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Abstract

Up to 50% of antibiotic use in hospital settings is suboptimal. We build machine learning models trained on electronic
health record data to minimize wasteful use of antibiotics. Our classifiers flag no growth blood and urine microbial
cultures with high precision. Further, we build models that predict the likelihood of bacterial susceptibility to sets of
antibiotics. These models contain decision thresholds that separate subgroups of patients whose susceptibility rates
to narrow-spectrum antibiotics equal overall susceptibility rates to broader-spectrum drugs. Retroactively analyzing
these thresholds on our one year test set, we find that 14% of patients infected with Escherichia coli and empirically
treated with piperacillin/tazobactam could have been treated with ceftriaxone with coverage equal to the overall
susceptibility rate of piperacillin/tazobactam. Similarly, 13% of the same cohort could have been treated with cefazolin
- a first generation cephalosporin.

Introduction

Over 700,000 people die a year from antibiotic resistant infection - a figure that is rapidly growing1. If nothing
alters its trajectory, the annual death rate by 2050 will exceed 10,000,0001. Lack of working antibiotics would push
many modern day medical practices into extinction. Antibiotics are used prophylactically before surgery to prevent
surgical site infection, and in conjunction with chemotherapy and HIV treatment when a patient’s immune system is
compromised. Antibiotics used improperly needlessly expedite the rate at which microbes develop resistance. Up
to 50% of antibiotics prescribed in hospitals are either inappropriate or suboptimal2. Clinicians use their expertise
to prescribe antibiotics of the proper type, duration, and route of intervention; but, prescribing the antibiotic that
maximizes the likelihood of coverage while minimizing overkill is challenging.

The Joint Commission requires American hospitals to implement antibiotic stewardship programs that educate health-
care workers on best prescribing practices. Clinicians are trained to order microbial cultures for presumably infected
patients before beginning a course of antibiotics. Microbial cultures are sent to a microbiology lab for testing, and
after about two days, the identity of the infecting agent is determined. Most microbial cultures fail to grow bacteria.
If bacteria is isolated, further drug susceptibility analysis is performed, and after another day results return showing
whether a set of commonly prescribed antibiotics will cover the infecting agent. In critical cases, clinicians cannot wait
for susceptibility results. They start empiric treatment, a euphemism for guessing the diagnosis and optimal therapy.
Empiric treatment typically consists of broad-spectrum drugs like piperacillin/tazobactam (Pip/Tazo) that maximize
likelihood of microbial coverage even though something more targeted likely would suffice. Broad-spectrum antibi-
otics can devastate patient microbiota, and lead to the emergence of often deadly Clostridium difficile (C. difficile)
infections3. When susceptibility results are returned, clinicians de-escalate to targeted treatment. An illustration of
this clinical workflow is shown in Figure 1.

Electronic Health Records (EHRs) have been used extensively for clinical decision support4, 5. Several of these studies
address the inefficiencies of empiric antibiotic treatment. Ribers and Ullrich use a random forest to predict microbial
culture results of primary care patients in Denmark suspected of urinary tract infection6. They report that use of their
classifier could reduce antibiotic prescription by 7.42 percent without reducing the number of infections treated with
antibiotics. Hernandez et al fit a series of classifiers to microbial culture data to predict the likelihood of bacterial
growth7. Their study results were promising, but the potential for generalized performance across time and unseen pa-
tients remains unclear. Yelin et al use personal clinical histories to predict the likelihood of microbial resistance to sets
of antibiotics8. Their prediction models and algorithmic prescribing policies show promise that machine learning can
help decrease ineffective antibiotic prescriptions for patients with UTIs. More work is needed to address stewardship
goals; that is, how we can use machine learning models to maximize patient coverage with narrower-spectrum empiric
drugs.
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Figure 1: Graphic illustration of antibiotic delivery workflow. On Day 1 a patient shows up to the hospital with a
possible infection. A clinician prescribes empiric antibiotics (broad-spectrum) to maximize the likelihood the patient
responds. At the same time, a microbial culture is ordered. After Day 3 the identity of the infecting agent, if one
exists, is confirmed. At Day 4 susceptibility results return detailing a set of appropriate antibiotics, and the patient is
de-escalated to directed therapy.

