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Abstract

Background: Although complex machine learning models are commonly outperforming the traditional simple
interpretable models, clinicians find it hard to understand and trust these complex models due to the lack of
intuition and explanation of their predictions. The aim of this study to demonstrate the utility of various model-agnostic
explanation techniques of machine learning models with a case study for analyzing the outcomes of the machine
learning random forest model for predicting the individuals at risk of developing hypertension based on
cardiorespiratory fitness data.

Methods: The dataset used in this study contains information of 23,095 patients who underwent clinician-
referred exercise treadmill stress testing at Henry Ford Health Systems between 1991 and 2009 and had a
complete 10-year follow-up. Five global interpretability techniques (Feature Importance, Partial Dependence
Plot, Individual Conditional Expectation, Feature Interaction, Global Surrogate Models) and two local interpretability
techniques (Local Surrogate Models, Shapley Value) have been applied to present the role of the interpretability
techniques on assisting the clinical staff to get better understanding and more trust of the outcomes of the machine
learning-based predictions.

Results: Several experiments have been conducted and reported. The results show that different interpretability techniques
can shed light on different insights on the model behavior where global interpretations can enable clinicians to understand
the entire conditional distribution modeled by the trained response function. In contrast, local interpretations promote the
understanding of small parts of the conditional distribution for specific instances.

Conclusions: Various interpretability techniques can vary in their explanations for the behavior of the machine learning
model. The global interpretability techniques have the advantage that it can generalize over the entire population while
local interpretability techniques focus on giving explanations at the level of instances. Both methods can be equally valid
depending on the application need. Both methods are effective methods for assisting clinicians on the medical decision
process, however, the clinicians will always remain to hold the final say on accepting or rejecting the outcome of the
machine learning models and their explanations based on their domain expertise.
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Introduction
Machine learning prediction models have been used in
different areas such as financial systems, advertising,
marketing, criminal justice system, and medicine. The
inability of machine learning users to interpret the out-
comes of the complex machine learning models be-
comes problematic [1]. Machine learning interpretability

is defined as the degree to which a machine learning
user can understand and interpret the prediction made
by a machine learning model [2, 3]. Despite the growing
use of machine learning-based prediction models in the
medical domains [4–7], clinicians still find it hard to rely
on these models in practice for different reasons. First,
most of the available predictive models target particular
diseases and depend on domain knowledge of clinicians
[8–10]. Applying such predictive models on large health
information systems may not perform well because of
the availability of multiple, complex data sources and
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the heterogeneous mixture of patients and diagnoses.
Second, most of the models developed by data scientists
mainly focus on prediction accuracy as a performance
metric but rarely explain their prediction in a meaning-
ful way [11, 12]. This is especially true with complex
machine learning, commonly described as black-box
models, such as Support Vector Machines [13], Random
Forest [14] and Neural Networks [15].
Although many predictive models have been devel-

oped to predict the risk of hypertension [16–18], the
frameworks for establishing trust and confidence for
these predictions have been always missing. Thus, there
has been some criticism for using machine learning
models in the medical domain even with their promise
of high accuracy [19]. In practice, addressing this issue is
critical for different reasons, especially if clinicians are
expected to use these models in practice. First, explain-
ing the predictions of the developed model contributes
to the trust problem by enabling clinicians to make sure
that the model makes the right predictions for the right
reasons and wrong predictions for the right reasons.
Second, explaining predictions is always useful for get-
ting some insights into how this model is working and
helps in improving model performance. Since May 2018,
the General Data Protection Regulation (GDPR) forces
industries to explain any decision taken by a machine
when automated decision making takes place: “a right of
explanation for all individuals to obtain meaningful
explanations of the logic involved”, and thus increases
the efforts of developing interpretable and explainable
prediction models [20].
In our previous study [21], we evaluated the perform-

ance of several machine learning techniques on predict-
ing individuals at risk of developing hypertension using
cardiorespiratory fitness data. In particular, we evaluated
and compared six well-known machine learning tech-
niques: LogitBoost, Bayesian Network, Locally Weighted
Naive Bayes, Artificial Neural Network, Support Vector
Machine, and Random Forest. Using different validation
methods, the Random Forest model, a complex ensembling
machine learning model, has shown the maximum area
under the curve (AUC= 0.93). The attributes used in in the
Random Forest model are Age, METS, Resting Systolic
Blood Pressure, Peak Diastolic Blood Pressure, Resting Dia-
stolic Blood Pressure, HX Coronary Artery Disease, Reason
for test, History of Diabetes, Percentage HR achieved, Race,
History of Hyperlipidemia, Aspirin Use, Hypertension re-
sponse. In this study, we apply various techniques to
present complete interpretation for the best performing
model (Random Forest) in predicting individuals at risk of
developing hypertension in an understandable manner for
clinicians either at the global level of the model or the
local level of specific instances. We believe that this study
is an important step on improving the understanding and

trust of intelligible healthcare analytics through inducting
a comprehensive set of explanations for prediction of local
and global levels. The remainder of this paper is organized
as follows. In Section 2, we highlight the main interpret-
ability techniques considered in this work. Related work is
discussed in Section 3. In Section 4, we introduce the
dataset employed in our experiments and discuss the
interpretability methodologies. Results are presented in
Section 5. In Section 6, we discuss our results. Threats to
the validity of this study are discussed in Section 7 before
we finally draw the main conclusions in Section 8.

Background
One simple question that can be posed is “Why we do
not simply use interpretable models, white-box models,
such as linear regression or decision tree?”. For example,
linear models [22] present the relationship between the
independent variables (input) and the target (output)
variable as a linear relationship that is commonly
described by weighted equations which makes the pre-
diction procedure a straightforward process. Thus, linear
models and decision tree have broad usage in different
domains such as medicine, sociology, psychology, and
various quantitative research fields [23–25]. The decision
tree [26] is another example where the dataset is split
based on particular cutoff values and conditions in a tree
shape where each record in the dataset belongs to only
one subset, leaf node. In decision trees, predicting the
outcome of an instance is done by navigating the tree
from the root node of the tree down to a leaf and thus
the interpretation of the prediction is pretty straightfor-
ward using a nice natural visualization. However, in
practice, even though black-box models such as Neural
Networks can achieve better performance than white-
box models (e.g. linear regression, decision tree), they
are less interpretable.
In general, methods for machine learning interpret-

ability can be classified as either Model-Specific or
Model-Agnostic. In principle, model-specific interpret-
ation methods are limited to specific types of models.
For example, the interpretation of regression weights in
a linear model is a model-specific interpretation and
does not work for any other model. On the other hand,
model-agnostic interpretation methods are more gen-
eral, can be applied on any machine learning model and
are usually post hoc [27]. This facilitates the comparison
of different types of interpretability techniques and elim-
inates the need to replace the interpretability technique
when the models are replaced, so such techniques are
more flexible and usable [27]. These agnostic techniques
work by analyzing pairs of input features and output
without depending on the underlying model. Model-Ag-
nostic techniques also have some challenges [27]. One
challenge is that it is hard to get a global understanding of
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complex models due to the trade-off between model inter-
pretability and model flexibility. In some applications, an
exact explanation may be a must and using such black-
box techniques is not accepted. In this case, using an in-
terpretable model such as a linear regression model is
preferable and the same holds for any application in which
interpretability is more important than model perform-
ance. Another challenge is to make model-agnostic expla-
nations actionable. It is easier to incorporate user
feedback into the model implemented using explainable
models rather than using a black-box model [28].
Another way to classify machine learning interpretabil-

ity methods is based on whether the interpretation of
the model is global or local. In principle, global interpre-
tations enable a clinician to understand the entire condi-
tional distribution modeled by the trained response
function. They are obtained based on average values. In
contrast, local interpretations promote the understand-
ing of small parts of the conditional distribution. Since
conditional distribution decomposes of small parts that
are more likely to be linear or well-behaved and hence
can be explained by interpretable models such as linear
regression and decision trees.
In this study, we apply various global and local model-

agnostic methods that facilitate global model interpret-
ation and local instance interpretation of a model that
has been used in our previous study [21]. In particular,
in our previous study, we evaluated and compared the
performance of six machine learning models on predict-
ing the risk of hypertension using cardiorespiratory
fitness data of 23,095 patients who underwent treadmill
stress testing at Henry Ford Health hospitals over the
period between 1991 and 2009 and had a complte10-
year follow-up. The six machine learning models evalu-
ated were logit boost, Bayesian network, locally weighted
naive Bayes, artificial neural network, support vector
machine and random forest. Among such models, ran-
dom forest achieved the highest performance of AUC =
0.93.
Figure 1 illustrates the steps of our interpretation

process.

