information section H 
provides the effect of volume and recency of available data on model performance.

Because patient measurements are made irregularly, not all six-hour time peri-
ods in a day will have new data associated with them. Our models operate at regular 
time intervals regardless, and all time periods without new measurements include 
only the available metadata and (optionally) the historical aggregate features. This 
approach makes continuous risk predictions possible, and allows our models to use 
patterns of missingness in the data during the training process.

For about 35% of all entries, the day—but not the specific time during the day—
on which they occurred was known. For each day in the sequence of events, we 
aggregated these unknown-time entries into a specific bucket that was appended 
to the end of the day. This ensured that our models could iterate over this infor-
mation without potentially leaking information from the future. Our models were 
not allowed to make predictions from these surrogate points and they were not 
factored into the evaluation. The models can use the information contained within 
the surrogate points on the next time step, corresponding to the first interval of 
the following day.

Diagnoses in the data are sometimes known to be recorded in the electronic 
health record before the time when an actual diagnosis was made clinically. To 
avoid leaking future information to the models, we shifted all of the diagnoses 
within each admission to the very end of that admission and only provided them 
to the models at that point, at which time they can be factored in for future admis-
sions. This discards potentially useful information: the performance obtained in 
this way is conservative by design and it is possible that, in reality, the models 
would be able to perform better with this information provided in a consistent way.
Ground-truth labels using KDIGO. The patient AKI states were computed at 
each time step on the basis of the KDIGO18 criteria, the recommendations of 
which are based on systematic reviews of relevant trials. KDIGO accepts three 
definitions of AKI18: an increase in serum creatinine of 0.3 mg/dl (26.5 μmol/l) 
within 48 h; an increase in serum creatinine of 1.5× the baseline creatinine level 
of a patient, known or presumed to have occurred within the previous 7 days; or 
a urine output of <0.5 ml/kg/h over 6 h. The first two definitions were used to 
provide ground-truth labels for the onset of AKI; the third definition could not 
be used, as urine output was not recorded digitally in the majority of sites that 
formed part of this work. A baseline of median annualized creatinine was used 
when previous measurements were available; when these measurements were not 
present the ‘modification of diet in renal disease’ formula was applied to estimate 
baseline creatinine. Using the KDIGO criteria based on serum creatinine and its 
corresponding definitions for AKI severity, three AKI categories were obtained: 
‘all AKI’ (KDIGO stages 1, 2 and 3), ‘moderate and severe AKI’ (KDIGO stages 2 
and 3), and ‘severe AKI’ (KDIGO stage 3).

The AKI stages were computed at times at which there was a serum creati-
nine measurement present in the sequence, and then copied forward in time until 
the next creatinine measurement, at which time the ground-truth AKI state was 
updated accordingly. To avoid basing the current estimate of the KDIGO AKI 
stage on a previous measurement that may no longer be reliable, the AKI states 
were propagated for (at most) four days forward in case no new creatinine meas-
urements were observed. From that point onwards, AKI states were marked as 
unknown. Patients who experience AKI tend to be closely monitored and their 
levels of serum creatinine are measured regularly, so an absence of a measurement 
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for multiple days in such cases is uncommon. A gap of 4 days between subsequent 
creatinine measurements represents the 95th percentile in the distribution of time 
between 2 consecutive creatinine measurements.

The prediction target at each point in time is a binary variable that is positive if 
the AKI category of interest (for example, all AKI) occurs within a chosen future 
time horizon. If no AKI state was recorded within the chosen horizon, this was 
interpreted as a negative. We used 8 future time horizons (6-h, 12-h, 18-h, 24-h, 
36-h, 48-h, 60-h and 72-h ahead) that were all available at each time point.

