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As more artificial intelligence (AI) applications are integrated into healthcare,
there is an urgent need for standardization and quality-control measures to
ensure a safe and successful transition of these novel tools into clinical
practice. We describe the role of the silent trial, which evaluates an AI model
on prospective patients in real-time, while the end-users (i.e., clinicians) are
blinded to predictions such that they do not influence clinical decision-
making. We present our experience in evaluating a previously developed AI
model to predict obstructive hydronephrosis in infants using the silent trial.
Although the initial model performed poorly on the silent trial dataset (AUC
0.90 to 0.50), the model was refined by exploring issues related to dataset
drift, bias, feasibility, and stakeholder attitudes. Specifically, we found a shift
in distribution of age, laterality of obstructed kidneys, and change in imaging
format. After correction of these issues, model performance improved and
remained robust across two independent silent trial datasets (AUC 0.85–
0.91). Furthermore, a gap in patient knowledge on how the AI model would
be used to augment their care was identified. These concerns helped inform
the patient-centered design for the user-interface of the final AI model.
Overall, the silent trial serves as an essential bridge between initial model
development and clinical trials assessment to evaluate the safety, reliability,
and feasibility of the AI model in a minimal risk environment. Future clinical
AI applications should make efforts to incorporate this important step prior
to embarking on a full-scale clinical trial.
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Introduction

While artificial intelligence (AI) has gained much attention in healthcare, there is a

pressing need for standardization and quality-control measures to ensure a safe and

successful implementation into clinical practice. Premature deployment of machine

learning (ML) models without rigorous external validation and governance can lead
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TABLE 1 Major themes to explore during the silent trial before transitioning to the clinical trial phase. Each theme is associated with a suggested list
of questions that should be considered.

Themes Key questions

Dataset drift: Are there any changes between the training dataset and
patients evaluated in the silent trial?a

1. Are there any changes as to how data are defined and collected?
2. Are there any changes to patient demographics, clinical settings, or unexpected events (i.e.:
COVID-19) that would impact the patient population in which the model is applied?

3. Are there any changes in clinical practice such as indication, standard of care, or patient
preference, that would influence the data being collected?

Bias: Was the model trained on a generalizable dataset to ensure
fairness to all patients regardless of gender, race, etc.?

1. Which subset of patients benefit from the model?
2. Which subset of patients are harmed by the model?

Feasibility: Can the AI intervention be easily integrated within the
existing clinical workflow?

1. How much time does it take for the end-user (i.e.: clinician) to input the necessary variables to
generate a prediction?

2. How is the clinical workflow or duration of a clinic visit impacted with the use of the AI
intervention? Importantly, does it slow down clinical workflow without a clear benefit?

3. Is the user interface simple enough to be used at point of care with minimal or no training?
4. Are the model predictions easy to understand? Are the model explanations easy to interpret?
5. How much computing resources or infrastructure are required to maintain the AI model at
scale?

Stakeholder attitudes: Are there any concerns with respect to the use
of AI to augment patient care?

1. Does the AI intervention facilitate patient counseling, decision-making, or treatment planning?
2. Are patients comfortable with the use of AI interventions to support their care?
3. What are the patient’s priorities or goals of care regarding their condition and are they
addressed by the AI intervention?

aBased on Finlayson et al. (13).
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to discrepancies between reported and real-world performance,

which may ultimately lead to patient harm. A recent example of

this is the widely adopted Epic Sepsis Model that was found to

have poor discrimination and calibration in predicting the onset

of sepsis on external validation (1).

To mitigate these risks, several AI implementation pathways

have been described (2, 3). We have previously outlined a 3-

stage roadmap for the evaluation and validation of AI models

into clinical care (4, 5), which has been implemented at scale

at our institution. These phases include (1) exploratory model

development, (2) a silent trial, and (3) prospective clinical

evaluation. Several guidelines address the first and third

phases to help standardize reporting, enhance reproducibility,

and reliability of AI studies in healthcare (6–9). However,

there has been limited discussion of the role of the silent trial,

which evaluates the proposed model on patients in real-time,

while the end-users (i.e., clinicians) are blinded to predictions

such that they do not influence clinical decision-making. As

shown in Table 1, this phase is essential to establishing

feasibility and safety of AI models prior to proceeding with

clinical evaluation where the model influences patient care.

