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Misapplication of statistical data analysis is a common cause of spurious discoveries in
scientific research. Existing approaches to ensuring the validity of inferences drawn from data
assume a fixed procedure to be performed, selected before the data are examined. In common
practice, however, data analysis is an intrinsically adaptive process, with new analyses
generated on the basis of data exploration, as well as the results of previous analyses on the
same data.We demonstrate a new approach for addressing the challenges of adaptivity based
on insights from privacy-preserving data analysis. As an application, we show how to safely
reuse a holdout data set many times to validate the results of adaptively chosen analyses.

T
hroughout the scientific community there
is a growing recognition that claims of sta-
tistical significance in published research
are frequently invalid. There has been a great
deal of effort to understand and propose

mitigations for this problem, largely focusing
on statistical methods for controlling the false
discovery rate in multiple hypothesis testing (1).
However, the statistical inference theory surround-
ing this body of work assumes that a fixed proce-
dure is performed, selected before the data are
gathered. In contrast, the practice of data analy-
sis in scientific research is, by nature, an adaptive
process in which new analyses are chosen on the
basis of data exploration and previous analyses
of the same data.
It is now well understood that adapting the

analysis to data results in an implicit multiple
comparisons problem that is not captured in
the reported significance levels of standard sta-
tistical procedures or by existing techniques for
controlling the false discovery rate. This prob-
lem, in some contexts referred to as “p-hacking”
or “researcher degrees of freedom,” is one of the
primary explanations as to why research find-
ings are frequently false (2–4).
The traditional perspective on adaptivity

makes it necessary to explicitly account for all
of the possible ways to perform the analysis to
provide validity guarantees for the adaptive
analysis. Although this approach might be pos-
sible in simpler studies, it is technically challeng-
ing and often impractical in more complicated
analyses (4). Numerous techniques have been
developed by statisticians to address common
special cases of adaptive data analysis. Most

of these methods focus on a single round of
adaptivity—such as variable selection followed by
regression on selected variables or model selec-
tion followed by testing—and are optimized for
specific inference procedures [the literature is
too vast to adequately cover here, but see chapter
7 in (5) for a starting point]. There are also pro-
cedures for controlling false discovery in a se-
quential setting where tests arrive one-by-one
(6–8). However, these results crucially depend on
all tests maintaining their statistical properties
despite being sequentially chosen—an assump-
tion that is often difficult to justify in a complex
adaptive analysis.
One proposed approach for avoiding the is-

sue of adaptivity is preregistration; that is, de-
fining the entire data analysis protocol ahead of
time, thus forcing the analysis to be nonadaptive.
A recent open letter (9) with more than 80 sig-
natories calls for preregistration in science. Al-
though safe, this proposal can be burdensome on
the researcher andmay limit the kind of analysis
he or she can perform (4). As a result, this meth-
od has had difficulty gaining momentum in prac-
tice. A more popular approach for avoiding
problems of this type is to validate data-dependent
hypotheses or statistics on a holdout set. The
data analyst starts by partitioning data samples
randomly into training data and holdout data.
The analyst interacts with the training set to ob-
tain a data statistic of interest: for example, cor-
relation between certain traits or the accuracy of
a predictive model. The statistic is then validated
by computing its value on the holdout set. Because
the holdout was drawn from the same data dis-
tribution independently of the statistic, standard
statistical inference procedures can safely be used.
A major drawback of this basic approach is

that the holdout set, in general, is not reusable.
If the analyst uses the outcome of the valida-
tion to select an additional data statistic, that
statistic is no longer independent of the holdout
data, and further use of the holdout set for val-
idation can lead to incorrect statistical inference.
To preserve statistical validity, the only known
safe approach is to collect new data for a fresh
holdout set. This conservative approach is very

costly and thus is frequently abused, resulting in
overfitting to the holdout set (10–12).
In this work we describe a general method,