Related work
The volume of research in machine learning interpret-
ability is growing rapidly over the last few years. One
way to explain complex machine models is to use inter-
pretable models such as linear models and decision trees
to explain the behavior of complex models. LIME inter-
pretability technique explains the prediction of complex
machine model by fitting an interpretable model on per-
turbed data in the neighborhood of the instance to be
explained. Decision trees have been used intensively as a
proxy model to explain complex models. Decision trees
have several desirable properties [29]. Firstly, due to its

graphical presentation, it allows users to easily have an
overview of complex models. Secondly, the most import-
ant features that affect the model prediction are shown
further to the top of the tree, which show the relative
importance of features in the prediction. Lots of work
consider decomposing neural networks into decision
trees with the main focus on shallow networks [30, 31].
Decision rules have used intensively to mimic the be-

havior of a black-box model globally or locally given that
the training data is available when providing local expla-
nations [32]. Koh and Liang [33] used influence func-
tions to find the most influential training examples that
lead to a particular decision. This method requires
access to the training dataset used in training the black-
box model. Anchors [34] is an extension of LIME that
uses a bandit algorithm to generate decision rules with
high precision and coverage. Another notable rule-ex-
traction technique is MofN algorithm [35], which tries
to extract rules that explain single neurons by clustering
and ignoring the least significant neurons. The FERNN
algorithm [36] is another interpretability technique that
uses a decision tree and identifies the meaningful hidden
neurons and inputs to a particular network.
Another common interpretability technique is saliency

maps that aim to explain neural networks models by
identifying the significance of individual outcomes as an
overlay on the original input [37]. Saliency-based inter-
pretability techniques are popular means for visualizing
the of a large number of features such as images and
text data. Saliency maps can be computed efficiently
when neural network parameters can be inspected by
computing the input gradient [38]. Derivatives may miss
some essential aspects of information that flows through
the network being explained and hence some other ap-
proaches have considered propagating quantities other
than gradient through the network [39–41].
Interpretability of black-box models via visualization has

been used extensively [42–44]. Several tools have been
designed to provide an explanation for the importance of
features for random forest predictions [45], however, these
tools are model-specific and cannot be generalized to
other models. The authors of [46, 47] discussed several
methods for extracting rules from neural networks. Poulet
[48] presented a methodology for explaining the predic-
tion model by assigned a contribution value for each fea-
ture using visualization technique. However, this work has
been only able to handle linear additive models. Strumbelj
et al. [49] provided insights for explaining the predictions
of breast cancer recurrence by assigning a contribution
value to each feature, which could be positive, negative, or
zero. A positive contribution means that the feature
supports the prediction of the class of interest, a negative
contribution means that the feature is against the predic-
tion of the class of interest, and zero means that the
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feature has no influence on the prediction of the class
of interest. Caruana et al. [50] presented an explan-
ation technique which is based on selecting the most
similar instances in the training dataset to the in-
stance to be explained. This type of explanation is
called case-based explanation and uses the k-nearest
neighbors (KNN) algorithm to find the k nearest ex-
amples close to the instance to be explained based on
a particular distance metric such as Euclidean dis-
tance [51].

Research design and methods
In this section, we describe the charchteristics of the co-
hort of our study. In addition, we describe the global
and local intepretability techniques which we used for
explaining the predictions of the model that has been
developed for predicting the risk of hypertension using
cardiorespiratory fitness data.

Cohort study
The dataset of this study has been collected from patients
who underwent treadmill stress testing by physician refer-
rals at Henry Ford Affiliated Hospitals in metropolitan
Detroit, MI in the U.S. The data has been obtained from
the electronic medical records, administrative databases,
and the linked claim files and death registry of the hospital
[52]. Study participants underwent routine clinical treadmill
exercise stress testing using the standard Bruce protocol
between January 1st, 1991 and May 28th, 2009. The total
number of patients included in this study is (n = 23,095).
The data set includes 43 attributes containing information
on vital signs, diagnosis and clinical laboratory measure-
ments. The baseline characteristics of the included cohort
are shown in Table 1. The dataset contains 23,095 individ-
uals (12,694 males (55%) and 10,401 (45%) females) with
ages that range between 17 and 96. Half of the patients
have a family history of cardiovascular diseases. During the
10-years follow-up, around 35% of the patients experienced
hypertension. Male hypertension patients represent around
55% of the total hypertension patients while female patients

Fig. 1 The interpretability process of black box machine learning algorithms

Table 1 Dataset Description (Cohort Characteristics)

Age 49+/− 12

Gender

Male 12,694 (55%)

Female 10,401 (45%)

Race

Black 4694 (20%)

Other 18401 (80%)

Reason for Test

Chest Pain 12581 (54%)

Shortness of Breath 1956 (8%)

Pre-Operation 255 (1%)

Known Coronary Artery Disease 524 (2%)

Rule out Ischemia 2286 (10%)

Abnormal prior test 1004 (4%)

Stress

Peak METS (Mean +/− SD) 10.2 +/− 2.79

Resting Systolic Blood Pressure
(Mean +/− SD)

124 +/− 17

Resting Diastolic Blood Pressure
(Mean +/− SD)

79 +/− 10

Resting Heart rate (Mean +/− SD)
beat per minute (bpm)

73 +/− 12

Peak Diastolic Blood Pressure
(Mean +/− SD)

82 +/− 13

Peak Heart Rate (Mean +/− SD) beat
per minute (bpm)

159 +/− 17

Past Medical History

Diabetes 1887 (8%)

History of Smoking 9,518 (41%)

Family History 11,865 (51%)

History of Hyperlipidemia 7,769 (34%)

History of Coronary Artery Bypass Graft 314 (1%)
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represent around 44% of the total hypertension patients.
For more details about the dataset, the process of develop-
ing the prediction model and the FIT project, we refer the
reader to [21, 52].
In the following, we highlight the interpretability

methods that are used in this study.

Global interpretability techniques
Table 2 summarizes the main features of the model-ag-
nostic interpretability techniques used in this study. In
the following, we list and explain each of them.

Feature Importance
It is a global interpretation method where the feature
importance is defined as the increase in the model’s
prediction error after we permuted the values of the
features (breaks the relationship between the feature and
the outcome) [53]. A feature is considered important if
permuting its values increase the error (degrade the
performance).

Partial Dependence Plot (PDP)
It is a global interpretation method where the plot shows
the marginal effect of a single feature on the predicted
risk of hypertension of a previously fit model [54]. The
prediction function is fixed at a few values of the chosen
features and averaged over the other features. Partial
dependence plots are interpreted in the same way of a
regression model which makes its interpretation easy.
The main disadvantage of the partial dependence plot is
the assumption that the feature of which the PDP is
computed to be completely independent distributed
from the other features that we average over.

Individual Conditional Expectation (ICE)
The partial dependence plot aims to visualize the average
effect of a feature on the predicted risk of hypertension.

Partial dependence is a global method as it does not focus
on specific instances but on an overall average. ICE plot
can be seen as the disaggregated view of PDP by display-
ing the estimated functional relationship for each instance
in the dataset. The partial dependence plot can be seen as
the average of the lines of an ICE plot [55]. In other
words, ICE visualizes the dependence of the predicted risk
of hypertension on particular features for each instance in
the dataset. One main advantage of the ICE is that is
easier to understand and more intuitive to interpret than
the PDP. ICE suffers from the same disadvantage of PDP.