The purpose of this article is to highlight the lessons learned

from our experience in validating a previously developed model

within the context of the silent trial. Here, we present the

development of a classification model to predict obstruction in

hydronephrotic kidneys of infants using ultrasound images. The

current standard of care for infants with hydronephrosis,

defined as swelling of one or both kidneys due to inadequate

urinary drainage, involves serial ultrasounds typically every 3–6

months for several years. Patients may also undergo more
Frontiers in Digital Health 02
invasive testing such as a diuretic renogram. While these

investigations may provide useful information, the trade-off

includes exposing patients to radioisotope and ionizing radiation

as well as painful procedures such as venous canulation and

urethral catheterization (10). Therefore, our aim was to develop

an AI model that could reliably distinguish between self-

resolving hydronephrosis vs. those that would ultimately require

operative management based on initial kidney ultrasound

images, thereby potentially reducing the number of invasive

tests and expediting surgical interventions when necessary.

Using our model as a case study, we illustrate how issues

related to dataset drift, bias, feasibility, and stakeholder

attitudes were identified and addressed. This article is intended

for clinicians and ML engineers wishing to gain a deeper

understanding of the rationale behind the silent trial and

provide insights as to how this phase serves as a bridge

between initial model development and clinical trials assessment.
Materials and methods

Exploratory model development

We have previously developed a deep learning classification

model to predict obstructive hydronephrosis in infants using

still images from kidney ultrasound (11). Using sagittal and

transverse images as inputs, the model would determine the

probability of obstructive hydronephrosis and highlight areas

of importance on the ultrasound images via GradCAM

heatmaps (12). Obstructive hydronephrosis was defined by
frontiersin.org
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whether a patient ultimately required operative intervention to

relieve the obstruction based on chart review. This tool was

intended to be used at point-of-care to support clinical

decision-making and patient counseling.
Silent trial

Following in silico/algorithmic validation, the AI model was

prospectively validated in the silent trial from August to

December 2020. During this period, the clinical team assessed

and managed patients as per current standard of care.

Concurrently, a separate research team recorded model

predictions based on ultrasound images obtained at the time

of the clinic visit. Additional patient demographics and the

clinical decision to proceed with surgery were later collected.

The clinical team was blinded to model predictions to avoid

influencing clinical decision-making. This “Silent Trial 1” data

was used to assess generalization of our initial model in a

prospectively collected dataset (Figure 1). The results from

Silent Trial 1 were then used to inform the refinement of the

original model and data preprocessing steps. Once

generalization was achieved on the Silent Trial 1 dataset, the

original and Silent Trial 1 datasets were combined for model

re-training. This updated model was then evaluated on

another prospectively collected dataset, “Silent Trial 2”. Model

performance was characterized by area under the receiver-

operating characteristic curve (AUROC) and area under the

precision-recall curve (AUPRC), along with sensitivity and

specificity found at a threshold set in the validation set

targeting 90% sensitivity, based on consensus among the

clinical expert group. The target of 90% sensitivity was chosen

as false negatives would be particularly detrimental. Moreover,

assessing model performance with a set threshold allowed us
FIGURE 1

Silent trial workflow for model development. Initially, the model was
trained and tested on a random 20% split of the initial dataset.
Following successful generalization in this random split, the model
was evaluated on new patients using prospectively collected data,
Silent Trial 1. From this dataset, we identified any weaknesses in
our model preventing it from generalizing successfully and adapted
our initial model to overcome these limitations. Once the model
generalized in this new set, the model was re-trained on both the
initial and Silent Trial 1 datasets. This updated model was then
tested on another prospectively collected data set, Silent Trial 2.
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to test our model in a more real-world scenario of decision-

making at a specific cut-off, rather than merely noting the

separation of obstructed vs. non-obstructed cases.

