
CONTRASTIVE LEARNING OF MEDICAL VISUAL
REPRESENTATIONS FROM PAIRED IMAGES AND TEXT

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D. Manning & Curtis P. Langlotz
Stanford University
{yuhaozhang, hjian42, ysmiura, manning, langlotz}@stanford.edu

ABSTRACT

Learning visual representations of medical images is core to medical image un-
derstanding but its progress has been held back by the small size of hand-labeled
datasets. Existing work commonly relies on transferring weights from ImageNet
pretraining, which is suboptimal due to drastically different image characteristics,
or rule-based label extraction from the textual report data paired with medical
images, which is inaccurate and hard to generalize. We propose an alternative
unsupervised strategy to learn medical visual representations directly from the
naturally occurring pairing of images and textual data. Our method of pretraining
medical image encoders with the paired text data via a bidirectional contrastive ob-
jective between the two modalities is domain-agnostic, and requires no additional
expert input. We test our method by transferring our pretrained weights to 4 med-
ical image classification tasks and 2 zero-shot retrieval tasks, and show that our
method leads to image representations that considerably outperform strong base-
lines in most settings. Notably, in all 4 classification tasks, our method requires
only 10% as much labeled training data as an ImageNet initialized counterpart to
achieve better or comparable performance, demonstrating superior data efficiency.

1 INTRODUCTION

Severe cardiomegaly
is noted in the image
with enlarged…

Radiograph shows
pleural effusion in
the right lobe…

Figure 1: Two example chest radio-
graph images with different abnormality
categories, along with sentences from
their paired textual report and example
views indicative of their characteristics.

Medical image understanding has the potential to trans-
form healthcare and has seen rapid progress with the use
of deep neural architectures (Gulshan et al., 2016; Es-
teva et al., 2017; De Fauw et al., 2018; Rajpurkar et al.,
2018b). Yet, with expert-level performance achieved only
in some specialties and under some circumstances, med-
ical image understanding remains a difficult task for the
majority of specialties, mainly due to its challenging na-
ture and the extreme scarcity of annotated data.

Existing work has followed two general approaches to ob-
tain annotations for medical imaging tasks. The first ap-
proach has been using high-quality annotations created
by medical experts (Abràmoff et al., 2016; Gulshan et al.,
2016; Shih et al., 2019; Wang & Wong, 2020). However,
the high cost of this approach has resulted in datasets that
are mostly orders of magnitude smaller than natural im-
age datasets such as ImageNet (Russakovsky et al., 2015).
To remedy this, existing work has relied heavily on trans-
ferring model weights from ImageNet pretraining (Wang et al., 2017; Esteva et al., 2017; Irvin et al.,
2019). This approach is suboptimal because, as shown in Figure 1, medical image understanding
often requires representations of very fine-grained visual features that are drastically different from
those required for identifying objects in natural images. As a result, Raghu et al. (2019) found that
ImageNet pretraining often provides little to no benefit compared to simple random initialization.

A second popular approach is to use expert-crafted rules to extract labels from the textual reports ac-
companying the medical images. This approach has led to datasets of larger scale, since the text data
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paired with medical images are often produced naturally by medical experts in their routine work-
flow and abundant in a typical hospital’s IT systems. Nevertheless, this rule-based label extraction
approach has two limitations: 1) the rules are often inaccurate and limited to a few major categories
(Wang et al., 2017), leading to very inefficient use of the textual report data; 2) these rules are of-
ten domain-specific and sensitive to the style of the text, making cross-domain and cross-institution
generalization difficult (Irvin et al., 2019).

In efforts to make more efficient use of unlabeled image data, several recent studies have shown
promising results from contrastive representation learning from natural images (Chen et al., 2020a;
He et al., 2020; Grill et al., 2020). However, as we will show, applying these image view-based
contrastive methods to medical images provides only marginal benefits compared to ImageNet pre-
training, a result mostly due to the high inter-class similarity of the medical images as in Figure 1.

In this work, we aim to improve visual representations of medical images by combining the benefits
of both learning from abundant textual data and unsupervised statistical approaches. We present
Contrastive VIsual Representation Learning from Text (ConVIRT), a framework for learning visual
representations by exploiting the naturally occurring pairing of images and textual data. ConVIRT
improves visual representations by maximizing the agreement between true image-text pairs versus
random pairs via a bidirectional contrastive objective between the image and text modalities. We
apply ConVIRT to the pretraining of medical image encoders, and show that it leads to higher-
quality in-domain image representations that capture the subtlety of visual features required for
medical image understanding tasks.

Compared to existing methods, ConVIRT has the advantages of utilizing the paired text data in a
way agnostic to the medical specialty and requiring no additional expert input. This allows us to
evaluate ConVIRT by transferring our pretrained weights to 4 different medical image classification
tasks covering 2 different specialties. We find that the resulting models outperform all baseline
initialization approaches, including the standard ImageNet pretraining and several strong baselines
that also utilize the paired text data. Most notably, in all 4 tasks, ConVIRT requires only 10% as
much labeled training data as an ImageNet initialized counterpart to achieve better or comparable
performance. We further evaluate ConVIRT on two new zero-shot retrieval tasks, an image-image
and a text-image retrieval task, and also find it superior to all baselines. To facilitate future research,
we will make our code and the collected retrieval datasets available.