Feature Interaction
It is a global interpretation method where the interaction
between two features represents the change in the predic-
tion that occurs by varying the 13 features, after having
accounted for the individual feature effects. It presents the
effect that comes on top of the sum of the individual
feature effects. One way to measure the interaction
strength is to measure how much of the variation of the
predicted outcome depends on the interaction of the
features. This measure is known as H-statistic [56]. One
of the main advantages of the feature interaction is that it
considers the interaction between the features. The main
disadvantage of the feature interaction is that it is compu-
tationally expensive as it iterates over all the instances in
the dataset.

Global Surrogate Models
It is a global interpretation method which aims to ap-
proximate the predictions of a complex machine
learning models (such as neural networks) using a
simple interpretable machine learning models (such as
linear regression) [57]. Global surrogate models are
considered model-agnostic methods as they do not
require any information about the internal workings
and the hyper-parameters settings of the black-box

Table 2 Main features of the model-agnostic interpretability techniques used in this study

Technique Global Local Advantages Disadvantages

Feature Importance ✓ • Highly compressed global interpretation
• Consider interactions between features

Unclear whether it can be used on training
dataset or testing dataset

Partial Dependence Plot ✓ Intuitive and clear interpretation Assumption of independence between features

Individual Conditional
Expectation

✓ Intuitive and easy to understand Plot can become overcrowded to understand

Feature Interaction ✓ Detects all interactions been features Computationally expensive

Global Surrogate Models ✓ Easy to measure the goodness of your
surrogate model using R-squared measure

Not clear what is the best cut-off for R-squared
to trust the resulted surrogate model

Local Surrogate Model (LIME) ✓ • Short and comprehensible explanation.
• Explains different types of data (tabular,
text and image)

• Instability of the explanation
• Very close points may have totally different
explanations

Shapley Value Explanations ✓ Explanation is based on strong game theory
theorem

Computationally very expensive
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model. One way to obtain a surrogate model is as fol-
lows. Train an interpretable model such as logistic re-
gression or decision tree on the same dataset used to
train the black-box model (or a dataset that has the
same distribution) such that target for the interpret-
able model is the predictions of the black-box model.
The main advantage of the surrogate models is its
flexibility, in addition, it is easy to assess how well it
approximates the black-box model. However, it is still
problematic how well the surrogate model should
approximate the black-box model in order to be
trusted.

Local interpretability techniques
Local Surrogate Models (LIME)
It is a local model agnostic interpretation method which
focuses on explaining the prediction of a single predic-
tion of any black-box machine learning model locally
(within the neighborhood of the prediction instance to
be explained) [58]. The idea of LIME is quite intuitive, it
generates a new dataset that consists of perturbed sam-
ples and then gets the associated predictions from the
black box model. Next, LIME weight perturbed samples
by how close they are from the point to be explained
where the closer the point form the point to be ex-
plained, the higher weight it takes. Then, LIME fits an

interpretable model (such as linear regression) on the
weighted sampled instances. The learned model should
be a good approximation of the machine learning model
locally, but not globally.

Shapley Value Explanations
It is a local interpretation method from game theory
[59]. This interpretation method assumes that each
feature in the instance to be explained is a ‘player’ in
a game and the prediction is the payout. The Shapley
value aims to distribute the payout among the fea-
tures in a fair way. The main idea of Shapley value is
that for each feature f in the instance to be explained,
evaluate the model using all possible coalitions (sets)
of features with and without f. Such approach is ex-
tremely computationally expensive as the number of
the coalitions increases exponentially with the number
of features. Strumbelj and Kononenko [57], presented
an approximation algorithm for Shapley Values using
Monte-Carlo sampling technique. This approximation
algorithm has been used in this work as an example
of local explainer and will be referred to as Shapley
Values explainer.
The analysis of the global and local machine learning

interpretability techniques has been conducted using R-

Fig. 2 The importance for each feature in predicting the high risk of hypertension
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based ML packages (Version 3.3.1) (https://www.r-pro-
ject.org/).

Results
In this section we present the results of applying vari-
ous gloal and local interpretability techniques for our
predictive model for the individuals at risk of devel-
oping hypertension based on cardiorespiratory fitness
data. In particular, we present the results of Five glo-
bal interpretability techniques, namely, feature import-
ance, partial dependence plot, individual conditional
expectation, feature interaction and global surrogate
models. In addition, we present the results of 2 local

explanation techniques, namely, LIME and Shapley
value explanation.

Global interpretability techniques
Feature Importance
Figure 2 shows the ranking of the importance of the
selected input features in predicting the high risk of
hypertension. The feature importance represents the
factor by which the error is increased compared to the ori-
ginal model error. As shown in the figure, Age is the most
important feature, followed by Resting Systolic Blood Pres-
sure. The History of Coronary Artery Disease is the least
significant feature.

Fig. 3 Partial dependence plots for the highly ranked features for predicting hypertension
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Fig. 4 The interaction strength for each of the input features with all other features for predicting the high risk of hypertension

Fig. 5 The terminal nodes of a surrogate tree of depth equals to 3 that approximates the behavior of the black box random forest model trained
on the hypertension dataset
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Partial Dependence Plot and Individual conditional
expectation plot
The yellow line in Fig. 3 shows the partial dependence
plot of the probability of high risk of hypertension for
each of the highly ranked features for predicting hyper-
tension: Age, METS, Resting Systolic Blood Pressure and
Resting Diastolic Blood Pressure. The black lines in Fig. 3
show the individual conditional expectation plot of the
high risk of hypertension probability of the features.
Each of the black lines represents the conditional ex-
pectation for one patient. For the Age feature, the partial

dependence plot shows that, on average, the probability
of high risk of hypertension increases gradually from
0.25 to reach 0.5 at the age of 65 and then remain stable
till the age of 100 (Fig. 3a). For the METS feature, the
partial dependence plot shows that, on average, the in-
crease in METS is associated with a lower probability of
high risk of hypertension (Fig. 3b). On average, the in-
crease in the Resting Diastolic Blood Pressure is associated
with a gradual increase in the probability of high risk of
hypertension (Fig. 3c). For the Resting Systolic Blood Pres-
sure, the plot shows that the probability of high risk of

Fig. 6 The terminal nodes of a surrogate tree of depth equals to 4 that approximates the behavior of the black box random forest model trained
on the hypertension dataset
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hypertension increases from 0.30 to 0.40 at METS around
140, then slightly fluctuating around 0.40 (Fig. 3d).

Feature Interaction
Figure 4 shows the interaction strength for each of the
input features with all other features for predicting the
probability of high risk of hypertension. The Age has the
highest interaction effect with all other features, followed
by the Resting Systolic Blood Pressure. The History of
Diabetes has the least interaction with all other features.
Overall the interaction effects between the features are
considerably strong.

