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Sepsis is defined as severe infection leading to life-threatening 
acute organ dysfunction7. The management of intravenous flu-
ids and vasopressors in sepsis is a key clinical challenge and 

a top research priority1,4. Besides general guidelines, such as the 
Surviving Sepsis Campaign, no tool currently exists to personalize 
treatment of sepsis and assist clinicians in making decisions in real-
time and at the patient level4–6. As a consequence, clinical variability 
in sepsis treatment is extreme, with consistent evidence that subop-
timal decisions lead to poorer outcomes8–10.

We developed the AI Clinician, a computational model using 
reinforcement learning, which is able to dynamically suggest opti-
mal treatments for adult patients with sepsis in the intensive care 
unit (ICU). Reinforcement learning is a category of AI tools in 
which a virtual agent learns from trial-and-error an optimized set of 
rules—a policy—that maximizes an expected return11,12. Similarly, 
a clinician’s goal is to make therapeutic decisions in order to maxi-
mize a patient’s probability of a good outcome12,13. Reinforcement 
learning has many desirable properties that may help medical 
decision-making. The intrinsic design of models using reinforce-
ment learning can handle sparse reward signals, which makes them 
well-suited to overcome the complexity related to the heterogene-
ity of patient responses to medical interventions and the delayed 
indications of the efficacy of treatments11. Importantly, these algo-
rithms are able to infer optimal decisions from suboptimal training 
examples. Reinforcement learning has been successfully applied in 
the past to medical problems, such as diabetes and mechanical ven-
tilation in the ICU14–17.

Our AI Clinician was built and validated on two large nonover-
lapping ICU databases containing data routinely collected from 
adult patients in the United States. The Medical Information Mart 
for Intensive Care version III (MIMIC-III)18 was used for model 
development, and the eICU Research Institute Database (eRI) for 

model testing. In both datasets, we included adult patients fulfill-
ing the international consensus sepsis-3 criteria7. After exclusion 
of ineligible cases, we included 17,083 admissions (88.4% of eli-
gible patients with sepsis) from five separate ICUs in one tertiary 
teaching hospital and 79,073 admissions (73.6% of eligible patients 
with sepsis) from 128 different hospitals from MIMIC-III and eRI, 
respectively (Supplementary Fig. 1). Patient demographics and clin-
ical characteristics are shown in Table 1 and Supplementary Table 1.

In both datasets, we extracted a set of 48 variables, including 
demographics, Elixhauser premorbid status19, vital signs, laboratory 
values, fluids and vasopressors received (Supplementary Table 2). 
Patients’ data were coded as multidimensional discrete time series 
with 4-h time steps, and for each patient, we included up to 72 h of 
measurements taken around the estimated time of onset of sepsis. 
The total volume of intravenous fluids and maximum dose of vaso-
pressors administered over each 4-h period defined the medical 
treatments of interest. The model aims at optimizing patient mor-
tality, so a reward was associated to survival and a penalty to death.

A Markov decision process (MDP) was used to model the patient 
environment and trajectories20,21. The various elements of the model 
were defined using patient data time series from the training set 
(a random sample of 80% of MIMIC-III; Fig. 1). We deployed the 
AI Clinician to solve the MDP and predict outcomes of treatment 
strategies. First, we evaluated the actual treatments of clinicians by 
analyzing all the prescriptions and computing the average return of 
each treatment option, which can take values from –100 to +  100 
in our model. Then, the MDP was solved using policy iteration, 
which identified the treatments that maximized return, that is, the 
expected 90-d survival of patients in the MIMIC-III cohort11. The 
resultant policy is referred to hereafter as the ‘AI policy’.

Evaluating the performance of this new AI policy using the trajec-
tories of patients generated by another policy (the clinicians’ policy) 
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Table 1 | description of the datasets

MIMIC-III erI

Unique ICUs (n) 5 128

Unique ICU admissions (n) 17,083 79,073

Characteristics of hospitals, per number of ICU admissions Teaching tertiary hospital Nonteaching: 37,146 (47.0%) 
Teaching: 29,388 (37.2%) 
Unknown: 12,539 (15.9%)

Age, years (mean (s.d.)) 64.4 (16.9) 65.0 (16.7)

Male gender (n (%)) 9,604 (56.2%) 40,949 (51.8%)

Premorbid status (n (%)) 
Hypertension 
Diabetes 
CHF 
Cancer 
COPD or RLD 
CKD

9,384 (54.9%) 
4,902 (28.7%) 
5,206 (30.5%) 
1,803 (10.5%) 
4,248 (28.7%) 
3,087(18.1%)