Antibiograms are standard of care tools that summarize bacterial susceptibility patterns of commonly administered
antibiotics9 - see Table 1. Each cell represents the proportion of microbes isolated in cultures susceptible to a par-
ticular antibiotic. Antibiograms are used by clinicians administering empiric treatment. Our objective is to develop
an approach that allow clinicians to prescribe narrower-spectrum antibiotics with likelihood of coverage equivalent to
coverage rates of broader-spectrum drugs reported in antibiograms. Specifically, the aim of this study is to 1) predict
whether bacteria will grow at all in microbial cultures and 2) predict which antibiotics an infecting bacteria will be
susceptible to - creating personalized antibiograms for individual patients using patient EHR histories and machine
learning models.

Table 1: 2014 inpatient antibiogram constructed using Stanford EHR data. Each cell indicates the proportion of
microbial isolates susceptible to the corresponding antibiotic. Clinicians use these tables to inform empiric antibiotic
treatment. Probabilities are based on prevalence, and are not adjusted on an individual patient basis. R indicates the
microbe is assumed resistant to the corresponding antibiotic, and therefore not tested. NA indicates the microbe is
not tested due to our microbiology labs’s selective reporting guidelines. E. coli = Escherichia Coli, K. pneumoniae =
Klebsiella pneumoniae, P. aeruginosa = Pseudomonas aeruginosa, Pip/Tazo = piperacillin/tazobactam.

Organism Name Pip/Tazo Ampicillin Cefepime Ceftriaxone Cefazolin Levofloxacin Ciprofloxacin
E. coli 0.94 0.46 0.91 0.81 0.75 0.67 0.67
K. pneumoniae 0.88 0.0 0.91 0.87 0.81 0.87 0.84
P. aeruginosa 0.89 R 0.87 R R NA 0.81

Methods
Dataset

We use the Stanford Medicine Research Data Repository (STARR) inpatient clinical data warehouse which contains
de-identified patient EHRs between 2008 and 2014. This dataset includes the set of all microbial cultures ordered at
Stanford University Hospital, a tertiary academic medical center. Microbiology data includes presence of bacteria,
type of bacteria, and antibiotic susceptibility analyses. The minimum inhibitory concentration (MIC) technique is
used to assign labels (Susceptible, Intermediate, Resistant) to each antibiotic tested against the infecting agent grown
in the microbial culture10. Our entire dataset includes patient demographics, comorbidities, lab orders, vital signs,
medications, and treatment teams.
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Prediction Tasks
No Bacterial Growth Predictions

We train binary classifiers that predict lack of bacterial growth in blood and urine cultures. Cultures with no bacterial
growth are assigned to the positive class. Cultures that grow bacteria are assigned to the negative class. Patient medical
timelines often contain multiple blood and urine culture orders. We include only the first blood and urine culture a
patient receives in our analysis.

Bacteria Susceptibility Predictions

Consistent with our microbiology labs selective reporting guidelines, we infer susceptibility to Pip/Tazo if the organ-
ism demonstrates susceptibility to ampicillin. We infer susceptibility to newer generation cephalosporins if the agent
demonstrates susceptibility to older generation cephalosporins. We train binary classifiers for each microbe/antibiotic
combination. Cultures whose susceptibility results come back Susceptible are assigned to the positive class. Inter-
mediate and Resistant labels are assigned to the negative class. Clinicians would not treat patients with an antibiotic
labelled Intermediate. The full list of microbes and antibiotics for which we make susceptibility predictions on is as
follows.

Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae)

• Ampicillin

• Cephalosporins (Cefepime, Ceftriaxone, Cefazolin - 4th, 3rd, and 1st generation)

• Fluoroquinolones (Levofloxacin, Ciprofloxacin - 3rd and 2nd generation)

Pseudomonas aeruginosa (P. aeruginosa)

• Cefepime

• Ciprofloxacin

Train Validation and Test Splits

We split our training, validation, and test sets based on the years cultures were drawn. Our training set consists of
cultures ranging from 2009 to 2012, our validation set contains cultures ordered in 2013, and our test set contains those
ordered in 2014. To preserve model generalizability on new patients, the sets of patients in our training, validation,
and test sets are disjoint.