Global Surrogate Models
We fit a decision tree of depths equal to 3 and 4, using
the original dataset, but with the prediction of the model

(Random Forest) used as an outcome for the decision
tree model, instead of the real classes (high risk of
hypertension and low risk of hypertension) from the ori-
ginal dataset. Figures 5 and 6 show the terminal nodes
of a surrogate decision tree of depth equals to 3 and 4
respectively. The counts in the nodes show the distribu-
tion of the random forest model predictions in the
nodes. The counts in the nodes in Fig. 5 show that the
surrogate tree predicts a higher number of low risk of
hypertension patients when the Age is less than or equal
to 50:2, Resting Diastolic Blood Pressure is less than or
equal to 83 and METS is less than or equal to 12:9. Also,
the counts show that the surrogate tree of depth 3 pre-
dicts a higher number of high risk of hypertension pa-
tients when the Age is greater than 50:2, Resting Systolic
Blood Pressure is between 126 and 140. One way to

Fig. 7 LIME explanation for Instance 1 as True Negative

Fig. 8 Shapley explanation for Instance 1 as True Negative
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measure how well the surrogate replicates the black box
model is the R-squared measure. The surrogate tree of
depth 3 has an R-squared (variance explained) around 0:
3 which means that the tree model of depth 3 approxi-
mates the underlying Random Forest behavior very
poorly. The counts of the nodes in Fig. 6 show that the
surrogate tree of depth 4 predicts a higher number of
low risk of hypertension patients when the Age is less
than or equal to 50.2, Resting Diastolic Blood Pressure is
less than or equal to 83, METS is less than or equal to
12.9 and Hypertension Response is false. The counts in
Fig. 6 also shows that the surrogate model predicts a
higher number of high risk of hypertension patients
when the Age greater than 50.2, Resting Systolic Blood
Pressure is between 140 and 160. The R-squared of the
surrogate model of depth 4 increases slightly to 0.4,
however, when compared to the surrogate tree of depth

3, the model still does not approximate the black-box
model (Random Forest) well.

Local interpretability techniques
The explanatory plot produced by the LIME explanation
mechanism illustrates for each feature and class, in
which the range of values of a representative data point
would fall. If it does, this gets counted as support for this
prediction and if it does not, it gets scored as contradict-
ory. In addition, LIME produces what is so-called
Explanation fit that refers to the R-squared of the linear
Ridge regression model which is fitted locally to explain
the variance in the neighborhood of the examined
instance. The explanatory plot produced by the Shapley
Values explainer is close to the one generated by LIME
in the sense that it shows the features’ names and fea-
tures’ contributions that are used in the explanation. A

Fig. 9 LIME explanation for Instance 2 as True Positive

Fig. 10 Shapley explanation for Instance 2 as True Positive
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feature with a positive contribution value means that the
feature contributes toward increasing the prediction of
the model and a feature with a negative value means that
the feature contributing toward decreasing the model’s
output. The sum of all features’ contributions is the dif-
ference between the black-box model output and the
model’s output when no information is given about fea-
tures’ values. Therefore, we can measure the change in
the model’s output and hence identify the features that
contribute to this change and the amount of each fea-
ture-value’s influence.
Since LIME and Shapley Values explainers are instance

based explainers, in the following we evaluate both
explainers based on 20 randomly selected instances from
the testing dataset. In the following, we present the
explanation of 20 instances in detail. We present 2
instances that have been correctly predicted by the
black-box prediction model, one instance from the True
Positive (correctly predicted as high risk of hypertension)

group and another instance for the True Negative (cor-
rectly predicted as low risk of hypertension) group. In
general, the generated explanations for the correctly pre-
dicted instances are commonly very intuitive and clear.
They mostly follow common standard patterns. Thus,
we chose to more focus on the incorrectly predicted
instances as understanding the rationale and explanations
for such incorrect predictions of the model increases the
trust of the clinicians on the model behavior and perform-
ance. Thus, we present instances that comprehensively
cover the False Positive and False Negative groups with
consideration of the most important prediction factor, the
patient’s age.

Instance 1 (True negative)
The description of this instance is as follows: Age = 36,
METS = 13, Resting Systolic Blood Pressure = 80, Peak Dia-
stolic Blood Pressure = 70, Resting Diastolic Blood Pres-
sure = 60, HX Coronary Artery Disease = false, Reason for
test = chest pain, HX Diabetes = false, Percentage HR
achieved = 0.98, Race = white, Hx Hyperlipidemia = false,
Aspirin Use = false, Hypertension Response = false. Figure 7
shows LIME explanation of the prediction of instance 1 as
low risk of hypertension with a strong probability of 0:98.
The explanation is created based on five features Age,
METS, Race, Reason for test and Aspirin Use.
Figure 8 shows Shapley explanation of instance 1 based

on five features Age, METS, Percentage HR achieved, Rest-
ing Diastolic Blood Pressure and Resting Systolic Blood
Pressure. The Age, METS are the most important features
that contributed to the prediction of low risk of hyperten-
sion for both LIME and Shapley. The explanations show
that young patients under the age of 40s are at lower risk
of developing hypertension compared to people above 40s

Fig. 11 Histogram of false positive instances

Fig. 12 LIME explanation of Instance 3 as False Positive Prediction of High Risk - Group 1 - Close to Maximum Age
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which matches the partial dependence plot created in Fig.
3a and comes inline with the medical study by Rockwood
et al. [60]. The explanations also show that those people
whose METS are greater than 12:9 are at low risk of devel-
oping hypertension which matches the medical study by
Juraschek et al. [61]. LIME explanation also shows that
white people are at lower risk of developing hypertension
compared to black people which is supported by the study
conducted by Ergul et al. [62].

Instance 2 (True Positive)
The description of this instance is as follows: Age = 64.8,
METS = 7, Resting Systolic Blood Pressure = 110, Peak

Diastolic Blood Pressure = 90, Resting Diastolic Blood
Pressure = 70, HX Coronary Artery Disease = True,
Reason for test = HX Coronary Artery Disease, HX Dia-
betes = false, Percentage HR achieved = 0.79, Race = black,
Hx Hyperlipidemia = false, Aspirin Use = false, Hyperten-
sion Response = False.
Figure 9 shows the LIME explanation of the prediction

of the black-box model for instance 2 as high risk of
hypertension (assigning a strong probability of 0.98 for
high risk of hypertension). The explanation is created
based on five features Age, METS, Race, Hypertension
Response, and Peak Diastolic Blood Pressure. The three
features Age, METS, and Race positively support the

Fig. 13 Shapley Values explanation of Instance 3 as False Positive Prediction of High Risk - Group 1 - Close to Maximum Age

Fig. 14 LIME explanation of Instance 4 as False Positive Prediction of High Risk - Group 1 - Close to Minimum Age
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explanation as a high risk of hypertension. Having nega-
tive Hypertension Response test negatively contributed
to the explanation of the high risk of hypertension which
is inline with the medical study by Zanettini et al. [63].
Figure 10 shows the Shapley Values explanation of
instance 2 as high risk of hypertension. The explanation
is based on five features Race, HX Coronary Artery Dis-
ease, Peak Diastolic Blood Pressure, Reason for test and
Age that all contribute toward decreasing of the prob-
ability of high risk of hypertension.
In the following, we are going to have a deep look

at the misclassified instances by the Random Forest
model and see the explanation using LIME. To
ensure diversity, we selected nine instances from each
of the False Positive instances (incorrectly classified as
high risk of hypertension) and False Negative
instances (incorrectly classified as low risk of

hypertension) based on the patient’s age as it has
been identified to be the most important feature
based on the feature importance plot and the partial
dependence plot.
We start studying false positive instances. Figure 11

shows the frequency distribution of the false positive
instances based on the probability of low risk of hyper-
tension. The probability of low risk of hypertension has
been split into three groups (bins). Group 1 represents
instances with the probability of low risk of hypertension
between [0–0.2]. Group 2 and Group 3 represent in-
stances with the probability of low risk of hypertension
that belongs to]0.2–0.35] and]0.35–0.5[, respectively.
The frequency of the instances in group three is the
highest (the black-box model predicts a patient as low
risk of hypertension if the low-risk probability is greater
than or equal to 0.5). In the following, we present

Fig. 15 Shapley explanation of Instance 4 as False Positive Prediction of High Risk - Group 1 - Close to Minimum Age

Fig. 16 LIME explanation of Instance 5 as False Positive Prediction of High Risk - Group 1 - Close to Average Age
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sample instances from each of the three groups selected
based on the patient’s age.
In the following, we present sample instances of False

Positive predictions from Group 1. The instances are se-
lected based on the patient’s age: one instance is close to
the maximum age, one instance is close to the minimum
age and one instance close to average age.