Event sequences of patients who were undergoing renal replacement therapy 
were excluded from the target labels heuristically (on the basis of data entries for 
renal replacement therapy procedures being performed being present in the elec-
tronic health record), for the duration of dialysis administration. We have excluded 
entire sub-sequences of events between entries for renal replacement therapy pro-
cedures that occur within a week of each other. The edges of the sub-sequence were 
also appropriately excluded from label computations.
Models for predicting AKI. Our predictive system operates sequentially over the 
electronic health record. At each time point, input features (as described in ‘Feature 
representation’) were provided to a statistical model, the output of which is a prob-
ability of any-severity stage of AKI occurring in the next 48 h. If this probability 
exceeds a chosen operating threshold, we make a positive prediction that can then 
trigger an alert. This is a general framework within which existing approaches 
also fit, and we describe the baseline methods in ‘Competitive baseline methods’ 
below. The contribution of this work is in the design of the particular model that is 
used and its training procedure, and the demonstration of its effectiveness—on a 
large-scale electronic health record dataset and across many different regimes— in 
making useful predictions of future AKI.

Extended Data Figure 2 gives a schematic view of our model, which makes 
predictions by first transforming the input features using an embedding module. 
This embedding is fed into a multi-layer recurrent neural network, the output of 
which at every time point is fed into a prediction module that provides the prob-
ability of future AKI at the time horizon for which the model will be trained. The 
entire model can be trained end-to-end; that is, the parameters can be learned 
jointly without pre-training any parts of the model. To provide useful predictions, 
we train an ensemble of predictors to estimate the confidence of the model, and 
the resulting ensemble predictions are then calibrated using isotonic regression to 
reflect the frequency of observed outcomes33.
Embedding modules. The embedding layers transform the high-dimensional and 
sparse input features into a lower-dimensional continuous representation that 
makes subsequent prediction easier. We use a deep multilayer perceptron with 
residual connections and rectified-linear activations. We use L1 regularization on 
the embedding parameters to prevent overfitting and to ensure that our model 
focuses on the most-salient features. We compared simpler linear transformations, 
which did not perform as well as the multi-layer version we used. We also com-
pared unsupervised approaches such as factor analysis, standard auto-encoders 
and variational auto-encoders, but did not find any substantial advantages in using 
these methods.
Recurrent neural network core. Recurrent neural networks (RNNs) run sequen-
tially over the electronic health record entries and are able to implicitly model the 
historical context of a patient by modifying an internal representation (or state) 
through time. We use a stacked multiple-layer recurrent network with highway 
connections between each layer34, which at each time step takes the embedding 
vector as an input. We use the simple recurrent unit network as the RNN architec-
ture, with tanh activations. We chose this from a broad range of alternative RNN 
architectures: specifically, the long short-term memory35, update gate RNN and 
intersection RNN36, simple recurrent units37,38, gated recurrent units39, the neural 
Turing machine40, memory-augmented neural network41, the Differentiable Neural 
Computer42 and the relational memory core43. These alternatives did not provide 
significant performance improvements over the simple recurrent unit architecture 
(Supplementary Information section D).
Prediction targets and training objectives. The output of the RNN is fed to a final 
linear prediction layer that makes predictions over all eight future prediction win-
dows (6-h windows from 6 h ahead to 72 h ahead). We use a cumulative distribu-
tion function layer across time windows to encourage monotonicity, because the 
presence of AKI within a shorter time window implies a presence of AKI within 
a longer time window. Each of the resulting eight outputs provides a binary pre-
diction for AKI severity at a specific time window and is compared to the ground-
truth label using the cross-entropy loss function (Bernoulli log-likelihood).

We also make a set of auxiliary numerical predictions; at each step, we also pre-
dict the maximum future observed value of a set of laboratory tests over the same 
set of time intervals as we use to make the future AKI predictions. The laboratory 
tests predicted are ones that are known to be relevant to kidney function: specif-
ically, creatinine, urea nitrogen, sodium, potassium, chloride, calcium and phos-
phate. This multi-task approach results in better generalization and more-robust 
representations, especially under class imbalance44–46. The overall improvement 

that we observed from including the auxiliary task was around 3% area under the 
precision–recall curve in most cases (see Supplementary Information section A 
for more details).