Feature Engineering and Re-sampling

We use patient demographics, comorbidities, prior lab tests, vital signs, medications, and treatment teams to make
predictions. Prediction time for our no growth classifiers is the point at which microbial cultures are ordered. Predic-
tion time for our susceptibility classifiers is the point at which infecting agents are known. Categorical features are
represented as counts over the past 1, 2, 4, 7, 14, 30, 90, 180, 365, 730, and 1460 days. We also include the total count
of occurrences over a patient’s entire medical history, and the number of days since the last occurrence. Numerical
features are represented with summary statistics over the past 14 day window. These summary statistics include the
minimum, maximum, median, mean, standard deviation, first, last, and slope over the window. Models are fit on 4261
features. Missing values are imputed by taking the mean over columns. Features are standardized, and the Synthetic
Minority Over-Sampling Technique (SMOTE) is used to address extreme class imbalance11.

Model Selection

We train three machine learning models for each prediction task: a logistic regression with L1 regularization (LASSO)12,
a random forest13, and a gradient boosted tree model using the extreme gradient boosting (XGBoost) implementation14.

110



We tune the LASSOs regularization coefficient with a cross validation grid search sweeping over values 10−8 to 108

in power of ten intervals using only our training set. The number of trees in our random forest models is set to 100. We
tune the maximum number of features each tree is able to look at and its max depth. We set the number of boosting
rounds for our XGBoost models to 100, the learning rate to 0.3, and tune the max depth of each tree, the percent of data
each tree sees, the maximum features each tree uses, and the gamma, alpha, and lambda regularization parameters.

For each task, we select the model type that performs best on our 2013 validation set with respect to the area under
the receiver operator curve (AUROC), retrain on the union of our training and validation sets, and evaluate the final
performance on our 2014 test set. Technical performance of each final model is evaluated using AUROC and AUPRC
(area under the precision recall curve). 95% confidence intervals are computed by bootstrapping the 2014 test set.

Estimating Clinical Relevance

We estimate the clinical utility of our models by retroactively computing the fraction of patients that could have been
given less broad-spectrum drugs at the same susceptibility rate as Pip/Tazo shown in the 2014 antibiogram. Pip/Tazo is
a commonly used broad spectrum antibiotic for empiric treatment because its efficacy against gram negative bacteria
is high. In this analysis we restrict our one year test set to patients empirically treated with Pip/Tazo. We say a patient
was empirically treated with Pip/Tazo if the order timestamp of Pip/Tazo was in between the order and result time of
the microbial culture. For each model, we retroactively look for a decision threshold where recall is maximized and
precision is at or above the 2014 antibiogram susceptibility rate for Pip/Tazo. We then report the fraction of patients
in our test set whose predicted probabilities were at or above this decision threshold.

Results
Predicting No Growth Blood and Urine Cultures

Here we show the technical evaluation of our no growth blood and urine culture models. 95% of blood cultures fail to
grow bacteria. 76% of urine cultures show no signs of growth. Table 2 shows AUROC and AUPRC values for each of
our three models (LASSO, Random Forest, and XGBoost) on our validation set, as well as final model performance
on our one year test set.

Predicting Bacterial Susceptibility

Next we show the technical evaluation of our bacterial susceptibility classifiers. Bacterial susceptibility over the 2009-
2014 time period is mostly stationary over time, as seen in Figure 2. Table 3 shows the AUROC and AUPRC of the
final model, model type, and corresponding 2014 antibiogram susceptibility rate for each prediction task.

Table 2: Model performance for our two no growth prediction tasks on both our validation and test sets. Area under
the precision recall curve (AUPRC) and area under the receiver operator curve (AUROC) are shown for each of our
three model types trained using the training set and evaluated with the 2013 validation set. AUPRC and AUROC of
our final models are shown for the 2014 test set. 95% confidence intervals are estimated by bootstrapping the test set.
RF = random forest, XGBoost = extreme gradient boosting, LASSO = logistic regression with L1 regularization.