Instance 3 (False Positive Prediction of High Risk - Group 1 -
Close to Maximum Age)
The description of this instance is as follows: Age =
75.39, METS = 6.4, Resting Systolic Blood Pressure = 150,
Peak Diastolic Blood Pressure = 90, Resting Diastolic
Blood Pressure = 94, HX Coronary Artery Disease = false,
Reason for test = HX Coronary Artery Disease, HX

Diabetes = false, Percentage HR achieved = 1.04, Race =
white, Hx Hyperlipidemia = true, Aspirin Use = true,
Hypertension Response = true.
Figure 12 shows LIME explanation of instance 3 based

on Age, Resting Systolic Blood Pressure, METS, Percentage
HR achieved, and Peak Diastolic. All the features used in
the explanation positively contributed to the prediction of
the high risk of hypertension with a probability equals to
0.68. Figure 13 shows the Shapley Values explanation of
instance 3 based on Percentage HR achieved, Aspirin Use,
METS, Age, and Reason for test. The most contributed fea-
ture toward increasing the probability high risk of hyper-
tension is Percentage HR achieved while Reason for test is
the most contributed feature toward decreasing the prob-
ability of the high risk of hypertension.

Fig. 17 Shapley explanation of Instance 5 as False Positive Prediction of High Risk - Group 1 - Close to Average Age

Fig. 18 LIME explanation of instance 6 as False Positive Prediction of high Risk - Group 2 - Close to Maximum Age
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Instance 4 (False Positive Prediction of High Risk - Group 1 -
Close to Minimum Age)
The description of this instance is as follows: Age = 53.77,
METS = 10.1, Resting Systolic Blood Pressure = 166, Peak
Diastolic Blood Pressure = 90, Resting Diastolic Blood Pres-
sure = 90, HX Coronary Artery Disease = false, Reason for
test = Chest Pain, HX Diabetes = false, Percentage HR
achieved = 0.93, Race = white, Hx Hyperlipidemia = true,
Aspirin Use = false, Hypertension Response = true.
Figure 14 shows LIME explanation of instance 4 as

high risk of hypertension with a probability of 0.7. The
explanation shows that Resting Diastolic Blood Pressure,
Resting Systolic Blood Pressure and Hypertension
Response are the most important features that positively
strongly contributed to the prediction of high risk of
hypertension while being white negatively contributed to
the prediction of high risk of hypertension. Figure 15
shows Shapley Values explanation of instance 4 as high

risk of hypertension based on Reason for test, Hx Hyper-
lipidemia, Resting Diastolic Blood Pressure, Resting Sys-
tolic Blood Pressure and METS. The most contributed
feature toward increasing the probability high risk of
hypertension is Reason for test while METS is the most
contributed feature toward decreasing the probability of
the high risk of hypertension.

Instance 5 (False Positive Prediction of High Risk - Group 1 -
Close to Average Age)
The description of this instance is as follows: Age = 67.9,
METS = 6, Resting Systolic Blood Pressure = 114, Peak
Diastolic Blood Pressure = 88, Resting Diastolic Blood
Pressure = 78, HX Coronary Artery Disease = true,
Reason for test = HX Coronary Artery Disease, HX Dia-
betes = false, Percentage HR achieved = 0.94, Race =
white, Hx Hyperlipidemia = true, Aspirin Use = false,
Hypertension Response = false

Fig. 19 Shapley explanation of instance 6 as False Positive Prediction of high Risk - Group 2 - Close to Maximum Age

Fig. 20 LIME explanation of Instance 7 as False Positive Prediction of High Risk - Group 2 - Close to Minimum Age

Elshawi et al. BMC Medical Informatics and Decision Making          (2019) 19:146 Page 16 of 32



The Age and METS are the most important features for
LIME that positively contributed to the prediction of high
risk of hypertension while being white and has negative
Hypertension Response test negatively contributed to the
prediction of high risk of hypertension as shown in Fig. 16.
LIME explains instance 5 as high risk of hypertension with
a probability of 0.68. Figure 17 shows Shapley Values ex-
planation of instance 5 based on Resting Systolic Blood
Pressure, HX Coronary Artery Disease, METS, Reason for
test and Age. All the features except Resting Systolic Blood
Pressure contributed toward decreasing the probability of
the high risk of hypertension.
In the following, we present sample instances of False

Positive predictions from Group 2. The instances are
selected based on the patient’s age: one instance is close

to the maximum age, one instance is close to the mini-
mum age and one instance close to average age.

Instance 6 (False Positive Prediction of high Risk - Group 2 -
Close to Maximum Age)
The description of this instance is as follows: Age =
82.23, METS = 7, Resting Systolic Blood Pressure = 164,
Peak Diastolic Blood Pressure = 80, Resting Diastolic
Blood Pressure = 80, HX Coronary Artery Disease = false,
Reason for test = Rule out Ischemia, HX Diabetes = false,
Percentage HR achieved = 1.09, Race = white, Hx Hyper-
lipidemia = false, Aspirin Use = false, Hypertension Re-
sponse = false
Figure 18 shows the explanation of instance 6 as high

risk of hypertension with a weak probability of 0.64. The

Fig. 21 Shapely explanation of Instance 7 as False Positive Prediction of High Risk - Group 2 - Close to Minimum Age

Fig. 22 LIME explanation of Instance 8 as False Positive Prediction of High Risk - Group 2 - Close to Average Age
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explanation is based on Age, Resting Systolic Blood Pres-
sure, METS, Hypertension Response, and Aspirin Use.
Age, Resting Systolic Blood Pressure and METS are posi-
tively contributed to the probability of high risk of
hypertension while negative Hypertension Response test
and not using aspirin are negatively contributed to the
prediction of high risk of hypertension. Figure 19 shows
the Shapley Values explanation of instance 6 as high risk
of hypertension based on Peak Diastolic Blood Pressure,
Reason for test, METS, Resting Systolic Blood Pressure,
and Age. All the features except Peak Diastolic Blood
Pressure contributed toward decreasing the probability
of the high risk of hypertension

Instance 7 (False Positive Prediction of High Risk - Group 2 -
Close to Minimum Age)
The description of this instance is as follows: Age =
42.81, METS = 10, Resting Systolic Blood Pressure = 140,
Peak Diastolic Blood Pressure = 98, Resting Diastolic

Blood Pressure = 86, HX Coronary Artery Disease = false,
Reason for test = shortness of breath, HX Diabetes = false,
Percentage HR achieved = 0.92, Race = white, Hx Hyper-
lipidemia = true, Aspirin Use = false, Hypertension Re-
sponse = true.
Figure 20 shows LIME explanation of instance 7 as

high risk of hypertension with a weak probability of
0.6. The explanation is based on Resting Diastolic
Blood Pressure, Resting Systolic Blood Pressure, Hyper-
tension Response, Age and METS. All the features
used in the explanation except Age are positively con-
tributed to the probability of high risk of hyperten-
sion. Figure 21 shows Shapley Values explanation of
instance 7 as high risk of hypertension based on Age,
Resting Diastolic Blood Pressure, Resting Systolic Blood
Pressure, Peak Diastolic Blood Pressure, and Hyperten-
sion Response. All the features except Age contributed
toward decreasing the probability of the high risk of
hypertension.