Our overall loss function is the weighted sum of the cross-entropy loss from 
the AKI predictions and the squared loss for each of the seven laboratory-test 
predictions. We investigated the use of oversampling and overweighting of the 
positive labels to account for class imbalance. For oversampling, each mini-batch 
contains a larger percentage of positive samples than average in the entire dataset. 
For overweighting, the prediction for positive labels contributes proportionally 
more to the total loss.
Training and hyperparameters. We selected our proposed model architec-
ture among several alternatives on the basis of the validation set performance 
(Supplementary Information section D), and subsequently performed an ablation 
analysis of the design choices (Supplementary Information section I). All variables 
are initialized via normalized (Xavier) initialization47 and trained using the Adam 
optimization scheme48. We use exponential learning-rate decay during training. 
The best validation results were achieved using an initial learning rate of 0.001 
decayed every 12,000 training steps by a factor of 0.85, with a batch size of 128 
and a back-propagation through time window of 128. The embedding layer is of 
size 400 for each of the numerical and presence input features (800 in total when 
concatenated) and uses 2 layers. The best-performing RNN architecture used a cell 
size of 200 units per layer and 3 layers. A detailed overview of different hyperpa-
rameter combinations evaluated in the experiments is available in Supplementary 
Information section J. We conducted extensive hyperparameter explorations of 
dropout rates for different kinds of dropout to determine the best model regular-
ization. We have considered input dropout, output dropout, embedding dropout, 
cell-state dropout and variational dropout. None of these led to improvements, so 
dropout is not included in our model.
Competitive baseline methods. Established models for future AKI prediction 
make use of L1-regularized logistic regression or gradient-boosted trees, trained 
on a clinically relevant set of features that are known to be important either for 
routine clinical practice or the modelling of kidney function. A curated set of clin-
ically relevant features was chosen using existing AKI literature (Supplementary 
Information section F) and the consensus opinion of six clinicians: three senior 
attending physicians with over twenty years expertise, one nephrologist and two 
intensive care specialists; and three clinical residents with expertise in nephrology, 
internal medicine and surgery. This set was further extended to include 36 of the 
most-salient features discovered by our deep learning model that were not in the 
original list, to give further predictive signal to the baseline. The final curated 
dataset contained 315 base features of demographics, admission information, 
vital sign measurements, select laboratory tests and medications, and diagnoses 
of chronic conditions that are directly associated with an increased risk of AKI. 
The full feature set is listed in Supplementary Information section E. We addi-
tionally computed a set of manually engineered features (yearly and 48-hourly 
baseline creatinine levels (consistent with KDIGO guidelines), the ratio of blood 
urea nitrogen to serum creatinine, grouped severely reduced glomerular filtration 
rate (corresponding to stages 3a to 5), and flagging patients with diabetes by com-
bining ICD9 codes and values of measured haemoglobin A1c) and a representation 
of the short-term and long-term history of a patient (see ‘Feature representation’). 
These features were provided explicitly, because the interaction terms and historical 
trends might not have been recovered by simpler models. This resulted in a total 
of 3,599 possible features for the baseline model. We provide a table with a full set 
of baseline comparisons in Supplementary Information section D.
Evaluation. The data were split into training, validation, calibration and test sets 
in such a way that information from a given patient was present only in one split. 
The training split was used to train the proposed models. The validation set was 
used to iteratively improve the models by selecting the best model architectures 
and hyperparameters.

The models selected on the validation set were recalibrated on the calibration 
set in order to further improve the quality of the risk predictions. Deep learning 
models with softmax or sigmoid output trained with cross-entropy loss are prone 
to miscalibration, and recalibration ensures that consistent probabilistic interpre-
tations of the model predictions can be made49. For calibration, we considered Platt 
scaling50 and isotonic regression33. To compare uncalibrated predictions to recali-
brated ones, we used the Brier score51 and reliability plots52. The best models were 
evaluated on the independent test set that was retained during model development.