Culture Type 2013 Validation 2014 Test
Model Type AUPRC AUROC Model Type AUPRC AUROC

Blood [N = 19,938]
LASSO 0.98 0.68

LASSO 0.97
[0.96, 0.97]

0.64
[0.60, 0.68]RF 0.97 0.61

XGBoost 0.97 0.64

Urine [N = 16,765]
LASSO 0.90 0.70

LASSO 0.87
[0.86, 0.88]

0.69
[0.67, 0.71]RF 0.88 0.68

XGBoost 0.88 0.66
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Figure 2: Bacterial susceptibility to a set of commonly prescribed antibiotics by year. Susceptibility is mostly station-
ary over our time window.

Estimating Clinical Relevance

Here we show the clinical relevance of our microbe susceptibility classifiers. Figure 3 shows how we choose clinically
useful decision thresholds, and how they are analyzed to retroactively estimate the subset of patients that could have
been given narrower-spectrum antibiotics at the same rate of coverage as Pip/Tazo in our one year test set.

Discussion
No Growth Predictions

Each of our no growth classifiers contain operating regions that flag no growth cultures with high precision. Our
blood culture classifier is able to predict 30% of all no growth blood cultures with > 98% precision. Our urine culture
classifier predicts 36% of all no growth urine cultures with > 90% precision. While lack of bacterial growth in blood

Table 3: Technical performance of bacterial susceptibility classifiers on our one year test set. Best model indicates
the type of model that had the highest area under the receiver operator curve (AUROC) on our 2013 validation set.
For each model we show area under the precision recall curve (AUPRC), AUROC, and the 2014 antibiogram value -
which is simply baseline prevalence. RF = random forest, XGBoost = extreme gradient boosting, LASSO = logistic
regression with L1 regularization. Small variations of N within each microbe type exist due to our microbiology lab’s
selective reporting guidelines. We report the minimum N for each microbe type.

Organism Antibiotic Best Model 2014 Antibiogram
Susceptibility AUPRC AUROC

E. coli [N= 2,424]

Ampicillin RF 0.46 0.53 [0.48, 0.60] 0.60 [0.54, 0.65]
Cefepime XGBoost 0.91 0.96 [0.93, 0.98] 0.73 [0.65, 0.78]

Ceftriaxone RF 0.81 0.86 [0.83, 0.90] 0.63 [0.56, 0.69]
Cefazolin RF 0.75 0.81 [0.77, 0.86] 0.60 [0.54, 0.67]

Ciprofloxacin RF 0.67 0.79 [0.75, 0.84] 0.67 [0.63, 0.72]
Levofloxacin RF 0.67 0.76 [0.71, 0.82] 0.67 [0.64, 0.72]

K. pneumoniae [N = 671]

Cefepime RF 0.91 0.97 [0.94, 0.99] 0.74 [0.62, 0.84]
Ceftriaxone RF 0.87 0.95 [0.92, 0.97] 0.70 [0.61, 0.78]
Cefazolin RF 0.81 0.86 [0.81, 0.93] 0.61 [0.52, 0.70]

Ciprofloxacin LASSO 0.84 0.86 [0.77, 0.92] 0.56 [0.44, 0.67]
Levofloxacin XGBoost 0.87 0.90 [0.84, 0.95] 0.56 [0.44, 0.67]

P. aeruginosa [N = 693]
Cefepime RF 0.88 0.92 [0.83, 0.97] 0.66 [0.50, 0.76]

Ciprofloxacin XGBoost 0.81 0.90 [0.83, 0.94] 0.66 [0.53, 0.75]
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(a) Precision Recall Curves