2 METHOD

2.1 TASK DEFINITION

We start by giving a formal description of our representation learning setting. We assume paired
input (xv,xu) where xv represents one or a group of images, and xu represents a text sequence
which describes the imaging information in xv . Our goal is to learn a parameterized image encoder
function fv , which maps an image to a fixed-dimensional vector. We are then interested in transfer-
ring the learned image encoder function fv into downstream tasks, such as classification or image
retrieval. In this work, we model the encoder function fv as a convolutional neural network (CNN).

We note that paired image-text input (xv,xu) naturally exists for many medical domains. In par-
ticular, medical experts such as radiologists produce textual descriptions of images as part of their
routine workflow, some of which are also made publicly available (Demner-Fushman et al., 2016;
Johnson et al., 2019).

2.2 CONTRASTIVE VISUAL REPRESENTATION LEARNING FROM TEXT

An overview of our method, ConVIRT, for learning fv is shown in Figure 2. At a high level, our
method converts each input image xv and text xu into d-dimensional vector representations v and
u respectively, following a similar processing pipeline. For each input image xv , our method starts
by drawing a random view x̃v from xv with a sampled transformation function tv ∼ T , where T
represents a family of stochastic image transformation functions described later. Next, the encoder
function fv transforms x̃v into a fixed-dimensional vector hv , followed by a non-linear projection
function gv which further transforms hv into vector v:

v = gv(fv(x̃v)), (1)
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Heat size is enlarged…

No abnormality seen …

Clear consolidation at…
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Figure 2: Overview of our ConVIRT framework. The blue and green shades represent the image
and text encoding pipelines, respectively. Our method relies on maximizing the agreement between
the true image-text representation pairs with bidirectional losses `(v→u) and `(u→v).

where v ∈ Rd. Similarly, for each text input xu, we draw a span x̃u from it following a sampling
function tu, and obtain a text representation u with a text encoder fu and a projection function gu:

u = gu(fu(x̃u)), (2)

where u ∈ Rd. The projection functions gv and gu project representations for both modalities from
their encoder space to the same d-dimensional space for contrastive learning.

At training time, we sample a minibatch of N input pairs (xv , xu) from training data, and calculate
their representation pairs (v, u). We use (vi, ui) to denote the i-th pair. The training objective of
ConVIRT involves two loss functions. The first loss function is an image-to-text contrastive loss for
the i-th pair:

`
(v→u)
i = − log

exp(〈vi,ui〉/τ)∑N
k=1 exp(〈vi,uk〉/τ)

, (3)

where 〈vi,ui〉 represents the cosine similarity, i.e., 〈v,u〉 = v>u/‖v‖‖u‖; and τ ∈ R+ represents
a temperature parameter. This loss takes the same form as the InfoNCE loss (Oord et al., 2018),
and minimizing this loss leads to encoders that maximally preserve the mutual information between
the true pairs under the representation functions. Intuitively, it is the log loss of an N -way classifier
that tries to predict (vi, ui) as the true pair. Note that unlike previous work which use a contrastive
loss between inputs of the same modality (Chen et al., 2020a; He et al., 2020), our image-to-text
contrastive loss is asymmetric for each input modality. We thus define a similar text-to-image con-
trastive loss as:

`
(u→v)
i = − log

exp(〈ui,vi〉/τ)∑N
k=1 exp(〈ui,vk〉/τ)

. (4)

Our final training loss is then computed as a weighted combination of the two losses averaged over
all positive image-text pairs in each minibatch:

L =
1

N

N∑
i=1

(
λ`

(v→u)
i + (1− λ)`(u→v)

i

)
, (5)

where λ ∈ [0, 1] is a scalar weight.

2.3 REALIZATION

We note that our ConVIRT framework defined above is agnostic to the specific choice of image
and text encoders, transformations and projection functions. In this work, following previous work
(Chen et al., 2020a), we model gv and gu as separate learnable single-hidden-layer neural networks,
i.e., gv(·) = W(2)σ(W(1)(·)) where σ is a ReLU non-linearity, and similarly for gu.

For the image encoder fv , we use the ResNet50 architecture (He et al., 2016) for all experiments, as
it is the architecture of choice for much medical imaging work and is shown to achieve competitive
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performance. For the text encoder fu, we use a BERT encoder (Devlin et al., 2019) followed by a
max-pooling layer over all output vectors.1

For the image transformation family T where tv is sampled from, we use sequential applications
of five random transformations: cropping, horizontal flipping, affine transformation, color jittering
and Gaussian blur. Different from recent work on contrastive visual representation learning (Chen
et al., 2020a;b), we only apply brightness and contrast adjustments in color jittering, due to the
monochrome nature of the medical images. For the text transformation function tu, we apply a
simple uniform sampling of a sentence from the input document xu (i.e., x̃u is a randomly sampled
sentence from xu for each minibatch). We did not use a more aggressive transformation mainly
because sampling at the sentence level can preserve the semantic meaning of the sampled spans.