Fig. 23 Shapley explanation of Instance 8 as False Positive Prediction of High Risk - Group 2 - Close to Average Age

Fig. 24 LIME explanation of Instance 9 as False Positive Prediction of High Risk - Group 3 - Close to Maximum Age
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Instance 8 (False Positive Prediction of High Risk - Group 2 -
Close to Average Age)
The description of this instance is as follows: Age = 59.9,
METS = 10.1, Resting Systolic Blood Pressure = 124, Peak
Diastolic Blood Pressure = 90, Resting Diastolic Blood
Pressure = 80, HX Coronary Artery Disease = false, Rea-
son for test = chest pain, HX Diabetes = true, Percentage
HR achieved = 0.675, Race = white, Hx Hyperlipidemia =
false, Aspirin Use = false, Hypertension Response = false
Figure 22 shows LIME explanation of instance 8 based

on Age, Hypertension Response, Race, Reason for test and
Peak Diastolic Blood Pressure. Age and Peak Diastolic
Blood Pressure contributed positively to the prediction
of high risk of hypertension with a probability of 0:62,
while Hypertension Response, Race, and Reason for test
contributed negatively to the prediction of high risk of
hypertension. Figure 23 shows Shapley Values

explanation for instance 8 based on Resting Systolic
Blood Pressure, Percentage HR achieved, Resting Dia-
stolic Blood Pressure, Reason for test, and HX Diabetes.
All the features except HX Diabetes contributed toward
increasing the probability of the high risk of
hypertension.
In the following, we present sample instances of False

Positive predictions from Group 3. The instances are
selected based on the patient’s age: one instance is close
to the maximum age, one instance is close to the mini-
mum age and one instance close to average age.

Instance 9 (False Positive Prediction of High Risk - Group 3 -
Close to Maximum Age)
The description of this instance is as follows: Age =
87.82, METS = 7, Resting Systolic Blood Pressure = 136,
Peak Diastolic Blood Pressure = 80, Resting Diastolic

Fig. 25 Shapley explanation of Instance 9 as False Positive Prediction of High Risk - Group 3 - Close to Maximum Age

Fig. 26 LIME explanation of Instance 10 as False Positive Prediction of High Risk - Group 3 - close to Minimum Age

Elshawi et al. BMC Medical Informatics and Decision Making          (2019) 19:146 Page 19 of 32



Blood Pressure = 80, HX Coronary Artery Disease = 0,
Reason for test = chest pain, HX Diabetes = 0, Percentage
HR achieved = 1.098, Race = white, Hx Hyperlipidemia =
true, Aspirin Use = false, Hypertension Response = false.
Figure 24 shows LIME explanation of instance 9 based

on Age, Resting Systolic Blood Pressure, METS, Reason
for test and Aspirin Use. Age, Resting Systolic Blood Pres-
sure and METS are the most contributed features for the
prediction of the high risk of hypertension with a weak
probability of 0.6. Figure 25 shows Shapley Values ex-
planation of instance 9 based on Resting Systolic Blood
Pressure, Peak Diastolic Blood Pressure, Reason for test
and Age. All the features except Age contributed toward
increasing the probability of the high risk of hypertension.

Instance 10 (False Positive Prediction of High Risk - Group 3
- close to Minimum Age)
The description of this instance is as follows: Age =
29.13, METS = 5, Resting Systolic Blood Pressure = 148,

Peak Diastolic Blood Pressure = 60, Resting Diastolic
Blood Pressure = 92, HX Coronary Artery Disease = 0,
Reason for test = Chest Pain, HX Diabetes = 0, Percentage
HR achieved = 0.79, Race = black, Hx Hyperlipidemia =
false, Aspirin Use = false, Hypertension Response = false.
Instance 10 is incorrectly predicted by the black box

model as a high risk of hypertension with a weak prob-
ability equals to 0.52 using LIME explainer as shown in
Fig. 26. It is clear from the explanation that the young
Age of the patient strongly contributed against the pre-
diction of the high risk of hypertension while Resting
Diastolic Blood Pressure, Resting Systolic Blood Pressure
and METS contributed positively to the prediction of
the high risk of hypertension. The explanation of in-
stance 10 using Shapley Values is shown in Fig. 27 using
features Age, Resting Diastolic Blood Pressure, Resting
Systolic Blood Pressure, Race and METS. The feature Age
is the only features contributed toward increasing the
probability of high risk of hypertension.

Fig. 27 Shapley explanation of Instance 10 as False Positive Prediction of High Risk - Group 3 - close to Minimum Age

Fig. 28 LIME explanation of Instance 11 as False Positive Prediction of High Risk - Group 3 - Close to Average Age
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Instance 11 (False Positive Prediction of High Risk - Group 3
- Close to Average Age)
The description of this instance is as follows: Age = 56.4,
METS = 7, Resting Systolic Blood Pressure = 138, Peak
Diastolic Blood Pressure = 60, Resting Diastolic Blood
Pressure = 82, HX Coronary Artery Disease = false, Rea-
son for test = Screening, HX Diabetes = false, Percentage
HR achieved = 0.87, Race = white, Hx Hyperlipidemia =
false, Aspirin Use = false, Hypertension Response = false.
Figure 28 shows LIME explanation of instance 11 as a

high risk of hypertension with a probability of 0.51. Fea-
tures Age, Resting Systolic Blood Pressure and METS are
the main features that contributed to the prediction of
the high risk of hypertension. Shapley Values explan-
ation for instance 11 is shown in Fig. 29, based on Race,
Hypertension Response, Age, Resting Systolic Blood Pres-
sure, and Reason for test. The two features Race and
Hypertension Response are the only features contributed
toward the increasing probability of high risk of hyper-
tension. The explanations of these False Positive exam-
ples show that the Age is the most influencing feature

towards the explanation of the high risk of hypertension
based on LIME. We noticed that instances in Group 3
have the lowest average age of 56, while instances in
Group 1 has the highest average age of 68 amongst the
three groups which clearly indicates that the probability
of low risk of hypertension decreases with the increase
in the patient’s age.
In the following, we are going to have a deep look at

examples for instances that have False Negative predica-
tions (Incorrectly classified as low risk of hypertension).
Figure 30 shows the frequency distribution of the false
negative instances based on the probability of high risk
of hypertension. The probability of high risk of hyper-
tension has been split into another three groups. Group
4 represents instances with the probability of high risk
of hypertension between [0–0.2]. Group 5 and Group 6
represent instances with a probability of high risk of
hypertension belongs to]0.2–0.35] and]0.35–0.48[,
respectively (0.48 is the highest probability in the False
Negative instances). In particular, we present sample
instances of False Negative predictions from Group 4.
The instances are selected based on the patient’s age:
one instance is close to the maximum age, one instance
is close to the minimum age and one instance close to
average age.

Instance 12 (False Negative Prediction of Low Risk - Group
4 - Close to Maximum Age)
The description of this instance is as follows: Age = 63.8,
METS = 13, Resting Systolic Blood Pressure = 112, Peak
Diastolic Blood Pressure = 80, Resting Diastolic Blood
Pressure = 72, HX Coronary Artery Disease = false,
Reason for test = Rule out Ischemia, HX Diabetes = false,
Percentage HR achieved = 0.95, Race = white, Hx

Fig. 29 Shapley explanation of Instance 11 as False Positive Prediction of High Risk - Group 3 - Close to Average Age

Fig. 30 Histogram of false negative instances
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Hyperlipidemia = false, Aspirin Use = false, Hypertension
Response = false.
Figure 31 shows the explanation of instance 12 as low

risk of hypertension with a strong probability of 0.8. The
explanation is based on Age, METS, Race, Hypertension
Response and Reason for test. Age is the most influencing
feature that negatively contributed to the prediction of
low risk of hypertension while METS, Race and Hyper-
tension Response contributed positively to the prediction
of low risk of hypertension. Figure 32 shows Shapley
values explanation for instance 12 based on METS,
Resting Systolic Blood Pressure, Hypertension Response,
Reason for test, and Age. Similar to LIME explanation,
features METS, and Hypertension Response contributed
toward the probability of low risk of hypertension.