43,365 (54.8%)  
25,290 (32.0%)  
15,023 (19.0%)  
11,807 (14.9%)  
18,406 (23.3%)  
14,553 (18.4%)

Primary ICD-9 diagnosis (n (%))  
Sepsis, including pneumonia  
Cardiovascular  
Respiratory  
Neurological  
Renal  
Others

5,824 (34.1%)  
5,270 (30.8%)  
1,798 (10.5%)  
1,590 (9.3%)  
429 (2.5%)  
2,172 (12.7%)

41,396 (52.3%)  
11,221 (14.2%)  
9,127 (11.5%)  
7,127 (9.0%)  
1,454 (1.8%)  
8,747 (11.1%)

Initial OASIS (mean (s.d.)) 33.5 (8.8) 34.8 (12.4)

Initial SOFA (mean (s.d.)) 7.2 (3.2) 6.4 (3.5)

Procedures during the 72 h of data collection:  
Mechanical ventilation (n (%))  
Vasopressors (n (%))  
Renal replacement therapy (n (%))

9,362 (54.8%)  
6,023 (35.3%)  
1,488 (8.7%)

39,115 (49.5%)  
23,877 (30.2%)  
6,071 (7.7%)

Length of stay, days (median, (IQR)) 3.1 (1.8–7) 2.9 (1.7–5.6)

ICU mortality 7.4% 9.8%

Hospital mortality 11.3% 16.4%

90-d mortality 18.9% Not available

CHF, congestive heart failure; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; ICD-9, International Classification of Diseases version 9; IQR, interquartile range; OASIS, Oxford 
Acute Severity of Illness Score; RLD, restrictive lung disease; SOFA, sequential organ failure assessment.
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Fig. 1 | data flow of the AI Clinician. Eighty percent of the MIMIC-III dataset was used to define the elements of the MDP. Time series of patient data were 
clustered into finite states. The dose of intravenous (i.v.) fluids and vasopressors were discretized into 25 possible actions. Patient survival at 90 d after ICU 
admission defined reward. Reinforcement learning was used to estimate optimal treatment strategies—the AI policy. The remaining 20% of MIMIC-III data 
was used to identify the best model among 500 candidates, which was then tested on an independent dataset from the eRI database.
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is termed off-policy evaluation22–24. It was crucial to obtain reliable 
estimates of the performance of this new policy without deploying 
it, as executing a bad policy would be dangerous for patients22,23. 
Therefore, we implemented a type of high-confidence off-policy 
evaluation (HCOPE) method (weighted importance sampling 
(WIS)), and we used bootstrapping to estimate the true distribution 
of the policy value in the MIMIC-III 20% validation set (Fig. 2b and 
Supplementary Fig. 1)23,24. We built 500 different models using 500 
different clustering solutions of the training data, and the selected 
final model maximized the 95% confidence lower bound of the AI 
policy23. Fig. 2a shows that this bound consistently exceeded the 
95% confidence upper bound of the clinicians’ policy, provided that 
enough models were built. This model selection method maximizes 
the theoretical statistical safety of the new AI policy. The chosen AI 
policy was then tested on the independent eRI dataset.

Good model calibration was confirmed by plotting the relation-
ship between the return of the clinicians’ policy and patients’ 90-day 

mortality (Fig. 2c). In Fig. 2d, we show the average return measured 
in survivors and nonsurvivors.

Fig. 3a shows the distribution of the estimated value of the clini-
cians’ policy and the AI policy in the selected final model tested 
on the eRI cohort. Using bootstrapping with 2,000 resamplings, the 
median value of clinicians’ policy and the AI policy were estimated 
at 56.9 (interquartile range, 54.7–58.8) and 84.5 (interquartile range, 
84.3–87.7), respectively. Fig. 3b,c shows the distribution of treat-
ment doses according to clinicians’ and AI policies. On average, the 
AI Clinician recommended lower doses of intravenous fluids and 
higher doses of vasopressors than the clinicians’ actual treatments. 
The proportion of time the eRI patients received vasopressors was 
only 17%, but this would have been 30% if the AI Clinician’s recom-
mendation was followed.