3 EXPERIMENTS

We now introduce the paired datasets that we used for contrastive pretraining and the downstream
tasks and datasets that we used to evaluate the pretrained image encoders. We then introduce the
baseline methods that we compare our contrastive pretraining method against in our experiments.

3.1 DATA FOR PRETRAINING

We test our ConVIRT framework by pretraining two separate image encoders covering different
medical specialties using two separate paired image-text datasets:

• Chest image encoder: We use version 2 of the public MIMIC-CXR database (Johnson et al.,
2019), which is a collection of chest radiograph images paired with their textual reports, and since
its release has become a standard resource for studying multi-modal modeling of medical images.
After preprocessing, this dataset contains a total of about 217k image-text pairs, with each pair
containing an average of 1.7 images and 6.0 sentences.

• Bony image encoder: We obtain a collection of musculoskeletal image-text pairs from the Rhode
Island Hospital system. Following chest images, musculoskeletal images constitute the second
most common type of radiograph images in a typical hospital. This dataset contains a total of 48k
image-text pairs, with each pair containing an average of 2.5 images and 8.0 sentences.

We include model implementation and pretraining details in Appendix A.

3.2 EVALUATION TASKS & DATA

We evaluate our pretrained image encoders on three downstream medical imaging tasks: image clas-
sification, image-image retrieval and text-image retrieval. We now describe each of the evaluation
settings as well as the datasets used.

Image Classification. We evaluate our pretrained image representations on four representative
medical image classification tasks: 1) RSNA Pneumonia Detection (Wang et al., 2017; Shih et al.,
2019), which involves binary classification of a chest radiograph image into either a pneumonia or
a normal category; 2) CheXpert image classification (Irvin et al., 2019), which involves multi-label
binary classification of a chest image for five individual labels, i.e., atelectasis, cardiomegaly, con-
solidation, edema and pleural effusion; 3) COVIDx image classification (Wang & Wong, 2020),
which involves multi-class classification of a chest image into one of COVID19, non-COVID pneu-
monia or normal categories; and 4) MURA bony abnormality detection (Rajpurkar et al., 2018a),
which involves binary classification of a musculoskeletal image into abnormal or normal. We report
test accuracy for COVIDx given its balanced test set, and report the standard area under the receiver
operating characteristic curve (AUC) metric for other tasks following previous work.

Following previous work on unsupervised visual representation learning (Hénaff et al., 2020; Chen
et al., 2020a; He et al., 2020), for all classification tasks, we evaluate each pretrained image encoder

1We also experimented with using a mean-pooling layer or using the special [CLS] token representation
from BERT as our pooling strategy (Reimers & Gurevych, 2019), and found max-pooling achieved the best
overall performance, and therefore used it consistently across all experiments.
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under two individual settings: a linear classification setting, where the pretrained CNN weights are
frozen and only a randomly initialized linear classification head is trained for the task; and a fine-
tuning setting, where both the CNN weights and the linear head are fine-tuned together. The two
settings complement each other for evaluation purposes: while the linear setting directly evaluates
the quality of the extracted image features with the pretrained CNN, the fine-tuning setting more
closely resembles how the pretrained CNN weights are used in practical applications.

To further compare the data efficiency of different pretraining methods, for each setting we evaluate
the image encoders with 1%, 10% and all training data, respectively (except for the COVIDx dataset
where we omit the 1% setting due to the scarcity of data for some categories). To control the variance
in results, for all settings and models, we report average results aggregated over 5 independent
training runs. We include further dataset processing and model training details in Appendix B.

Zero-shot Image-image Retrieval. This evaluation is similar to the conventional content-based
image retrieval setting in which we search for images of a particular category using a representative
query image. For evaluation, a group of query images and a larger collection of candidate images,
each with a categorical label, are given to a pretrained CNN encoder. We encode each query and
candidate image with this encoder, and then for each query, rank all candidates by their cosine sim-
ilarities to the query in descending order. Since a widely-used annotated benchmark for this setting
is not available, we create our own dataset by re-using existing annotations in the CheXpert dataset
(Irvin et al., 2019) and additional expert annotations from a board-certified radiologist. The resulting
dataset covers 8 different chest abnormality categories, each with 10 expert-annotated query and 200
candidate images. We include the detailed collection and annotation procedure in Appendix C, and
refer to this dataset as CheXpert 8×200 Retrieval Dataset. We focus our evaluation on retrieval
precision, and evaluate our models with Precision@k metrics where k = 5, 10, 100.

Zero-shot Text-image Retrieval. This setting is similar to the image-image retrieval setting, but
instead of using query images, we retrieve images of a particular category with textual queries. For
this purpose, we ask a radiologist to write 5 diverse and representative textual descriptions for each
of the 8 abnormality categories for the same CheXpert 8x200 candidate images (see Appendix D for
details). At test time, for each query we encode its text with the learned text encoder fu and then
retrieve from candidate images in a similar way. This evaluation not only evaluates the quality of
the learned image representations, but also the alignment between the text representations and the
image representations. We again use Precision@k metrics where k = 5, 10, 100.