together with a specific instantiation for reusing
a holdout set while maintaining the statistical
guarantees of fresh data. The analyst is given un-
fettered access to the training data set but can
only access the holdout set via an algorithm
(equivalently, a mechanism) that allows the ana-
lyst to validate statistics on the holdout set. Armed
with such a mechanism, the analyst is free to ex-
plore the (training) data ad libitum, generating
and computing statistics, validating them on the
holdout, and repeating this procedure, as well as
sharing outcomes with other analysts who may
also use the same holdout set.
The crucial idea behind our reusable holdout

method comes fromdifferential privacy—a notion
of privacy preservation in data analysis intro-
duced in computer science (13). Roughly speak-
ing, differential privacy ensures that the probability
of observing any outcome from an analysis is
essentially unchanged by modifying any single
data set element. Such a condition is often called
a stability guarantee. An important line of work
establishes connections between the stability of a
learning algorithm and its ability to generalize
(14–16). It is known that certain stability notions
are necessary and sufficient for generalization.
Unfortunately, the stability notions considered in
these prior works do not compose in the sense
that running multiple stable algorithms sequen-
tially and adaptively may result in a procedure
that is not stable. Differential privacy is stronger
than these previously studied notions of stability
and, in particular, possesses strong adaptive com-
position guarantees.
In a nutshell, the reusable holdoutmechanism

is simply this: access the holdout set only via a
differentially private mechanism. The intuition
is that if we can learn about the data set in ag-
gregate while provably learning very little about
any individual data element, then we can control
the information leaked and thus prevent over-
fitting.More specifically,we introduce anewnotion
of maximum information that controls overfit-
ting and can be bounded using differential pri-
vacy [for an overview, see section 1 of (17)]. We
present an implementation of the reusable hold-
out, called Thresholdout, and show that it provably
validates a large number of adaptively chosen
statistics. We then use a simple classification al-
gorithm on synthetic data to illustrate the prop-
erties of Thresholdout. The classifier produced
by the algorithm overfits the data when the hold-
out set is reused naively but does not overfit if
used with our reusable holdout.
We operate in a standard setting: an analyst is

given a data set S ¼ ðx1;…; xnÞ of n samples
drawn randomly and independently from some
unknown distribution P over a discrete universe
X of possible data points. Although our approach
can be applied more generally, we focus here on
validating statistics that can be expressed as the
mean of some arbitrary function f : X→½0; 1� on
the data set ES ½f� ¼ 1

n∑
n
i¼1fðxiÞ [for additional

details, see section 1.1 of (17)]. Such statistics are
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used to estimate the expected value of f on a
sample drawn randomly from the distribution P
or P½f� ¼ Ex∼P ½fðxÞ�. A variety of quantities of
interest in data analysis can be expressed as the
expectation Ex∼P ½fðxÞ� of some function f on P.
Examples include true means and moments of
individual attributes, correlations between attri-
butes and the generalization error of a predictive
model. Moreover, sufficiently precise estimates
of these expectations suffice for model selection
and assessment.
The data set S is randomly partitioned into

training and holdout sets (St and Sh, respec-
tively), and the data analyst is allowed to explore
the training setwithout restrictions and generate
functions f to estimate the expectation on P. The
analyst may access Sh only through Threshold-
out. Thresholdout takes the holdout and training
sets as input and, for all functions given by the
analyst, provides statistically valid estimates of
each function’s expectation on P. Specifically, for
a sufficiently large holdout set, Thresholdout
guarantees that for every function f : X→½0; 1�
generated by the analyst, it will return a value vf
such that jvf − P½f�j≤t, with probability at least
1 – b, for analyst’s choice of error t and confidence
b. The probability space is over the random choice
of the data elements in Sh and St and the ran-
domness introduced by the mechanism. We em-
phasize that the estimates are guaranteed to be
accurate with respect to the true distribution, even
when the functions are generated sequentially and
adaptively by the analyst, up to a large number of
functions.Our algorithmcan equivalently be viewed

as producing conservative confidence intervals on
adaptively chosen sequences of linear function-
als [for the formal connection to confidence in-
tervals, see section 4 of (17)].
Given a function f, the algorithm first checks