We further validated the model by analyzing patient mortality 
when the dose actually administered corresponded to or differed 
from the dose suggested by the AI Clinician. Fifty-eight percent  
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of the time, the patients received a dose of vasopressor very 
close to the suggested dose, within 0.02 µ g/kg body weight/min  
(µ g/kg/min) or 10% (whichever was smaller). For fluids, patients 
received the suggested dose approximately 36% of the time, 
within 10 mL/hour or 10%. These patients, who received doses 
similar to the doses recommended by the AI Clinician, had the 
lowest mortality. When the actual dose given was different from 
the suggested dose, clinicians gave more or less fluids in similar 
proportions and less vasopressor 75% of the time. Administering 
more or less of either treatment than the AI policy was associ-
ated with increasing mortality rates in a dose-dependent fashion.  
Fig. 3d,e depicts this association, with the dose gap averaged 
at the patient level. The median dose deficit in patients who 
received too little vasopressor was 0.13 µ g/kg/min (interquartile 
range, 0.04–0.27 µ g/kg/min).

Using a random forest classification model, we gained some 
insight into the model representations and interpretability by esti-
mating the relative importance of the model parameters for predict-
ing the administration of both medications (Supplementary Fig. 2).  
This confirmed that the decisions suggested by the AI Clinician 
were clinically interpretable and relied primarily on sensible clinical 
and biological parameters.

Here we demonstrate how reinforcement learning could be 
applied to solve a complex medical problem and suggest individual-
ized and clinically interpretable treatment strategies for sepsis. In an 

independent cohort, the patients who received the treatments sug-
gested by the AI Clinician had the lowest mortality rate.

When clinicians’ actual treatments varied from the AI Clinician’s 
suggested policy, this was most commonly administration of too 
little vasopressor. Early use of low-dose vasopressor has been sug-
gested to play a role in sepsis;4,5,8,9 this may avoid administration of 
an excessive amounts of fluids, which has been linked with a poorer 
outcome1,4,5,25. Our results support this strategy but importantly 
allow the treatment to be individualized for each patient.

We envision that this system would be used in real-time, with 
patient data obtained from different streams being fed into elec-
tronic health record software fitted with our algorithm, which 
would suggest a course of action. Physicians will always need to 
make subjective clinical judgments about treatment strategies, but 
computational models can provide additional insight about opti-
mal decisions, avoiding targeting short-term resuscitation goals and 
instead following trajectories toward longer-term survival26–28. The 
reinforcement learning approach that we have developed is agnostic 
to data used and could in principle be applied to any data-rich clini-
cal environment and many medical interventions. In the future, it is 
likely that as ‘-omic’ technologies develop, this additional informa-
tion will be added to the AI Clinician to improve state definition 
and guide more therapies in selected patient groups.

However, there are limitations to our study. Although the datas-
ets we used are large and comprise routinely collected clinical data, 
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some sites and patients had to be excluded owing to poor-quality 
data recording or missing data. Because of differences between the 
two datasets, slightly different implementations of the sepsis-3 cri-
teria were used, and hospital mortality was used in eRI instead of 
90-d mortality. Finally, some laboratory values would not have been 
immediately available to clinicians to inform decision-making but 
were available to the AI Clinician.

This work will clearly require prospective evaluation using real-
time data and decision-making in clinical trials and also testing in 
different healthcare settings, but a reduction in mortality from sep-
sis by only a small percentage would represent several tens of thou-
sands of lives saved annually worldwide3. In the last 10–15 years, 
attempts to develop new treatments to reduce sepsis mortality have 
uniformly been unsuccessful29,30. The use of computer decision sup-
port systems to better guide treatments and improve outcomes is 
therefore a much needed approach.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
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Methods
Study design and databases. We built and then validated a computational clinical-
decision support model based on the retrospective analysis of two nonoverlapping 
intensive care databases containing data collected from adult patients. The 
databases were:

 (i) The MIMIC-III, an open-access, anonymized database of 61,532 admissions 
from 2001–2012 in six ICUs at a Boston teaching hospital18.

 (ii) The Philips eRI, containing more than 3.3 million admissions from  
2003–2016 in 459 ICUs across the United States.

MIMIC-III was used for model development, and eRI for model validation. 
Both databases contain high-resolution patient data including demographics, 
vital signs time series, laboratory tests, illness severity scores, medications and 
procedures, fluid intake and outputs, clinician notes, and diagnostic coding.