3.3 BASELINE METHODS

We compare ConVIRT against the following standard or competitive initialization methods:

• Random Init.: For all tasks we initialize the ResNet50 with its default random initialization.
• ImageNet Init.: We initialize ResNet50 with weights pretrained on the standard ImageNet

ILSVRC-2012 task (Russakovsky et al., 2015). We include this as a baseline since ImageNet
pretraining remains a dominant approach for medical imaging work (Raghu et al., 2019).

• Caption-LSTM: We initialize the ResNet50 weights by first pretraining it with an image cap-
tioning task using the standard CNN-LSTM with attention architecture (Xu et al., 2015). For
the captioning task, we train the model to decode the paired textual report from the encoded im-
age representations. Compared to the random or ImageNet initializations, this is an “in-domain”
initialization baseline which uses the paired text data for representation learning.

• Caption-Transformer: In this initialization we replace the CNN-LSTM model in Caption-LSTM
with a CNN-Transformer-based captioning model in Cornia et al. (2020), which recently achieves
state-of-the-art results on the COCO image captioning benchmark (Lin et al., 2014).

• Contrastive-Binary: This baseline differs from our method by contrasting the paired image and
text representations with a binary classification head, as is widely done in visual-linguistic pre-
training work (Tan & Bansal, 2019; Su et al., 2020). For each input pair, we first project encoder
outputs hv and hu into the same dimension with linear layers, concatenate them, and use a MLP
network to predict a binary probability of whether the input is a real or a “fake” pair, which we
train with a binary cross-entropy loss. During training, for each (xv , xu) pair in the training set,
we construct a “fake” pair by replacing xu with a randomly sampled one from the dataset. We
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Table 1: Results for the medical image classification tasks: (a) linear classification; (b) fine-tuning
setting. All results are averaged over 5 independent models. Best results for each setting are in
boldface. COVIDx 1% setting is omitted due to the scarcity of labels in COVIDx.

(a)

RSNA (AUC) CheXpert (AUC) COVIDx (Accu.) MURA (AUC)
Method 1% 10% all 1% 10% all 10% all 1% 10% all

General initialization methods
Random Init. 55.0 67.3 72.3 58.2 63.7 66.2 69.2 73.5 50.9 56.8 62.0
ImageNet Init. 82.8 85.4 86.9 75.7 79.7 81.0 83.7 88.6 63.8 74.1 79.0

In-domain initialization methods
Caption-Transformer 84.8 87.5 89.5 77.2 82.6 83.9 80.0 89.0 66.5 76.3 81.8
Caption-LSTM 89.8 90.8 91.3 85.2 85.3 86.2 84.5 91.7 75.2 81.5 84.1
Contrastive-Binary 88.9 90.5 90.8 84.5 85.6 85.8 80.5 90.8 76.8 81.7 85.3
ConVIRT (Ours) 90.7 91.7 92.1 85.9 86.8 87.3 85.9 91.7 81.2 85.1 87.6

(b)

RSNA (AUC) CheXpert (AUC) COVIDx (Accu.) MURA (AUC)
Method 1% 10% all 1% 10% all 10% all 1% 10% all

General initialization methods
Random Init. 71.9 82.2 88.5 70.4 81.1 85.8 75.4 87.7 56.8 61.6 79.1
ImageNet Init. 83.1 87.3 90.8 80.1 84.8 87.6 84.4 90.3 72.1 81.8 87.0

In-domain initialization methods
Caption-Transformer 86.3 89.2 92.1 81.5 86.4 88.2 88.3 92.3 75.2 83.2 87.6
Caption-LSTM 87.2 88.0 91.0 83.5 85.8 87.8 83.8 90.8 78.7 83.3 87.8
Contrastive-Binary 87.7 89.9 91.2 86.2 86.1 87.7 89.5 90.5 80.6 84.0 88.4
ConVIRT (Ours) 88.8 91.5 92.7 87.0 88.1 88.1 90.3 92.4 81.3 86.5 89.0

expect that the binary classification task requires the encoder to learn reasonable representations
of the input images, and therefore is a stronger in-domain initialization baseline.

For fair comparison, for all baselines that require paired image-text data, we use the same paired
datasets as in our contrastive pretraining. For the captioning-based methods, we use the model
checkpoints that achieve the best CIDEr score (Vedantam et al., 2015) on a held-out validation set.

4 RESULTS

4.1 CLASSIFICATION TASKS

Linear Classification. We present all linear classification results for the medical imaging tasks in
Table 1a. We find that compared to random initialization, ImageNet initialization provides markedly
better representations, despite pretrained on a very different domain of images; in-domain image ini-
tialization methods that use paired image-text data further improve over ImageNet initialization in
almost all settings. Among the in-domain initialization methods, our proposed ConVIRT pretrain-
ing achieves the best overall results in all settings. Notably, we find on three out of the four tasks,
with only 1% training data ConVIRT is able to achieve classification results better than the default
ImageNet initialization with 100% training data, highlighting the high quality of the learned repre-
sentations from ConVIRT.