if the difference between the average value of f
on the training set St (denoted by ESt ½f�) and
the average value of f on the holdout set Sh
(denoted by ESh ½f�) is below a certain threshold
T + h. Here, T is a fixed number such as 0.01,
and h is a Laplace noise variable of standard
deviation smaller than T by a small factor such
as 4. [The Laplace distribution is a symmetric
exponential distribution. Adding Laplace noise
is one of the most basic operations in differen-
tial privacy (13).] If the difference is below the
threshold, then the algorithm returns ESt ½f�;
that is, the value of f on the training set. If the
difference is above the threshold, then the algo-
rithm returns the average value of the function
on the holdout after adding Laplacian noise; that
is, ESh ½f� þ x (where x is a random variable dis-
tributed according to the Laplace distribution).
Though it is very simple, Thresholdout gives a

surprisingly strong guarantee. Informally, the
guarantee is that for any fixed accuracy param-
eter t, Thresholdout can continue validating the
estimates on the training sets until either the
total number of functions asked becomes expo-
nentially large in the size of Sh or the number of
functions that fail the validation (meaning aver-
age values on Sh and St differ by more than the
noisy threshold) becomes quadratically large in
the size of Sh. Our guarantee can therefore be

interpreted as saying that Thresholdout detects a
quadratic number of functions that overfit to the
training set (or false discoveries) and arise due to
adaptivity; additionally, Thresholdout provides
a correct estimate of the expectation for those
functions. We describe further details of the im-
plementation of Thresholdout and the formal
guarantees it satisfies in section 2 of (17).
We describe a simple experiment on synthetic

data that illustrates the danger of reusing a stan-
dard holdout set and how this issue can be re-
solved by our reusable holdout. The design of this
experiment is inspired by Freedman’s classical
experiment, which demonstrated the dangers of
performing variable selection and regression on
the same data (18). The experiment is commonly
referred to as “Freedman’s paradox” due to the sur-
prisingly strong effect on the validity of the results.
In our experiment, the analyst wants to build a

classifier via the following common strategy.
First, the analyst finds a set of single attributes
that are correlated with the class label. Then he
or she aggregates the correlated variables into a
single model of higher accuracy (for example,
using boosting or bagging methods). More for-
mally, the analyst is given a d-dimensional labeled
data set S of size 2n and splits it randomly into a
training set St and a holdout set Sh of equal size.
We denote an element of S by a tuple (x,y), where
x is a d-dimensional vector and y∈f−1; 1g is the
corresponding class label. The analyst wishes to
select variables to be included in the classifier.
For various values k of the number of variables
to select, the analyst picks k variables with the
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Fig. 1. Learning uncorrelated label. (A) Using the standard holdout. (B) Using Thresholdout. Vertical axes indicates average classification accuracy over 100
executions (margins are SD) of the classifier on training, holdout, and fresh sets. Horizontal axes show the number of variables selected for the classifier.

Fig. 2. Learning partially correlated label with standard holdout. (A) Using the standard holdout algorithm. (B) Using Thresholdout. Axes are as in Fig. 1.
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largest absolute correlations with the label. How-
ever, he or she verifies the correlations (with the
label) on the holdout set and uses only those
variables whose correlation agrees in sign with
the correlation on the training set and for which
both correlations are larger than some thresh-
old in absolute value. The analyst then creates a
simple linear threshold classifier on the selected
variables using only the signs of the correlations
of the selected variables. A final test evaluates
the classification accuracy of the classifier on the
holdout set. Full details of the analyst’s algorithm
can be found in section 3 of (17).
In our first experiment, each attribute is drawn