Given that AI in healthcare is still in its infancy, patient and

family attitudes toward AI integration in their urologic care are

not well understood. Therefore, it was essential to characterize

patient perceptions about these tools to ensure that they were

aligned with patient values and their role as a decision-

support tool was clearly defined. To explore how patients and

families would respond to the introduction of an AI tool into

their care, we probed their initial thoughts and values through

a standard post-visit follow-up questionnaire (Supplementary

Table S1). This survey also sought to understand other

patient priorities, such as the need for invasive testing,

hospital visits, risks of infections, and renal impairment,

however these were not the focus of this paper. Similarly,

provider attitudes on the value of this AI intervention were

assessed through clinical team meetings. We worked with

multiple stakeholders in designing the user interface of our AI

application. Feasibility was assessed by measuring the average

time from starting the AI application to obtaining the

probability of obstructive hydronephrosis based on user-

uploaded ultrasound images.
Results

The initial training set contained 1,643 kidneys (1,456 non-

obstructed/187 obstructed) from 294 patients (240 non-

obstructed/54 obstructed) (Table 2). From a random test set of

20% drawn from the initial training set, the model achieved an

AUROC of 90%, AUPRC of 58%, sensitivity of 92%, and

specificity of 69% (Table 3, row 1). This model was then

evaluated on the Silent Trial 1 dataset, which included 523

kidneys (387 non-obstructed/136 obstructed). This revealed a

significant drop in performance with an AUROC of 50%,

AUPRC of 26%, sensitivity of 100%, and specificity of 0%

(Table 3, row 2). The following sections highlight how the

silent trial enabled us to improve model performance and

clinical utility by systematically examining the model with

respect to dataset drift, bias, feasibility, and stakeholder attitudes.
Dataset drift

Through multidisciplinary discussions, we hypothesized

several reasons for this change in performance including a

shift in (1) age distribution, (2) distribution of laterality of

obstructed kidneys, and (3) a change in processing of the input

images (Figure 2). Indeed, patients included in the Silent

Trial 1 dataset were younger (35 ± 39 vs. 61 ± 92 weeks, p < 0.01,

Figure 2A), had predominantly right-sided obstructed kidneys

(42 vs. 36%, p < 0.01, Figure 2B), and were visually different
frontiersin.org
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TABLE 2 Baseline characteristics of each dataset.