Fine-tuning. We show the fine-tuning evaluation results in Table 1b. Similar to the linear setting,
we find that: 1) ImageNet initialization is again better than random initialization with smaller mar-
gins; 2) all in-domain initialization methods are better than the popular ImageNet initialization in
most settings; and 3) our proposed ConVIRT pretraining again achieves the best overall results in 10
out of the 11 settings, with the exception of the CheXpert dataset with all training data used, where
the result of ConVIRT is similar to that of the Caption-Transformer result. Most notably, on all
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Table 2: Zero-shot image-image and text-image retrieval results on the CheXpert 8×200 datasets.
Random shows results from a random guess; ConVIRT + CheXpert Supervised shows results from
further fine-tuning the pretrained weights with supervised training data. Text-image retrieval results
are not obtained for some methods due to the lack of text encoders.

Image-Image Retrieval Text-Image Retrieval
Method Prec@5 Prec@10 Prec@50 Prec@5 Prec@10 Prec@50

Random 12.5 12.5 12.5 12.5 12.5 12.5
ImageNet 14.8 14.4 15.0 – – –

In-domain initialization methods
Caption-Transformer 29.8 28.0 23.0 – – –
Caption-LSTM 34.8 32.9 28.1 – – –
Contrastive-Binary 38.8 36.6 29.7 15.5 14.5 13.7
ConVIRT (Ours) 45.0 42.9 35.7 60.0 57.5 48.8

Fine-tuned
ConVIRT + CheXpert Supervised 56.8 56.3 48.9 – – –

datasets, with only 10% labeled training data ConVIRT achieves classification results that are better
or close to the ImageNet initialization with 100% training data results.

We also notice that our conclusion of using ImageNet versus random initialization is different from
Raghu et al. (2019): while they showed comparable results from the two strategies, we find that
using ImageNet initialization is still superior than random initialization in most results, justifying its
popularity. Upon closer examination, we conjecture that this is likely due to under-optimization of
their models: while our ResNet50 with random initialization achieves an average AUC of 85.8 on
the CheXpert dataset, their ResNet50 model only achieved 83.5 AUC on the same evaluation set.

4.2 RETRIEVAL TASKS

Pneumonia
Pleural Effusion
Pneumothorax
Cardiomegaly
Atelectasis

(a) ImageNet Pretraining (b) ConVIRT Pretraining

Figure 3: t-SNE visualizations of encoded image
representations from different pretraining methods.

We present the zero-shot image-image and
text-image retrieval results in Table 2. For
the image-image retrieval setting, we present
additional results from fine-tuning our pre-
trained model on all CheXpert training data,
and use them as “upper bounds” of the results
obtained from the use of supervised labels.
We find that: 1) using ImageNet pretrained
CNN weights in a zero-shot image retrieval
setting is only better than random guess by
small margins; 2) all in-domain pretrained
CNN weights achieve much better retrieval
performance than ImageNet weights; and 3)
our proposed ConVIRT pretraining achieves
the best overall retrieval results on all metrics. We find that while Contrastive-Binary performs no-
tably better than other baselines in the image-image retrieval setting, its text-image retrieval results
are far from ConVIRT pretraining. We conjecture that the lack of an explicit similarity-based loss
function in the Contrastive-Binary baseline results in misaligned representations in the image and
text space, leading to poor results in text-image retrieval.

To understand how well ConVIRT pretraining helps separate images from different abnormality
categories in its encoding space, in Figure 3 we present t-SNE plots (Maaten & Hinton, 2008) of
candidate images in the CheXpert 8x200 dataset for five selected categories, from the ImageNet
pretrained CNN encoder and the ConVIRT pretrained encoder. It is worth noting that clustering
images in our setting is much more challenging than that in the general object classification setting
due to the high inter-class similarity of the medical images. Nevertheless we find that ConVIRT
pretraining achieves a better clustering of the images in the t-SNE plots. On the other hand, the lack
of clear separations between groups suggests room for further improvement.
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5 ANALYSIS AND DISCUSSION

In this section we present analysis and discussion about factors that influence the performance of
ConVIRT pretraining and its comparisons to existing image-only unsupervised pretraining methods.

5.1 HYPERPARAMETER ANALYSIS

Table 3: Results with different hyperparameters, for the
RSNA 1% data linear evaluation, image-image and text-
image retrieval tasks. Our default model uses τ = 0.1,
bs = 32 and non-linear projections.

RSNA Linear Image-Image Text-Image
Settings (1%, AUC) (Prec@10) (Prec@10)

ConVIRT (default) 90.7 42.9 57.5

τ = 0.01 90.7 40.5 21.0
τ = 1 89.6 25.0 31.0

bs = 16 90.3 40.0 55.8
bs =128 90.3 39.3 50.3

linear proj. 90.6 40.8 55.8

Similar to previous work on unsu-
pervised image representation learning
(Chen et al., 2020a; He et al., 2020), we
first find that the effectiveness of Con-
VIRT pretraining method is most sen-
sitive to the temperature value τ . As
shown in Table 3, using a temperature
much lower than the ideal value (τ =
0.01) hurts the retrieval results, and a
temperature much larger (τ = 1) no-
tably hurts the performance on all tasks.
Unlike previous work, we find that using
a smaller or larger batch size hurts the
retrieval performance, but neither setup
brings substantial impact to the classifi-
cation results. Lastly, we find that re-
placing the non-linear projection heads in gv and gu with linear layers hurts the retrieval results
moderately, suggesting worse representations. However, this is again not reflected notably in the
RSNA classification results.