Instance 13 (False Negative Prediction of Low Risk - Group
4 - Close to Minimum Age)
The description of this instance is as follows: Age = 18.8,
METS = 15, Resting Systolic Blood Pressure = 120, Peak
Diastolic Blood Pressure = 90, Resting Diastolic Blood
Pressure = 80, HX Coronary Artery Disease = false, Rea-
son for test = Chest Pain,HX Diabetes = 0, Percentage HR
achieved = 0.85, Race = black, Hx Hyperlipidemia = false,
Aspirin Use = false, Hypertension Response = false.
Figure 33 shows the explanation of instance 13 based

on Age, METS, Hypertension Response, Reason for test and
Percentage HR achieved. All the features used in the ex-
planation except Percentage HR achieved contributed
positively to the prediction of low risk of hypertension
(probability = 0.82). Figure 34 shows Shapley Values

Fig. 31 LIME explanation of Instance 12 as False Negative Prediction of Low risk - Group 4 - Close to Maximum Age

Fig. 32 Shapley explanation of Instance 12 as False Negative Prediction of Low risk - Group 4 - Close to Maximum Age
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explanation for instance 13 based on Age, Reason for test,
Resting Diastolic Blood Pressure, Hypertension Response,
METS. All the features in the explanation contributed to-
ward the probability of low risk of hypertension

Instance 14 (False Negative Prediction of Low risk - Group 4
- Close to Average Age)
The description of this instance is as follows: Age =
48.26, METS = 12, Resting Systolic Blood Pressure = 110,
Peak Diastolic Blood Pressure = 70, Resting Diastolic
Blood Pressure = 70, HX Coronary Artery Disease = false,
Reason for test = Chest Pain, HX Diabetes = false,
Percentage HR achieved = 0.85, Race = white, Hx Hyper-
lipidemia = false, Aspirin Use = false, Hypertension Re-
sponse = false.
Figure 35 shows LIME explanation of instance 14

based on Hypertension Response, Age, Resting Systolic
Blood Pressure, Reason for test and METS. All the

features used in the explanation except METS are posi-
tively contributed to the prediction of low risk of hyper-
tension (probability = 0.96). Figure 36 shows Shapley
Values explanation for instance 14 based on the features
of Resting Systolic Blood Pressure, Age, METS, Hx Hyper-
lipidemia, and Resting Diastolic Blood Pressure. All the
features contributed toward increasing the probability of
low risk of hypertension.
In the following, we present sample instances of False

Negative predictions from Group 5. The instances are se-
lected based on the patient’s age: one instance is close to
the maximum age, one instance is close to the minimum
age and one instance close to average age.

Instance 15 (False Negative Prediction of Low Risk - Group
5 - Close to Maximum Age)
The description of this instance is as follows: Age = 79.6,
METS = 7, Resting Systolic Blood Pressure = 120, Peak

Fig. 33 LIME explanation of Instance 13 as False Negative Prediction of Low Risk - Group 4 - Close to Minimum Age

Fig. 34 Shapley explanation of Instance 13 as False Negative Prediction of Low Risk - Group 4 - Close to Minimum Age
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Diastolic Blood Pressure = 70, Resting Diastolic Blood
Pressure = 64, HX Coronary Artery Disease = 0, Reason
for test = Chest Pain,HX Diabetes = false, Percentage HR
achieved = 0.96, Race = white, Hx Hyperlipidemia = true,
Aspirin Use = false, Hypertension Response = true.
Figure 37 shows the explanation of instance 15 based

on Age, METS, Hypertension Response, Reason for test
and Peak Diastolic Blood Pressure. All the features used
in the explanation except Age and METS are contributed
positively to the prediction of low risk of hypertension
with probability equals to 0.7. Shapley Values explan-
ation for instance 15, shown in Fig. 38, is based on the
same five features used by LIME except for Hypertension
Response is replaced by Resting Systolic Blood Pressure.
Peak Diastolic Blood Pressure and Age are the most con-
tributing features toward increasing and decreasing the
probability of low risk of hypertension respectively.

Instance 16 (False Negative Prediction of Low Risk - Group
5 - Close to Minimum Age)
The description of this instance is as follows: Age =
22.78, METS = 12.9, Resting Systolic Blood Pressure =
112, Peak Diastolic Blood Pressure = 64, Resting Diastolic
Blood Pressure = 68, HX Coronary Artery Disease = false,
Reason for test = Dizzy, HX Diabetes = false, Percentage
HR achieved = 1.01, Race = white, Hx Hyperlipidemia =
true, Aspirin Use = false, Hypertension Response = false.
Figure 39 shows LIME explanation of instance 16 based

on Age, Race, Hypertension Response, Resting Systolic
Blood Pressure and METS. All the features used in the
explanation except METS contributed positively to the
prediction of low risk of hypertension with a strong prob-
ability of 0.86. Figure 40 shows Shapley Values explanation
of instance 16 based on features Age, Percentage HR
achieved, Peak Diastolic Blood Pressure, Resting Diastolic

Fig. 35 LIME explanation of Instance 14 as False Negative Prediction of Low risk - Group 4 - Close to Average Age

Fig. 36 Shapley explanation of Instance 14 as False Negative Prediction of Low risk - Group 4 - Close to Average Age
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Blood Pressure, and Hypertension Response. All the fea-
tures used in the explanation contributed toward increas-
ing the probability of low risk of hypertension.

Instance 17 (False Negative Prediction of Low Risk - Group
5 - Close to Average Age)
The description of this instance is as follows: Age = 48.78,
METS = 10.1, Resting Systolic Blood Pressure = 110, Peak
Diastolic Blood Pressure = 70, Resting Diastolic Blood Pres-
sure = 70, HX Coronary Artery Disease = false, Reason for
test = Rule out Ischemia,HX Diabetes = 0, Percentage HR
achieved = 0.92, Race = black, Hx Hyperlipidemia = false,
Aspirin Use = false, Hypertension Response = false.
Figure 41 shows the explanation of instance 17 based on

HX Diabetes, Hypertension, Response, Race, Resting Sys-
tolic Blood Pressure and METS. All the features used in
the explanation except being black are contributed to the

prediction of low risk of hypertension with a probability of
0.72. Figure 42 shows Shapley Values explanation of in-
stance 17 which is based on Hx Hyperlipidemia, Resting
Diastolic Blood Pressure, Resting Systolic Blood Pressure,
Age and Peak Diastolic Blood Pressure. All the features
contributed toward increasing the probability of low risk
of hypertension.
In the following, we present sample instances of False

Negative predictions from Group 6. The instances are
selected based on the patient’s age: one instance is close
to the maximum age, one instance is close to the mini-
mum age and one instance close to average age.

Instance 18 (False Negative Prediction of Low Risk - Group
6 - Close to Maximum Age)
The description of this instance is as follows: Age = 78.2,
METS = 7, Resting Systolic Blood Pressure = 110, Peak

Fig. 37 LIME explanation of Instance 15 as False Negative Prediction of Low Risk - Group 5 - Close to Maximum Age

Fig. 38 Shapley explanation of Instance 15 as False Negative Prediction of Low Risk - Group 5 - Close to Maximum Age
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Diastolic Blood Pressure = 84, Resting Diastolic Blood
Pressure = 72, HX Coronary Artery Disease = false, Rea-
son for test = chest pain, HX Diabetes = false, Percentage
HR achieved = 0.96, Race = white, Hx Hyperlipidemia =
false, Aspirin Use = false, Hypertension Response = false.
Figure 43 shows LIME explanation of instance 18

based on Age, METS, Race, Reason for test, and Peak
Diastolic Blood Pressure. Race and Reason for test
contributed positively to the prediction of low risk of
hypertension with a weak probability of 0.6. Figure 44
shows Shapley Values explanation of instance 18
which is based on Resting Systolic Blood Pressure,
Resting Diastolic Blood Pressure, Reason for test, and
Peak Diastolic Blood Pressure, Age. All the features
except Age contributed toward increasing the prob-
ability of low risk of hypertension.