The main metrics used in model selection and the final report are: the AKI 
episode sensitivity, the area under the precision–recall curve, the area under the 
receiver operating curve, and the per-step precision, per-step sensitivity and per-
step specificity. The AKI episode sensitivity corresponds to the percentage of all 
AKI episodes that were correctly predicted ahead of time within the correspond-
ing time windows of up to 48 h. By contrast, the precision is computed per step 
because the predictions are made at each step, to account for the rate of false alerts 
over time.
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Owing to the sequential nature of making predictions, the total number of 
positive steps does not directly correspond to the total number of distinct AKI 
episodes. Multiple positive alerting opportunities may be associated with a single 
AKI episode and AKI episodes may offer a number of such early alerting steps, 
depending on how late they occur within the admission. AKI episodes that occur 
later during in-hospital stay can be predicted earlier than an AKI episode that 
occurs immediately upon admission. To better assess the clinical applicability of 
the proposed model, we explicitly compute the AKI episode sensitivity for different 
levels of stepwise precision.

Given that the models were designed for continuous monitoring and risk pre-
diction, they were evaluated at each 6-h time step within all of the admissions for 
each patient except for the steps within AKI episodes (which were ignored). The 
models were not evaluated on outpatient events. All steps for which there was no 
record of AKI occurring in the relevant future time window were considered to 
be negative examples.

Approximately 2% of individual time steps presented to the models sequentially  
were associated with a positive AKI label, so the AKI prediction task is class- 
imbalanced. For per-step performance metrics, we report both the area under the 
receiver operating characteristic curve as well as the area under the precision–recall 
curve. Area under the precision–recall curve is known to be more informative for 
class-imbalanced predictive tasks53, as it is more sensitive to changes in the number 
of false-positive predictions.

To gauge uncertainty on the performance of a trained model, we calculated 
95% confidence intervals with the pivot bootstrap estimator54. This was done by 
sampling the entire validation and test dataset with replacement 200 times. Because 
bootstrapping assumes the resampling of independent events, we resample entire 
patients instead of resampling individual admissions or time steps. Where appro-
priate, we also compute a two-sided Mann–Whitney U-test55 on the samples for 
the respective models.

To quantify the uncertainty on model predictions (versus overall performance), 
we trained an ensemble of 100 models with a fixed set of hyperparameters but dif-
ferent initial seeds. This follows similar uncertainty approaches in supervised learn-
ing56 and medical imaging predictions57. The prediction confidence was assessed 
by inspecting the variance over the 100 model predictions from the ensemble. This 
confidence reflected the accuracy of a prediction: the mean standard deviation of 
false-positive predictions was higher than the mean standard deviation of true- 
positive predictions and similarly for false-negative versus true-negative predic-
tions (P < 0.01) (Supplementary Information section K).
Ethics and information governance. This work, and the collection of data on 
implied consent, received Tennessee Valley Healthcare System Institutional 
Review Board (IRB) approval from the US Department of Veterans Affairs. 
De-identification was performed in line with the Health Insurance Portability and 
Accountability Act (HIPAA), and validated by the US Department of Veterans 
Affairs Central Database and Information Governance departments. Only de- 
identified retrospective data were used for research, without the active involvement 
of patients.
Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this paper.

Data availability
The clinical data used for the training, validation and test sets were collected at 
the US Department of Veterans Affairs and transferred to a secure data centre 
with strict access controls in de-identified format. Data were used with both local 
and national permissions. It is not publicly available and restrictions apply to its 
use. The de-identified dataset (or a test subset) may be available from the US 
Department of Veterans Affairs, subject to local and national ethical approvals.