5.2 COMPARISONS TO IMAGE-ONLY CONTRASTIVE LEARNING

Table 4: Comparisons of ConVIRT to image-only un-
supervised image representation learning approaches.

RSNA Linear CheXpert Linear Image-Image
Method (1%, AUC) (1%, AUC) (Prec@10)

ImageNet 82.8 75.7 14.4

SimCLR 86.3 77.4 17.6
MoCo v2 86.6 81.3 20.6

ConVIRT 90.7 85.9 42.9

ConVIRT shows superior results against
baselines in evaluation, but an important
question remains as to how it compares
against existing image-only contrastive vi-
sual representation learning methods. We
study this by running two popular such
methods, SimCLR (Chen et al., 2020a)
and MoCo v2 (Chen et al., 2020b), on the
same collection of images that we used in
our pretraining. We present the results in
Table 4 and include model training details
in Appendix E. We find that compared to
ImageNet initialization, both contrastive methods lead to marginal to moderate improvements on
the classification and retrieval tasks. However, our training strategy substantially outperforms both
methods on all tasks, demonstrating its effective use of information from the paired text data.

5.3 CORRELATION BETWEEN CONTRASTIVE LOSS AND END TASK PERFORMANCE

To understand the relation between a model’s performance on the ConVIRT pretraining task and
its performance on the downstream tasks, we ran an analysis where for every 5 epochs during the
pretraining, we transferred the pretrained checkpoint to the downstream tasks and evaluate its perfor-
mance. The pretraining was run for a total of 200 epochs, and 40 points were obtained with varying
validation loss and end task results. Figure 4 presents the models’ validation loss on the pretraining
task and their achieved performance on the RSNA 1% data linear evaluation and the two retrieval
tasks. For all three tasks, we find a clear positive correlation between the pretraining performance
and the end task performance. This corroborates that by learning with the ConVIRT objective, the
image encoder learns gradually improved representations for the end tasks, and suggests that further
improvement on the pretraining task may have positive impact on the end task performance.
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Figure 4: (a) shows pretraining validation loss at different epochs; (b)-(d) shows correlation between
the pretraining loss and the performance of three end tasks. For (a) the x-axis shows the training
epoch number, and for (b)-(d) the x-axis shows the negative value of the pretraining loss (i.e., −L)
on a held-out validation set.

6 RELATED WORK

Our work is most relevant to existing work on abnormality detection as medical image classification,
which we have covered in Section 1, and textual report generation from medical images (Wang
et al., 2018; Jing et al., 2018; Liu et al., 2019). A dominant approach for initializing medical image
encoders in this work has been using encoder weights pretrained on the ImageNet dataset, despite
the drastic difference in image characteristics (Raghu et al., 2019). Instead, our work proposes
an alternative in-domain pretraining strategy, and compares ImageNet pretraining with different
pretraining approaches that make use of the paired text data. To our knowledge our work represents
the first systematic attempt in this direction.

Our work is inspired by the recent line of work on image view-based contrastive visual representa-
tion learning (Hénaff et al., 2020; Chen et al., 2020a; He et al., 2020; Grill et al., 2020), but differs
from existing studies by the contrastive learning with text modality, which as we show in Section 5,
is more effective in learning high-quality representations of medical images.

Another line of work related to ours is visual-linguistic representation learning (Lu et al., 2019; Tan
& Bansal, 2019; Su et al., 2020). Among existing studies, Ilharco et al. (2020) and Gupta et al.
(2020) used a cross-modality contrastive objective related to ours, but for the purpose of probing
visual-linguistic models and learning phrase grounding, respectively. Our work differs from this
work in two crucial ways: 1) existing work in visual-linguistic learning has primarily relied on
the alignment between linguistic features and general object representations extracted from image
segmentation models, making them less applicable to medical image understanding tasks; 2) while
existing work has focused on visual-linguistic tasks such as visual question answering, our work
focuses on learning fine-grained representations of medical images useful for downstream tasks.

7 CONCLUSION

We presented ConVIRT, an unsupervised method for learning medical visual representations from
naturally occurring pairing of images and text. Our method relies on contrasting the image repre-
sentations with the paired text data via a bidirectional objective between the two modalities. On 4
medical image classification tasks and 2 image retrieval tasks, ConVIRT outperformed other strong
in-domain initialization methods that also use the text data, and led to representations with notably
higher quality. Compared to ImageNet pretraining, ConVIRT is able to achieve the same level of
classification accuracy with an order of magnitude less labeled data. We hope that our work can
inspire future work that makes more efficient use of textual data for medical image understanding.
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A MODEL IMPLEMENTATION AND PRETRAINING DETAILS

Dataset Preprocessing. For the MIMIC-CXR chest radiograph dataset, we use the publicly avail-
able JPG version of it.2 For both the MIMIC-CXR chest dataset and the Rhode Island Hospital bone
image datasets, we resize the image files to have a size of 256 on the larger side. For the textual
radiology report data, we first tokenize all reports with the default English tokenizer in version 4.0.0
of the CoreNLP library (Manning et al., 2014). Next, we keep only the Findings and Impression
sections and remove all other sections. We remove all image-text pairings from the dataset where
the text section is empty or has less than 3 tokens. This preprocessing procedure gives us about 217k
total image-text pairs for pretraining our chest image encoder and 48k total pairs for pretraining our
bone image encoder.