Patient cohorts. In both datasets, MIMIC-III and eRI, we included adult patients 
fulfilling the sepsis-3 criteria7. Sepsis was defined as a suspected infection 
(prescription of antibiotics and sampling of bodily fluids for microbiological 
culture) combined with evidence of organ dysfunction, defined by a SOFA score 
≥ 2 (refs 7,31). We adhered to the original temporal criteria for diagnosis of sepsis: 
when the antibiotic was given first, the microbiological sample must have been 
collected within 24 h; when the microbiological sampling occurred first, the 
antibiotic must have been administered within 72 h31. The earlier event defined the 
onset of sepsis. In line with previous research, we assumed a baseline SOFA of zero 
for all patients31,32.

Exclusion criteria. 
•	 In both databases:

•	 Age < 18 years old at the time of ICU admission
•	 Mortality not documented
•	 Withdrawal of treatment (see below)

•	 In MIMIC-III:
•	 Intravenous fluid intake not documented

•	 In eRI:

•	 ICU readmissions, because of the potential risk in this database of mixing 
up data from subsequent ICU admissions.

•	 Patient admitted in an ICU with insufficient data collection (see below).
We excluded patients whose treatment was withdrawn because in this case 

clinical decisions are no longer made aiming to optimize survival, which would 
have led to spurious actions in the AI policy. Withdrawal of treatment often 
involves patients with high severity of illness and who are on high doses of 
vasopressors, in which treatment is withdrawn as it is considered futile. Therefore, 
we defined withdrawal as patients who died within 24 h of the end of the data 
collection period and received vasopressors at any point and whose vasopressors 
were stopped at the end of the data collection.

In the eRI, the data was recorded heterogeneously across ICUs. To avoid any 
systematic bias in our analysis (for example, when no medication appears in the 
database, where in reality it was actually administered to the patient), we excluded 
hospitals for the years in which the availability of data was not sufficient, as data 
recording practices could vary over time. We defined two indicators of data 
availability for vasopressors and intravenous fluids, averaged per day, per patient, 
per hospital and per year. Given that our analysis resolution was 4 h, we expected 
at least six records per day, even if the dose was constant. Hospital-years with less 
than six daily records on average were excluded. In total, 331 ICUs out of 459 were 
excluded with the combined data-quality-selection approach. For comparison, the 
data quality in MIMIC-III was high, with a weighted daily average over the five 
ICUs of 20.4 intravenous fluids records and 31.1 vasopressor records.

Data extraction and preprocessing. In MIMIC-III, data were included from up to 
24 h preceding until 48 h following the estimated onset of sepsis, in order to capture 
the early phase of its management, including initial resuscitation. The outcome 
was 90-day mortality. Owing to the size of the eRI database (over 2.4 terabytes), a 
simplified data-extraction process had to be employed. Therefore, we identified all 
adult patients who had sepsis during the first 36 h after admission and extracted 
the data obtained from these patients over the first 72 h after admission. Survival at 
90 d was not available in eRI, so hospital mortality defined the outcome of interest 
in this cohort.

From both datasets, we extracted a set of 48 variables, including demographics, 
Elixhauser premorbid status19, vital signs, laboratory values, fluids and vasopressors 
received and fluid balance (Supplementary Table 2). Patients’ data were coded 
as multidimensional discrete time series with 4-h time steps. Data variables with 
multiple measurements within a 4-h time step were averaged (for example, heart 
rate) or summed (for example, urine output) as appropriate.

All features were checked for outliers and errors using a frequency histogram 
method and univariate statistical approaches (Tukey’s method). Errors were 
corrected when possible (for example, conversion of temperature from Fahrenheit 
to Celsius degrees). Parameters were capped to clinically plausible values.

To address the problem of missing or irregularly sampled data, we used a time-
limited parameter-specific sample-and-hold approach in both datasets, a common 
practice with health time series data that intuitively matches the cognitive process 
of clinicians33. The remaining missing data were interpolated in MIMIC-III using 
multivariable nearest-neighbor imputation as the clustering algorithm did not 
accept missing values34. We did not interpolate the remaining missing data in eRI 
as it was not required for model validation.

Building the computational model. The true patient physiological state is only 
partially represented by the data available, and therefore the disease process could 
be formulated as a partially observable MDP. A MDP was used to approximate 
patient trajectory and to model the decision-making process12,20,21. The MDP is 
defined by the tuple {S, A,T,R,γ }, with:
•	 S, a finite set of states (in our model, the health states of patients).
•	 A, the finite set of actions available from state s (in our model, the dose 

prescribed of intravenous fluids and vasopressors converted into discrete 
decisions).

•	 T(s′ ,s,a), the transition matrix, containing the probability that action a in  
state s at time t will lead to state s′  at time t +  1, which describes the dynamics 
of the system.