Instance 19 (False Negative Prediction of Low Risk - Group
6 - Close to Minimum Age)
The description of this instance is as follows: Age = 27.8,
METS = 10.1, Resting Systolic Blood Pressure = 112, Peak
Diastolic Blood Pressure = 110, Resting Diastolic Blood Pres-
sure = 80, HX Coronary Artery Disease = false, Reason for
test = shortness of breath, HX Diabetes = false, Percentage
HR achieved = 0.86, Race = white, Hx Hyperlipidemia =
false, Aspirin Use = false, Hypertension Response = false.
Figure 45 shows the explanation of instance 19 based

on Age, Hypertension Response, Race, Resting Diastolic
Blood Pressure and METS and. All the features used in
the explanation contributed positively to the prediction of
low risk of hypertension with a probability of 0.7. Figure 46
shows the Shapley Values explanation of instance 19
which is based on Age, Hx Hyperlipidemia, Hypertension

Fig. 39 LIME explanation of Instance 16 as False Negative Prediction of Low Risk - Group 5 - Close to Minimum Age

Fig. 40 Shapley explanation of Instance 16 as False Negative Prediction of Low Risk - Group 5 - Close to Minimum Age
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Response, Resting Systolic Blood Pressure, and METS. All
the features except METS contributed toward increasing
the probability of low risk of hypertension.

Instance 20 (False Negative Prediction of Low Risk - Group
6 - Close to Average Age)
The description of this instance is as follows: Age = 48.5,
METS = 5, Resting Systolic Blood Pressure = 110, Peak Dia-
stolic Blood Pressure = 88, Resting Diastolic Blood Pres-
sure = 78, HX Coronary Artery Disease = false, Reason for
test = shortness of breath, HX Diabetes = false, Percentage
HR achieved = 0.9, Race = white, Hx Hyperlipidemia =
false, Aspirin Use = false, Hypertension Response = false.
Figure 47 shows LIME explanation of instance 20

based on METS, Race, Hypertension Response, Resting
Diastolic Blood Pressure and Peak Diastolic Blood Pres-
sure. All the features used in the explanation except

METS and Peak Diastolic Blood Pressure contributed to
the prediction of low risk of hypertension with a weak
probability of 0.54. Figure 48 shows the Shapley Values
explanation of instance 20 based on Hx Hyperlipidemia,
Peak Diastolic Blood Pressure, METS, Age, and Reason
for test. All the features used in the explanation except
Hx Hyperlipidemia contributed toward decreasing the
probability of low risk of hypertension.

Discussion
In general, the global interpretability techniques have
the advantage that it can generalize over the entire
population while local interpretability techniques give
explanations at the level of instances. Both methods may
be equally valid depending on the application need. For
example, a healthcare application such as predicting the
progression of risk of hypertension may require global

Fig. 41 LIME explanation of Instance 17 as False Negative Prediction of High Risk - Group 5 - Close to average age

Fig. 42 Shapley explanation of Instance 17 as False Negative Prediction of High Risk - Group 5 - Close to average age
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understanding for the main risk factors for developing
hypertension. In this case, local explainers may not be
suitable. One way to meet the application goal is to use
the global explanation methods. Another way to meet
the application requirements using local explainers is to
get local explanations and then aggregate them to gener-
ate global level explanations. Such technique is compu-
tationally expensive.
One of the main advantages of LIME is that its explan-

ation is based on the local regression model, which allow
physicians to make statements about changes in expla-
nations for changes in the features of the patient to be
explained, for example, “what would the probability of
hypertension if the patients after five years?”. One of the
main limitations of LIME is the instability of the expla-
nations. Patients with very close characteristics may have

very different explanations. Even for a single patient, if
you get the explanation twice, you may get two different
explanations. Another limitation is the perturbed data
points that act as the training data for the interpretable
model are sampled from Gaussian distribution that
ignores the correlation between features. This may lead
to poor selection of data points that result in poor
explanation. LIME assumes a strong assumption that the
local model fitted on the perturbed data is linear, how-
ever, there is no clear theory about the validity of the
assumption.
One of the main advantages that distinguish Shapley

value explanation from LIME is that the difference
between the average prediction and the prediction of the
instance to be explained is fairly distributed among the
feature values of the instance to be explained. In other

Fig. 43 LIME explanation of Instance 18 as False Negative Prediction of Low Risk - Group 3 - Close to Maximum Age

Fig. 44 Shapley explanation of Instance 18 as False Negative Prediction of Low Risk - Group 3 - Close to Maximum Age
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words, Shapley, value explanation. On the other side,
Shapley value explanation is computationally expensive.
Another disadvantage is that we need to access the
training examples used in training the model to be
explained unlike LIME.
Many methods have been proposed to make complex

machine learning model interpretable, however, these
methods have been evaluated individually on small data-
sets [60]. To the best of our knowledge, this is the first
study that applies and demonstrates the utility of various
model-agnostic explanation techniques of machine learn-
ing models analyzing the outcomes of prediction model
for the individuals at risk of developing hypertension
based on cardiorespiratory fitness data. This study is de-
signed to take advantage of the unique and rich clinical re-
search dataset consisting of 23,095 patients to explain the
predictions of the best performing machine learning

model for predicting individuals at risk of developing
hypertension in an understandable manner for clinicians.
The results show that different interpretability tech-
niques can shed light on different insights on the
model behavior where global interpretations can en-
able clinicians to understand the entire conditional
distribution modeled by the trained response function.
In contrast, local interpretations promote the under-
standing of small parts of the conditional distribution
for specific instances. In practice, both methods can
be equally valid depending on the application need.
Both methods are effective methods for assisting cli-
nicians on the medical decision process, however, the
clinicians will always remain to hold the final say on
accepting or rejecting the outcome of the machine
learning models and their explanations based on their
domain expertise.

Fig. 45 LIME explanation of Instance 19 as False Negative Prediction of Low Risk - Group 3 - Close to Minimum Age

Fig. 46 Shapley explanation of Instance 19 as False Negative Prediction of Low Risk - Group 3 - Close to Minimum Age
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Threats to validity
Extenral validity
A main limitation of this study is that the predictors of
the models, the predictions of the models fot the new
instances and the explanations of the interpretability
techniques are all based on the charachteritsics and used
predictors of the cohort of this study.

Construct validity
This study has been mainly focusing on two local inter-
pretability techniques, namely, LIME and Shapley Value
Explanations. The inclusion of additional local interpret-
ability techniques may lead to different explanations and
additional insights.

Conclusion Validity
Due to the nature of this study and the unlimited availabil-
ity of similar comparable cohorts. Generalizing the findings
and explanations of this study would require the inclusion
of multiple datasets representing multiple cohorts.

Conclusion
Explaining the predictions of black-box machine learn-
ing models have become a crucial issue which is gaining
increasing momentum. In particular, achieving optimal
performance of the machine learning models have not
become the only focus of data scientists, instead, there is
growing attention on the need for explaining the predic-
tions of black-box models on both global and local
levels. Several explanations that have been produced by

Fig. 47 LIME explanation of Instance 20 as False Negative Prediction of Low Risk - Group 3 - Close to Average Age

Fig. 48 Shapley explanation of Instance 20 as False Negative Prediction of Low Risk - Group 3 - Close to Average Age
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various methods in this study reflect the significant role
of these techniques in assisting the clinical staff in the
decision-making process. For example, the LIME tech-
nique can allow physicians to make statements about
changes in explanations for changes in the features of
the patient to be explained. However, the LIME tech-
nique suffers from the instability of the explanations.
Meanwhile, the Shapley value explanation technique has
shown the ability to demonstrate that the difference
between the average prediction and the prediction of the
instance to be explained is fairly distributed among the
feature values of the instance to be explained. On the
other hand, Shapley value explanation is computationally
expensive and needs to access the training data, unlike
LIME. Finally, we believe that this study is an important
step on improving the understanding and trust of intelli-
gible healthcare analytics through inducting a compre-
hensive set of explanations for the prediction of local
and global levels. As a future work, there are various
directions to extend and build up on this work. For
example, generalizing the explanation by the inclusion of
multiple datasets representing multiple cohort. In addition,
incorporationg additional local interpretability techniques
and studying their impact. Furthermore, investigating how
the outcomes of the various explanation techniques can be
effectively utilized to update and improve the accuracy of
the prediction model and consequently the quality of the
provided interpretations.
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