Image and Text Encoders. For the image encoder, we use the standard ResNet50 implementation
provided by the torchvision library. For the text encoder, we use the BERT base encoder offered by
the Transformers library (Wolf et al., 2019) and initialize it with the ClinicalBERT model (Alsentzer
et al., 2019) pretrained on the MIMIC clinical notes. We also experimented with training a special-
ized BERT encoder on a large collection of radiology notes but found that it made no substantial
difference in the pretraining results. At pretraining time we freeze the embeddings and the first 6
layers of this BERT encoder, and only fine-tune the last 6 layers for our contrastive task.

Other Hyperparameters. For contrastive learning, we use projection layers with an output di-
mension d = 512, a temperature value τ = 0.1, a loss weight λ = 0.75. These hyperparameter
settings are obtained by comparing the linear evaluation validation scores on the RSNA image clas-
sification task with the pretrained ResNet50 weights. For the image transformation family T , we
adopt the implementations offered by the torchvision library.3 We apply random cropping with a
ratio sampled from [0.6, 1.0]; horizontal flipping with p = 0.5; affine transformation with a de-
gree sampled from [−20, 20], max horizontal and vertical translation fractions of 0.1, and a scaling
factor sampled from [0.95, 1.05]; color jittering with brightness and contrast adjustment ratios sam-
pled from [0.6, 1.4]; and Gaussian blur with σ ∈ [0.1, 3.0]. All images are resized to 224×224
after the transformation tv is applied. Limited by computational resources, we arrive at these image
transformation parameters via preliminary experiments rather than a systematic search.

Pretraining Details. At pretraining time, for each dataset, we randomly sample 5k image-text
pairs to form a held-out validation set. We we use the Adam optimizer (Kingma & Ba, 2015) with
an initial learning rate of 1e-4 and weight decay of 1e-6. We initialize the image encoder with
ImageNet pretrained weights at the beginning of pretraining, and use a fixed batch size of 32. We
calculate the validation loss every 5000 steps, and if the validation loss does not decrease after 5
straight evaluation runs, we anneal the learning rate by a factor of 0.5. We stop pretraining after
200 evaluation runs, and save the model checkpoint that achieves the lowest validation loss. For
efficiency, we employ mixed-precision training, and for reference, the whole pretraining run on the
MIMIC-CXR dataset took about 3 days on a single Titan RTX GPU card.

B IMAGE CLASSIFICATION EXPERIMENTS

We prepared and used the 4 image classification datasets following the procedures below:

1. RSNA Pneumonia Detection (Wang et al., 2017; Shih et al., 2019): we used the original version
of this dataset available at its Kaggle page,4 which contains 25184/1500/3000 annotated images
in its training/validation/test sets, respectively.

2. CheXpert image classification (Irvin et al., 2019): we downloaded the original version of this
dataset from its official website.5 Since the original expert-labeled test set of this dataset is
hidden and not included as part of the release, we instead followed Raghu et al. (2019) and used
the original expert-labeled validation set as our test set, and randomly sampled 5000 images from
2https://physionet.org/content/mimic-cxr-jpg/2.0.0/
3https://github.com/pytorch/vision
4https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
5https://stanfordmlgroup.github.io/competitions/chexpert/
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the original training set for validation purpose. The resulting dataset contains 218414/5000/234
images in each split.

3. COVIDx image classification (Wang & Wong, 2020): we prepared this dataset following the
scripts provided by its authors.6 We used the version 4 of this dataset, the latest version at
the time of this work. We additionally randomly sampled 300 images from the training set for
validation, resulting in a dataset with 13598/300/300 images in each split.

4. MURA bony abnormality detection (Rajpurkar et al., 2018a): we downloaded the original ver-
sion of this dataset from its website.7 Similar to the CheXpert dataset, we again used the original
validation set as our test set, and randomly sampled 10% images from the training set for valida-
tion, resulting in a dataset with 33078/3730/3197 images in each split. Different from the other
3 datasets, the MURA dataset uses patient-level evaluation, meaning that the prediction results
from different images of the same patient needs to be aggregated to produce a final prediction
for the patient, which is then scored against the gold patient label. We therefore followed Ra-
jpurkar et al. (2018a) and at test time aggregated result for a patient by averaging the predicted
probabilities from multiple images.