Non-obstructed Obstructed Total

Variable Training Silent
Trial 1

Silent
Trial 2

Training Silent
Trial 1

Silent
Trial 2

Training Silent
Trial 1

Silent
Trial 2

Sex

Male 981 326 530 138 104 69 1,119 430 599

Female 247 61 106 42 32 6 289 93 112

Age groups

<2 years 1,025 359 561 171 128 71 1,196 487 632

2–5 years 143 28 72 9 6 0 152 34 72

>5 years 60 0 3 0 1 3 60 1 6

Ultrasound number

1 403 127 214 69 46 28 472 173 242

2 316 110 184 50 39 24 366 149 208

3 248 74 130 34 24 11 282 98 141

4 161 39 63 19 12 8 180 51 71

5 112 16 32 8 5 2 120 21 34

6 84 11 10 3 3 1 87 14 11

7 63 6 2 4 3 1 67 9 3

8 37 3 1 0 2 0 37 5 1

9 18 1 0 0 1 0 18 2 0

10 13 0 0 0 1 0 13 1 0

11 1 0 0 0 0 0 1 0 0

Ultrasound Machine

Philips 891 88 155 101 33 23 992 121 178

Samsung 34 59 125 2 21 17 36 78 125

Toshiba 448 229 347 69 48 32 517 277 379

GE 37 1 0 8 9 1 45 10 1

Acuson 23 0 0 2 0 0 25 0 0

ATL 17 0 0 5 0 0 22 0 0

Siemens 4 0 0 0 0 0 4 0 0

Outside 0 10 9 0 25 2 0 35 11

APD Group

<6 mm 113 157 284 6 1 0 119 158 284

6–9 mm 119 92 150 6 10 5 125 102 155

9–14 mm 190 69 131 29 34 7 219 103 138

>14 mm 187 64 70 139 90 62 326 154 132

Not measured 847 5 1 7 1 1 854 6 2

Kidney view side

Right 737 192 222 68 57 14 805 249 236

Left 719 195 414 119 79 61 838 274 475

Hydronephrosis side

Right 673 126 83 56 52 13 729 178 96

Left 635 143 275 106 61 61 741 204 336

Bilateral 148 118 278 25 23 1 173 141 279

Overall observations 1,456 387 636 187 136 75 1,643 523 711

Overall unique
patients

240 105 174 54 45 28 294 150 202

APD, anterior-posterior diameter.

Kwong et al. 10.3389/fdgth.2022.929508
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TABLE 3 Iterative model performance.

Row Train Test Model AUROC AUPRC Sensitivity Specificity

1 Original set Random 20%
from original set

Image only 0.90 (0.85, 0.95) 0.58 (0.39, 0.74) 0.92 (0.81, 1.0) 0.69 (0.63, 0.74)

2 Original set Silent trial 1 Image only 0.50 (0.50, 0.50) 0.26 (0.21, 0.32) 1.00 (1.00, 1.00) 0.0 (0.0, 0.0)

3 Original set Silent trial 1 Age and side covariates 0.51 (0.506, 0.52) 0.26 (0.22, 0.32) 1.00 (1.00, 1.00) 0.0 (0.0, 0.0)

4 Original set Silent trial 1 Age-ablated 0.57 (0.55, 0.59) 0.28 (0.24, 0.35) 1.00 (1.00, 1.00) 0.005 (0.0, 0.01)

5 Original set Silent trial 1 Side-ablated 0.54 (0.52, 0.55) 0.27 (0.22, 0.34) 1.00 (1.00, 1.00) 0.005 (0.0, 0.01)

6 Original set Silent trial 1 Revised data prep, with covariates 0.85 (0.81, 0.88) 0.67 (0.58, 0.75) 0.98 (0.95, 1.00) 0.32 (0.27, 0.36)

7 Original set Silent trial 1 Revised data prep, image only 0.84 (0.80, 0.88) 0.65 (0.57, 0.74) 0.99 (0.96, 1.00) 0.26 (0.22, 0.31)

8 Original set + silent trial 1 Silent trial 2 Revised data prep, with covariates 0.91 (0.88, 0.94) 0.52 (0.41, 0.64) 0.97 (0.93, 1.00) 0.54 (0.50, 0.57)

9 Original set + silent trial 1 Silent trial 2 Revised data prep, image only 0.92 (0.88, 0.95) 0.52 (0.41, 0.64) 0.99 (0.95, 1.00) 0.52 (0.48, 0.56)

Values reflect performance of data in the Test column. Model formulation described in the Model column, indicating iterative experiments performed to rescue Silent

trial performance. Sensitivity and specificity thresholds set in validation set targeting 90% sensitivity.

FIGURE 2

Dataset drift between our original training set and Silent Trial 1. (A) The shift in age to younger individuals in the Silent Trial 1 dataset. (B) The shift
between left and right-sided kidneys in which a larger proportion of right-sided obstructed kidneys were found relative to the left in the Silent
Trial 1 set. (C) The qualitative shift in images despite the same cropping and normalization procedures for both datasets.
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even following the same preprocessing steps (Figure 2C).

Therefore, we postulated that these differences may explain the

precipitous drop in model performance.

To overcome the limitations of the original model in the

Silent Trial 1 dataset, we adapted the original model to

incorporate kidney laterality and patient age as covariates to

adjust for the dataset drift (Figure 3). With this approach, we

found a minor improvement in AUROC, although other

performance metrics remained unchanged (Table 3, row 3).

We then ablated each covariate by setting either all age or

laterality values to zero to evaluate the degree to which each

covariate impacted the model’s performance, with the

hypothesis that one may be more impactful than the other.