Code availability
We make use of several open-source libraries to conduct our experiments: the 
machine learning framework TensorFlow (https://github.com/tensorflow/tensor-
flow) along with the TensorFlow library Sonnet (https://github.com/deepmind/
sonnet), which provides implementations of individual model components58. Our 
experimental framework makes use of proprietary libraries and we are unable to 
publicly release this code. We detail the experiments and implementation details in 
the Methods and Supplementary Information to allow for independent replication.
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Extended Data Fig. 1 | Sequential representation of electronic health 
record data. All electronic health record data available for each patient 
were structured into a sequential history for both inpatient and outpatient 
events in six-hourly blocks, shown here as circles. In each 24-h period, 

events without a recorded time were included in a fifth block. Apart from 
the data present at the current time step, the models optionally receive 
an embedding of the previous 48 h and the longer history of 6 months or 
5 years.
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Extended Data Fig. 2 | Architecture of the proposed model. The best 
performance was achieved by a multi-task deep recurrent highway 
network architecture on top of an L1-regularized deep residual embedding 

component that learns the best data representation end-to-end without 
pre-training.
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Extended Data Fig. 3 | Calibration. a, b, The predictions were 
recalibrated using isotonic regression before (a) and after (b) 
calibration. Model predictions were grouped into 20 buckets, with a mean 
model risk prediction plotted against the percentage of positive labels in 
that bucket. The diagonal line demonstrates the ideal calibration.
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Extended Data Fig. 4 | Analysis of false-positive predictions. a, For 
prediction of any AKI within 48 h at 33% precision, nearly half of all 
predictions are trailing, after the AKI has already occurred (orange 
bars) or early, more than 48 h prior (blue bars). The histogram shows 
the distribution of these trailing and early false positives for prediction. 
Incorrect predictions are mapped to their closest preceding or following 
episode of AKI (whichever is closer) if that episode occurs in an 
admission. For ±1 day, 15.2% of false positives correspond to observed 
AKI events within 1 day after the prediction (model reacted too early) 

and 2.9% correspond to observed AKI events within 1 day before the 
prediction (model reacted too late). b, Subgroup analysis for all false-
positive alerts. In addition to the 49% of false-positive alerts that were 
made in admissions during which there was at least one episode of AKI, 
many of the remaining false-positive alerts were made in patients who had 
evidence of clinical risk factors present in their available electronic health 
record data. These risk factors are shown here for the proposed model that 
predicts any stage of AKI occurring within the next 48 h.
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Extended Data Table 1 | Model performance for predicting AKI within the full range of possible prediction windows from 6 to 72 h

a, b, With shorter time windows, closer to the actual onset of AKI, the model achieves a higher area under the receiver operating characteristic curve (ROC AUC; a) but a lower area under the precision–
recall curve (PR AUC; b). This stems from different numbers of positive steps within windows of different length. These differences affect both the model precision and the false-positive rate. When 
making predictions across shorter time windows there is more uncertainty in the exact time of the AKI onset owing to minor physiological fluctuations, and this results in a lower precision being 
needed to achieve high sensitivity. Bootstrap pivotal 95% confidence intervals are calculated using n = 200 bootstrap samples.
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Extended Data Table 2 | Daily frequency of true- and false-positive alerts when predicting different stages of AKI

The frequency and standard deviation of alerts are shown for a time window of 48 h and an operating point corresponding to a 1:2 true-positive:false-positive ratio (n = 5,101 days). On an average 
day, clinicians would receive true-positive alerts of AKI predicted to occur within a window of 48 h ahead in 0.85% of all in-hospital patients and a false-positive prediction of a future AKI in 1.89% of 
patients, when predicting future AKI of any severity. Assuming none of the false positives can be filtered out and immediately discarded, clinicians would need to attend to approximately 2.7% of all 
in-hospital patients. For the most-severe stages of AKI, on an average day the model provides positive alerts for 0.8% of all patients. Of these, 0.27% are true positives and 0.56% are false positives. 
Note that there are multiple time steps at which the predictions are made within each day, so the true-positive:false-positive ratio of the daily alerts differs slightly from the stepwise ratio. a, Daily 
frequency of true and false positive alerts when predicting any stage of AKI. b, Daily frequency of true- and false-positive alerts when predicting KDIGO AKI stages 2 and above. c, Daily frequency of 
true- and false-positive alerts when predicting the most-severe stage of AKI (KDIGO AKI stage 3).
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Extended Data Table 3 | Model performance on patients who required subsequent dialysis