Classification Model Training Details. For all models that require ImageNet pretrained initial-
ization, we use the pretrained weights from torchvision, which achieves an ImageNet top-5 error
rate of 7.13%. For all datasets, we first zero-pad the input image to be square, and then resize it to
be 224×224. For training, we use the Adam optimizer with an initial learning rate of 1e-3 for the
COVIDx task and 1e-4 for the other three tasks. We additionally apply a weight decay of 1e-6 and
a dropout before the last classification layer with p = 0.2 in all tasks. All classification models are
trained with a batch size of 64. In the fine-tuning evaluation setting, we first “warmup” the classi-
fication head by freezing the CNN weights and only training the classification head with a learning
rate of 1e-3 for 200 steps, after which we unfreeze the CNN weights and fine-tune the entire network
together. Validation score is obtained after each epoch of training and we anneal the learning rate
by a factor of 0.5 if the validation score is not improved after 3 epochs. The training is stopped after
no validation improvement is observed for 10 straight epochs, at which point the model checkpoint
with the highest validation score is evaluated on the test set.

C IMAGE-IMAGE RETRIEVAL DATASET COLLECTION

We create the CheXpert 8×200 Retrieval Dataset with 8 different abnormality categories commonly
found in Chest radiograph images, including atelectasis, cardiomegaly, edema, fracture, pleural
effusion, pneumonia, pneumothorax and a special no finding category indicating that no obvious
abnormality is found in the image. We create the dataset by reusing existing rule-labeled annotations
in the CheXpert dataset (Irvin et al., 2019) and additional expert annotations. To create the candidate
images for a category label `, we go through all images in the CheXpert training set, and keep an
image as a candidate image if only its label for ` is positive and all other categories negative. We only
include images with this “exclusive positivity” as candidate images, mainly to avoid confounding
results between categories in retrieval evaluation.

To create the query images for a category `, we again first pre-select 50 exclusively positive images
for this category in the CheXpert training set (with all candidate images excluded). Next, we ask
a board-certified radiologist to examine each of the 50 images, and exclude images that: 1) might
indicate additional abnormalities other than `, 2) have uncommon color or contrast distortions in
the image, or 3) are not well posed during the capture of the image. This procedure is mainly to
avoid including query images that have uncommon features and may therefore bias the retrieval
evaluation results. At the end, we aggregate the annotation results from the radiologist and keep 10
query images for each abnormality category.

D TEXT-IMAGE RETRIEVAL DATASET COLLECTION

For the text-image retrieval dataset, we first reuse all candidate images from the CheXpert 8×200
image-image retrieval dataset described above, with 200 images for each of 8 categories. To create

6https://github.com/lindawangg/COVID-Net
7https://stanfordmlgroup.github.io/competitions/mura/
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Table 5: Example textual queries for each of the 8 categories in the text-image retrieval task.

Image Category Example Textual Query

Atelectasis Platelike opacity likely represents atelectasis.
Cardiomegaly The cardiac silhouette is enlarged.
Edema The presence of hazy opacity suggests interstitial pulmonary edema.
Fracture A cortical step off indicates the presence of a fracture.
Pleural Effusion The pleural space is partially filled with fluid.
Pneumonia A pulmonary opacity with ill defined borders likely represents pneumonia.
Pneumothorax A medial pneumothorax is present adjacent to the heart.
No Finding No clinically significant radiographic abnormalities.

the textual queries for each abnormality category, we ask a board-certified radiologist to write at
least 5 different sentences that he will use to describe this abnormality in radiology reporting. We
additionally set the following requirements: 1) the sentences must describe the category with no
ambiguity and must not include other categories; 2) the sentences must be diverse from each other;
and 3) the sentences should not include very specific anatomic locations or rare clinical observations.
At the end, we aggregate the results and keep 5 textual queries for each abnormality category. For
reference, we present example textual queries in Table 5.

E EXPERIMENTS ON IMAGE-ONLY CONTRASTIVE LEARNING METHODS

We run experiments with two popular image-only contrastive visual representation learning meth-
ods: SimCLR (Chen et al., 2020a) and MoCo v2 (Chen et al., 2020b). For a fair comparison, in both
experiments we use the exact same set of images from the MIMIC-CXR dataset that we use in the
pretraining of our method and the baselines. Our settings for each method are:

• SimCLR: We use the open PyTorch implementation available at https://github.com/
sthalles/SimCLR. For image encoder we use ResNet50. We use cosine similarity in the
loss function, set the temperature value to 0.1 and set the output dimension to 128. We use the
default image augmentation functions in the paper except for the color jittering transformation
where we set the saturation and hue adjustment to 0 due to the monochrome nature of our medical
images. For training, we use the Adam optimizer with an initial learning rate of 3e-4 and weight
decay of 1e-4. We set batch size to 128 and run training on a single GPU card for 100 epochs, as
we find that increasing the batch size or number of epochs does not lead to improved results. We
use the default settings for all other parameters.

• MoCo v2: We use the authors’ PyTorch implementation available at https://github.com/
facebookresearch/moco. For image encoder we use ResNet50. We follow the default
MoCo v2 setting and use a temperature value of 0.07 and an output dimension of 128. Similarly,
we adopt the default image augmentation functions except for the color jittering transformation
where we set the saturation and hue adjustment to 0. For training, we use the SGD optimizer with
a learning rate of 0.0075 and weight decay of 1e-4. We use a batch size of 64 and a queue size of
4096, and run parallel training on two GPU cards for 100 epochs, as we find that further increasing
the batch size or number of epochs does not lead to improved results. During training, we anneal
the learning rate by a factor of 0.1 at the 60th and 80th epochs.
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