This procedure resulted in a small but significant increase in

model performance for each ablation (Table 3, rows 4–5).

We next turned to image preprocessing and found that the

original dataset included processed jpeg files, whereas the Silent

Trial 1 dataset included either unprocessed or processed png
Frontiers in Digital Health 05
files. We first experimented with merely passing these images

through the same preprocessing steps and reading them into

the model. However, this had clearly not addressed the shift

in image formatting. Therefore, we experimented with adding

the additional step of saving our newly processed data as

jpegs files and re-reading them into the model in the same

format. This approach led to a tremendous boost in

performance on the Silent Trial 1 dataset, with an AUROC of

85% for the model with covariates and 84% for the image-

only model (Table 3, rows 6–7).

After addressing these dataset drift issues, we evaluated

these updated models on a third dataset, Silent Trial 2, to

confirm the generalizability of this approach and assess if

covariates should continue to be included. We found that

these models do indeed perform well on the Silent Trial 2

dataset, with an AUROC of 91% for the model

with covariates and 92% for the image-only model (Table 3,

rows 8–9).
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FIGURE 3

Original and updated models used to overcome dataset drift. (A) The original model used from the initial dataset. (B) Updated model with covariates
for age and kidney laterality, with the goal of overcoming the generalization failure observed on the Silent Trial 1 dataset.
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Bias

Next, we conducted a bias assessment of our model to

ensure there were no substantial differences in performance

when stratified by clinically relevant subgroups including

sex, side of hydronephrosis, ultrasound machine, and

patient postal code (Table 4). We find in all cases >90%

sensitivity for each subgroup, therefore supporting the

overall safety of our model. Specificity is far more variable,

however in all cases, we find it >50%, therefore every group

would benefit from safe and effective streamlined care with

this model.
Feasibility

To ensure that the AI intervention was appropriate for

routine clinical use, we considered whether the application was

simple-to-use and minimally disruptive to the existing

workflow. Feasibility was assessed by diverse stakeholders

including clinicians, nurse practitioners, trainees, computer

scientists, web developers, and patient representatives. The user

interface for the AI application was developed using an

iterative process involving all stakeholders to simplify

instructions, improve clinical utility, and protect patient
Frontiers in Digital Health 06
confidentiality (Figure 4). The average time to generate a

model prediction from start-to-finish without prior training

was less than one minute. Model output is saved locally within

the computer that the program runs on and is analyzed

without sending any data over the internet, therefore data and

patient-specific findings remain confidential and secure.
Stakeholder attitudes

Understanding the views and perspectives of patients and

providers were essential to ethical integration of the AI

intervention. From the provider’s perspective, the clinical

team felt that this intervention would potentially augment

their clinical care by identifying patients at risk of requiring

surgical intervention for their hydronephrosis. These opinions

were aligned with the potential benefits previously outlined by

the clinical team during the model development phase (11). It

would also provide useful clinical decision support without

adding significant time to each patient visit.

A questionnaire on the use of AI in clinical care was

distributed to patients and their families after clinic visits to

explore whether they would be open to consenting to use of an

AI intervention and if they felt it could address their primary

concerns. Out of 44 respondents, 34 (77%) prioritized knowing
frontiersin.org
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TABLE 4 Bias assessment of our final AI model.

Variable AUROC AURPC Sensitivity Specificity

Sex

Male 0.91 (0.87, 0.94) 0.52 (0.42, 0.65) 0.97 (0.93, 1.00) 0.53 (0.49, 0.57)

Female 0.96 (0.91, 1.00) 0.38 (0.12, 0.80) 1.00 (1.00, 1.00) 0.59 (0.50, 0.68)

Side of hydronephrosis

Left 0.88 (0.84, 0.93) 0.57 (0.45, 0.72) 0.97 (0.92, 1.00) 0.48 (0.43, 0.53)

Right 0.96 (0.91, 0.99) 0.61 (0.39, 0.86) 1.00 (1.00, 1.00) 0.60 (0.50, 0.71)