(b) Patient Subsets

Figure 3: (a) precision recall curves for classifiers evaluated on patients empirically treated with
Piperacillin/Tazobactam (Pip/Tazo) in our one year test set. Cross-hairs highlight decision thresholds where recall
is maximized such that precision exceeds or equals the 2014 antibiogram value for Pip/Tazo. 2014 Pip/Tazo antibi-
ogram values for P. aeruginosa, E. coli, and K. pneumoniae, are 0.89, 0.94, 0.88 respectfully. Test set sample sizes
are N = 48, N = 119, and N = 59. (b) percentage of patients whose predicted probabilities exceed these decision
thresholds. This corresponds to subsets of patients treated with Pip/Tazo with susceptibility rates to narrower-spectrum
antibiotics equal to the 2014 antibiogram values for Pip/Tazo. Microbe-antibiotic combinations for patients given
Pip/Tazo whose baseline coverage rates exceed Pip/Tazo in 2014 are not shown, as 100% of these patients could have
been given the antibiotics at the Pip/Tazo coverage rate without using machine learning models. These combinations
are K. pneumoniae - Cefepime, K. pneumoniae - Ceftriaxone, and P. aeruginosa - Cefepime
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or urine cultures does not necessarily mean lack of infection, there is a high likelihood that a large portion of these
patients are not infected. These patients often receive empiric antibiotic treatment when it is not needed. We do not
recommend that clinicians neglect treatment for individuals whose cultures are predictably negative. However we may
suggest that these patients be placed on less broad-spectrum antibiotics - especially when paired with predictions made
by our susceptibility classifiers that indicate high likelihood of susceptibility to narrower-spectrum drugs.

Bacterial Susceptibility Predictions

Our bacterial susceptibility classifiers contain decision thresholds that separate subsets of patients that could have
been given narrower-spectrum antibiotics at the same coverage rate as Pip/Tazo. Clinicians often empirically prescribe
Pip/Tazo because its likelihood of covering the suspected infecting agent is high. Use of broad-spectrum antibiotics
when something more targeted would have sufficed has severe implications on patient health, cost of care, and the
development of antibiotic resistance. Broad-spectrum agents can negatively impact patients’ microbiota, and lead
to an increased risk of C. difficile infection. Cost of care is increased not only because broad-spectrum agents are
more expensive, but because less broad-spectrum cephalosporins and fluoroquinolones can be administered orally and
reduce length of hospitalization15. And finally, overuse of broad-spectrum drugs severely affects the efficacy of these
drugs in the decades to come due to emerging resistance.

Antibiograms guide adequate coverage and are the current standard of care in leading health institutions. They summa-
rize microbe susceptibility patterns but do not leverage patient specific prior knowledge. We have shown that machine
learning models can better discriminate bacterial susceptibility results to sets of antibiotics. Personalized antibiograms
would allow clinicians to empirically prescribe less broad-spectrum drugs at higher rates of susceptibility.

Limitations

Predictive performance was variable for our different prediction tasks. Nevertheless, we demonstrate that many of our
models contain useful operating regions that would allow clinicians to prescribe less broad-spectrum empiric treatment
at high likelihood of coverage.

We note that lack of bacterial growth in a microbial culture does not infer lack of infection. Thus even though we
are able to predict with high precision that a microbial culture will not grow bacteria, we are not able to draw the
conclusion that these patients are not infected and should not be given antibiotics. Our predictions do however suggest
that smaller antibiotics may be more appropriate, especially when paired with predictions suggesting the likelihood of
susceptibility to these drugs is high.

Lastly due do the fact that our clinical relevance analysis was based on decision thresholds found in our one year
test set, generalizability of coverage rates at these thresholds on new data remains unclear. This combined with our
relatively small test set sample sizes after filtering for patients empirically treated with Pip/Tazo (Figure 3a) means
that more work is needed to analyze prescribing polices that retroactively use these thresholds to optimize coverage
on unseen data. Nevertheless we do show that decision thresholds exist that separate subsets of patients whose rates
of coverage for narrower-spectrum antibiotics match antibiogram values for Pip/Tazo.

Conclusion

Machine learning tools can predict lack of growth in microbial cultures and likelihood of bacterial susceptibility
to sets of antibiotics based on readily available EHR data. Personalized antibiograms better discriminate bacterial
susceptibility compared with antibiograms (current standard of care) by leveraging patient specific medical histo-
ries. Personalized antibiograms have the potential to improve antibiotic stewardship by allowing clinicians to choose
narrower-spectrum empiric antibiotics with high levels of confidence.
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