independently from thenormal distributionN(0,1),
andwe choose the class label y∈f−1; 1g uniform-
ly at random so that there is no correlation
between the data point and its label. We chose
n = 10,000 and d= 10,000 and varied the number
of selected variables k. In this scenario no clas-
sifier can achieve true accuracy better than 50%.
Nevertheless, reusing a standard holdout results
in reported accuracy of >63 ± 0.4% for k= 500 on
both the training set and the holdout set. The
average and standard deviation of results ob-
tained from 100 independent executions of the
experiment are plotted in Fig. 1A, which also
includes the accuracy of the classifier on another
fresh data set of size n drawn from the same
distribution.We then executed the same algorithm
with our reusable holdout. The algorithm Thresh-
oldout was invoked with T = 0.04 and t = 0.01,
which explains why the accuracy of the classi-
fier reported by Thresholdout is off by up to 0.04
whenever the accuracy on the holdout set is
within 0.04 of the accuracy on the training set.
Thresholdout prevents the algorithm from over-
fitting to the holdout set and gives a valid esti-
mate of classifier accuracy. In Fig. 1B, we plot the
accuracy of the classifier as reported by Thresh-
oldout. In addition, in fig. S2 we include a plot of
the actual accuracy of the produced classifier on the
holdout set.
In our second experiment, the class labels are

correlated with some of the variables. As before,
the label is randomly chosen from {–1,1} and
each of the attributes is drawn fromN(0,1), aside
from 20 attributes drawn from N(y·0.06,1), where
y is the class label. We execute the same algo-
rithm on this data with both the standard hold-
out and Thresholdout and plot the results in
Fig. 2. Our experiment shows that when using
the reusable holdout, the algorithm still finds a
good classifier while preventing overfitting.
Overfitting to the standard holdout set arises in

our experiment because the analyst reuses the
holdout after using it to measure the correlation
of single attributes. We first note that neither
cross-validation nor bootstrap resolve this issue.
If we used either of thesemethods to validate the
correlations, overfitting would still arise as a result
of using the same data for training and valida-
tion (of the final classifier). It is tempting to rec-
ommend other solutions to the specific problem
on which we based our experiment. Indeed, a
substantial number of methods in the statistics
literature deal with inference for fixed two-step

procedures in which the first step is variable se-
lection [see (5) for examples]. Our experiment
demonstrates that even in such simple and
standard settings, our method avoids false dis-
covery without the need to use a specialized
procedure and, of course, extendsmore broadly.
More importantly, the reusable holdout gives the
analyst a general and principled method to per-
form multiple validation steps where previously
the only known safe approach was to collect a
fresh holdout set each time a function depends
on the outcomes of previous validations.
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Profiling risk and sustainability
in coastal deltas of the world
Z. D. Tessler,1* C. J. Vörösmarty,1,2 M. Grossberg,3 I. Gladkova,3 H. Aizenman,3

J. P. M. Syvitski,4 E. Foufoula-Georgiou5

Deltas are highly sensitive to increasing risks arising from local human activities, land
subsidence, regional water management, global sea-level rise, and climate extremes.
We quantified changing flood risk due to extreme events using an integrated set of
global environmental, geophysical, and social indicators. Although risks are distributed
across all levels of economic development, wealthy countries effectively limit their
present-day threat by gross domestic product–enabled infrastructure and coastal defense
investments. In an energy-constrained future, such protections will probably prove to be
unsustainable, raising relative risks by four to eight times in the Mississippi and Rhine
deltas and by one-and-a-half to four times in the Chao Phraya and Yangtze deltas.
The current emphasis on short-term solutions for the world’s deltas will greatly constrain
options for designing sustainable solutions in the long term.

D
eltas present a quintessential challenge for
humans amid global environmental change.
Home to some of the world’s largest urban
areas, deltas are also highly dynamic land-
forms shaped by fluvial and coastal flooding

(1–3). Human activities at the local and regional
scales can perturb the water and sedimentary
dynamics necessary to maintain a delta’s integrity,
increasing the rate of relative sea-level rise (RSLR,
the combination of land subsidence and offshore
sea-level rise) and increasing flood risk (4, 5).

Delta sediments naturally compact over time,
requiring new sediment fluxes from the upstream
river network and deposition on the delta surface
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