Model performance only in cases of AKI in which in-hospital or outpatient administration of dialysis was required within 30 days of the onset of AKI, or regular outpatient administration of dialysis 
was scheduled within 90 days. The model successfully provides early predictions for a large proportion of these cases of AKI—84.3% for cases of AKI in which there is any dialysis administration that 
occurs within 30 days, and 90.2% for cases in which regular outpatient administration of dialysis occurs within 90 days.



Letter RESEARCH

Extended Data Table 4 | Operating points for predicting AKI up to 48 h ahead of time

a, For prediction of any AKI, the model correctly provides early identification in 55.8% of all AKI episodes (when allowing for 2 false positives for every true positive) and in 34.7% of episodes if allowing 
for 1 false positive for every true positive. For more-severe AKI stages, it is possible to achieve a higher sensitivity for any fixed level of precision. b, c, Performance increases for prediction of AKI stag-
es 2 and 3 (b), and AKI stage 3 (c) alone. Bootstrap pivotal 95% confidence intervals are calculated using n = 200 bootstrap samples for all tables.
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Extended Data Table 5 | Future and cross-site generalizability experiments

a, Model performance when trained before the time point tP and tested after tP, on both the entirety of the future patient population and on subgroups of patients for whom the model has or has not 
seen historical information during training. The model maintains a comparable level of performance on unseen future data, with a higher level of sensitivity of 59% for a time window of 48 h ahead of 
the AKI episode and a precision of 2 false positives per step for each true positive. The ranges correspond to bootstrap pivotal 95% confidence intervals with n = 200 bootstrap samples. Note that this 
experiment is not a replacement for a prospective evaluation of the model. b, Cohort statistics for a, shown for before and after the temporal split tP that was used to simulate model performance on fu-
ture data. c, Comparison of model performance when applied to data from previously unseen hospital sites. Data were split across sites such that 80% of the data were in group A and 20% of the data 
were in group B. No site from group B was present in group A, and vice versa. The data were split into training, validation, calibration and test sets in the same way as in the other experiments. The table 
reports model performance when trained on site group A when evaluating on the test set within site group A versus the test set within site group B for predicting all AKI severities up to 48 h ahead of 
time. A comparable performance is seen across all key metrics. Bootstrap pivotal 95% confidence intervals are calculated using n = 200 bootstrap samples. Note that the model needs to be retrained 
to generalize from the population represented by the US Department of Veterans Affairs dataset to different demographics and sets of clinical pathways and hospital processes.
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Extended Data Table 6 | Summary statistics for the data

A breakdown of training (80%), validation (5%), calibration (5%) and test (10%) datasets by both unique patients and individual admissions. Where appropriate, the percentage of total dataset size is 
reported in parentheses. The dataset was representative of the overall US Department of Veterans Affairs population for clinically relevant demographics and diagnostic groups associated with renal 
pathology.
*Average age after taking into account exclusion criteria and statistical noise added to meet HIPAA Safe Harbour criteria.
**Chronic kidney disease stage 1 is evidence of renal parenchymal damage with a normal glomerular filtration rate. This is rarely recorded in our dataset; instead, the numbers for stage-1 chronic 
kidney disease have been estimated from admissions that carried an ICD-9 code for chronic kidney disease, but for which the glomerular filtration rate was normal. For this reason, these numbers may 
underrepresent the true prevalence in the population.
***In total, 172 US Department of Veterans Affairs inpatient sites and 1,062 outpatient sites were eligible for inclusion. In addition, 130 data centres aggregated data from 1 or more of these facilities, 
of which 114 such data centres had data for inpatient admissions used in this study. Although the exact number of sites included was not provided in the dataset for this work, no patients were exclud-
ed on the basis of location.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Data collection was performed by independent members of the VA National Data Center without involvement from research team 
members. Collection was performed using the Vista EHR system and associated databases.