Both 0.98 (0.96, 0.99) 0.08 (0.05, 0.30) 1.00 (1.00, 1.00) 0.58 (0.52, 0.63)

Ultrasound machine

Philips 0.89 (0.83, 0.95) 0.50 (0.31, 0.71) 0.96 (0.84, 1.00) 0.53 (0.46, 0.62)

Samsung 0.92 (0.86, 0.96) 0.50 (0.30, 0.71) 1.00 (1.00, 1.00) 0.58 (0.50, 0.66)

Toshiba 0.93 (0.86, 0.97) 0.53 (0.39, 0.72) 0.97 (0.90, 1.00) 0.53 (0.48, 0.58)

Postal code

K 1.00 (1.00, 1.00) 0.86 (0.67, 0.91) 1.00 (1.00, 1.00) 0.50 (0.24, 0.82)

L 0.90 (0.85, 0.95) 0.49 (0.37, 0.65) 0.95 (0.89, 1.00) 0.58 (0.52, 0.63)

M 0.91 (0.86, 0.97) 0.57 (0.35, 0.76) 1.00 (1.00, 1.00) 0.50 (0.45, 0.56)

N NA NA NA 0.75 (0.25, 1.00)

P 1.00 (1.00, 1.00) 0.86 (0.00, 0.91) 1.00 (1.00, 1.00) 0.57 (0.24, 0.89)

Performance of our model was stratified by sex, side of hydronephrosis, ultrasound machine, and postal code in our Silent Trial 2 set.
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whether their child would require surgery as the most important,

which was aligned with the primary objective of the AI

intervention. Majority of respondents (68%) supported the use

of AI in their care, while those who did not cited concerns that

it would replace the physician-patient interaction or insufficient

knowledge regarding AI itself. As a result, this questionnaire

helped identify areas to educate patients and their families

regarding how the AI intervention would act as a clinical

adjunct to facilitate personalized and data-driven care.
Discussion

AI integration in healthcare is growing exponentially with a

diverse range of applications, from aiding diagnosis and

prognosis, to supporting treatment planning and patient

counseling. As more AI applications move into the clinical

space, researchers have an ethical obligation to evaluate these

interventions in a minimal risk environment to ensure their

safety and efficacy. This is the primary motivation behind the

silent trial. Here, we demonstrate the iterative changes applied

to our predictive model for obstructive hydronephrosis and

the resulting improvements in its accuracy and generalizability.
Why is a silent trial warranted?

AI models trained on retrospective data alone cannot reliably

function in real-world clinical settings as they are prone to dataset
Frontiers in Digital Health 07
drift, which may include variations in how data is defined and

collected, or potential changes in the standard of care if

training cohorts span long periods of time (13). Use of real-

time data may present additional challenges such as delays in

preprocessing data or incomplete data at a given time-point.

Other considerations include establishing a decision pathway

and legal framework (14). A silent trial also facilitates an

assessment of bias to ensure social disparities are not

accentuated by the model. In this study, failure to adequately

assess and account for bias may result in overtreatment of

certain patient subgroups due to an inappropriately high

predicted risk of obstructive hydronephrosis. We compared

model performance with respect to sex, side of hydronephrosis,

ultrasound machine, and patient postal code. Taken together,

the silent trial enables clinicians and researchers to explore

these issues in-depth without putting patients at risk of

unvalidated predictions (15).
How did the silent trial improve the
applicability of our model?

While the first iteration of our model demonstrated

excellent discriminative capability on a retrospective

exploratory dataset (AUROC 0.90), it performed poorly on

real-time data (AUROC 0.50). By validating our model in a

silent trial instead of a clinical trial setting, we were able to

recognize this performance drop without subjecting patients

to unnecessary harm due to misclassification. Through careful
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FIGURE 4