Data analysis The networks used the TensorFlow library with custom extensions. Analysis was performed with custom code written in Python 2.7. 
Please see the manuscript methods section for more detail.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The clinical data used for the training, validation and test sets were collected at the US Department of Veterans Affairs and transferred to a secure data centre with 
strict access controls in de-identified format. Data were used with both local and national permissions. They are not publicly available and restrictions apply to their 
use. The de-identified dataset, or a test subset, may be available from the US Department of Veterans Affairs subject to local and national ethical approvals.
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Life sciences study design
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Sample size

Data exclusions

Replication

Randomization

Blinding

The dataset consisted of all eligible patients during a five year period across the entire VA healthcare system in the USA. The 
test population was a random selection of 10% of these, totaling 70,681 individual patients and 252,492 unique admissions 
(please refer to methods section for more details on how test populations were selected). A sample size requirement of 179 
patients would be required to detect sensitivity and specificity at 0.05 marginal error and 95% confidence. The total number of 
test patients exceeded this requirement by two orders of magnitude.

We excluded patients below the age of 18 and above the age of 90 in accordance with HIPAA Safe Harbor criteria, and patients 
without any serum creatinine recorded in EHR. (See paper methods for more detail.) To protect patient privacy sites with fewer 
than 250 admissions during the five year time period were also excluded; four of the 1,243 health care facilities from which the 
VA is composed were excluded based on this criteria. All exclusion criteria were established prior to beginning the work.

All 70,681 patients in the test set were randomly selected and were not correlated in any way. The experiments can be 
interpreted as 70,681 replicas of the model applied to a single patient over a fifteen year period.

The data were randomly divided into training (80% of observations), validation (5%), calibration (5%) and testing (10%) sets. All 
data for a single patient was assigned to exactly one of these splits. (See paper methods for more detail.)

When assigning patients randomly to test, validation and training groups investigators were blinded to patient covariates and all 
features in the EHR not required to perform the research (e.g., creatinine was required to label AKI as a ground truth). Patient 
recruitment was conducted by independent members of the VA National Data Center;  research team members were blinded to 
this recruitment.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study
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Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics The data included all VA patients aged between 18 and 90 admitted for secondary care to medical or surgical services between 
10/1/2011 to 9/30/2015, with laboratory data that included serum creatinine recorded in EHR and with at least one year of EHR 
data prior to admission data. The test set was a randomly selected 10% of all admissions included in the work. Average age was 
62.3. Males represented 93.6% of the test population. Average number of inpatient admissions was 3.6; average admission 
duration was 9.6 days. AKI occurred in 13.4% of admissions. These figures were consistent with the population of the VA as a 
whole. For more information please refer to Supplementary Table 1 in the submitted supplementary material.

Recruitment The data was recruited from the US Department of Veterans Affairs (VA). The VA is composed of 1,243 health care facilities, 
including 172 VA Medical Centers and 1,062 outpatient sites of care. Aggregating data from one or more of these facilities are 
130 data centres, of which 114 had data for inpatient admissions used in this study. Four sites were excluded due to small 
numbers of patients: fewer than 250 admissions during the fifteen year time period. No other patients were excluded based on 
location, and no other exclusion criteria were applied. The final dataset consisted of the records for all 703,782 patients that met 
inclusion and exclusion criteria. For more information please refer to the submitted manuscript.
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Ethics oversight This work, and the collection of data on implied consent, received Tennessee Valley Healthcare System Institutional Review 
Board (IRB) approval from the US Department of Veterans Affairs. De-identification was performed in line with the Health 
Insurance Portability and Accountability Act (HIPAA), and validated by the US Department of Veterans Affairs Central Database 
and Information Governance departments. Only de-identified retrospective data was used for research, without the active 
involvement of patients.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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