User-interface for image-only model. A basic user-interface was developed to allow clinicians and researchers who are not computer scientists to
test the model. (A) The user-interface with no data input, in which a user can specify a sagittal and transverse ultrasound image file of the kidney,
along with an option for the program to further crop the image and where to save the output. The lower-half of the interface is blank at this point, as
it will display the uploaded images. (B) This view now shows the user-interface once the model has run. This displays the probability of surgery, the
original input images following the preprocessing procedure, and a gradient-based class activation maps to the image to indicate which part of the
image is most important for the prediction.
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consideration of dataset drift, potential sources of bias, and

inclusion of other clinically relevant features, the model

accuracy improved on the Silent Trial 1 dataset (AUROC

0.85) and remained robust when applied to the Silent Trial 2

dataset (AUROC 0.91). Another benefit of the silent trial is

the potential to reveal discrepancies between the AI model

and the current standard of care, which may highlight

opportunities for quality improvement and promote

hypothesis generation.

The silent trial also enables investigators to evaluate whether

the proposed AI model is appropriate for real-world clinical

applications. In contrast to performance evaluations which

look at objective metrics, a feasibility assessment helps ensure

adequate buy-in from all stakeholders. This is an essential

consideration because even the most accurate AI model

cannot provide meaningful clinical benefit if it is too time-

consuming, difficult to use, not clinically relevant, or not

endorsed by patients and physicians. In the present study, we

identified nearly one-third of patients and families who were

hesitant regarding the use of AI interventions to support

patient care. Chew et al. found that patient concerns about AI

integration were primarily attributed to a lack of trust in data

privacy, patient safety, maturity of AI interventions, and risk

of complete automation of their care (16). These findings
Frontiers in Digital Health 08
underscore the need for more patient engagement prior to

recruiting patients for an AI clinical trial and identifies key

issues for patient education (e.g., AI will not replace their

clinician, patients will still be seen by clinicians, etc.).

Therefore, incorporating both patient and provider feedback

into the design process can help build trust and strengthen

the partnership between developers and end-users (17).

Similarly, measuring patient-reported outcomes and health

systems benefits in conjunction with traditional performance

metrics may provide a more holistic assessment of how AI

models may improve clinical practice (18). For example, a

ML-based model to screen urine samples was accepted by

providers because of the significant time and cost-savings

without compromising care (19). Overall, the silent trial can

not only refine model performance, but also facilitate a

transition into clinical practice and better tailor a prospective

clinical evaluation (3, 20).
Tips to successfully implement the
silent trial

Several factors outlined below are vital to the success of

implementing a silent trial. The clinical team should manage
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sufficient patient volumes for the proposed clinical question to

accrue enough patient data for the silent trial within a

reasonable timeframe. The research team should have

appropriate AI expertise to adequately assess the proposed

model across the four themes of the silent trial. Strong

partnerships between the clinical and research teams are

essential and infrastructure should be established to facilitate

collaboration and regular meetings between the two groups. The

host institution should also be capable of storing data and the

final trained model. Finally, the project should be championed

by a clinical expert who can secure funding and advocate for

the implementation of the AI tool into clinical practice.
Limitations

Several limitations of this study merit discussion. The

outcome of interest (obstructive hydronephrosis) was defined

based on whether patients underwent surgical intervention.

However, this may vary based on patient preferences, surgeon

clinical judgement, and changes in clinical practice guidelines

over time. Serial ultrasounds for each patient and kidney were

treated as independent samples, therefore additional prognostic

information from changes across serial ultrasounds may be lost.

However, we felt that a rapid, point-of-care tool using single

ultrasound images would be more beneficial in most clinical

settings. Finally, our assessment of patient perspectives on

implementation of our AI tool was based on an unvalidated

questionnaire due to resource and time constraints. Future

work can explore the use of validated surveys and the impact

of our AI tool on patient reported outcomes.
Conclusion

Here, we highlight our experience with the silent trial, using

an AI-based classification model for hydronephrosis as an

illustrative example. This phase enables stakeholders to audit

and report on issues related to dataset drift, bias, feasibility,

and stakeholder attitudes. These are important considerations

which must be made to ensure the safety, reliability, and

feasibility of AI models in real-world clinical practice. Future

clinical applications of AI should make efforts to demonstrate

and reflect on model changes using this process.
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