•	 R(s′ ), the immediate reward received for transitioning to state s′ . Transitions 
to desirable states yield a positive reward, and reaching undesirable states 
generates a penalty.

•	 γ , the discount factor, which allows modelling of the fact that a future reward 
is worth less than an immediate reward.

A sample of 80% of the MIMIC-III cohort was used for model training, and  
the remaining 20% was used for model validation. The state space was defined  
by clustering all patient time series from the MIMIC-III development set.  
A good cluster hierarchy is one in which individuals that are in the same cluster are 
similar with respect to their observable properties. Specifically, the state space was 
constructed by k-means +  +  clustering of the patients’ data, resulting in 750 discrete 
mutually exclusive patient states35. We used Bayesian and Akaike information 
criteria to determine the optimal number of clusters (Supplementary Fig. 3e)36. 
We chose a high value of k to ensure a highly granular model while avoiding using 
too large a state space ( >  1,000), which would have led to very sparsely populated 
states (Supplementary Fig. 3a). Two absorbing states were added to the state space, 
corresponding to death and discharge of the patient. To further assess the validity 
of our state aggregation, we used the distribution of International Classification 
of Diseases codes in the states and demonstrated that past medical history and 
diagnoses are encapsulated to some extent within our chosen state definition 
(Supplementary Fig. 3b).

Prior to clustering and to account for unequal means and variances in data, 
normally distributed data was standardized, log-normal distributed variables were 
log-transformed before standardization, and binary data was centered on zero. The 
normality of each variable was tested with visual methods: quantile-quantile plots 
and frequency histograms.

The management of ICU patients with sepsis is extremely complex and 
includes several principles such as rapid control of the source of infection, 
correction of hypovolaemia, and management of secondary organ failures. 
Including all these potential interventions as actions in the MDP would have 
required a much larger dataset. A key challenge is arguably the management 
of intravenous fluids and vasopressors. Consequently, we focused on medical 
decisions regarding total volume of intravenous fluids and maximum dose of 
vasopressors administered over each 4-h period. Intravenous fluids included 
boluses and background infusions of crystalloids, colloids and blood products, 
normalized by tonicity as previously described8. The vasopressors included 
norepinephrine, epinephrine, vasopressin, dopamine and phenylephrine and 
were converted when necessary to norepinephrine-equivalent using previously 
published dose correspondence37. To define the action space, the dose of each 
treatment was represented as one of five possible choices, choice 1 being ‘no 
drug given’ and the remaining non-null doses divided into four quartiles 
(Supplementary Table 3). The combination of the two treatments produced 25 
possible discrete actions. We expressed the suggested dose as the median of each 
dose bin matching a suggested action.

The sequences of successive states and actions are referred to as patients’ 
trajectories. In our models, we used either hospital mortality or 90-d mortality 
as the sole defining factor for the system-defined penalty and reward. When 
a patient survived, a positive reward was released at the end of each patient’s 
trajectory (a ‘reward’ of +  100); a negative reward (a ‘penalty’ of –100) was issued 
if the patient died.

We estimated the transition matrix T(s′ ,s,a) by counting how many times 
each transition was observed in the MIMIC-III training dataset and converting 
the transition counts to a stochastic matrix32. In high-risk environments (where 
executing a bad policy could cause harm) limiting the action space to known 
options is a sensible choice to increase the safety of the model. We restricted the 
set of actions to choose from to frequently observed actions taken by clinicians 
and excluded transitions seen fewer than five times. As such, the resulting AI 
policy suggests the best possible treatment among all the options chosen (relatively 
frequently) by clinicians.
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Markov models rely on the Markov property, which is that the transitions 
(given state and action) are memoryless. The probability to leave a state in a 
Markov chain remains constant, no matter how long the agent has been in the 
state. Thus, the probability to remain in a state follows an exponential decay38. We 
measured the empirical state persistence probability for each state and found a high 
goodness-of-fit between the data and exponential decay distributions for virtually 
all states (Supplementary Fig. 3).

The discount factor γ  defines the horizon of the reinforcement learning agent, 
which is how much importance is given to future rewards compared to the reward 
in the current state. It can take values between 0 and 1 (ref. 21). We chose a γ  value 
of 0.99, which means that we put nearly as much importance on late deaths as 
opposed to early deaths.

In reinforcement learning, a policy π  corresponds to a set of rules dictating 
which action is taken while in a particular state21. Each MDP determines a state-
action value function Qπ, that reflects the expected sum of discounted rewards for 
choosing an action while in a particular state, and following a policy π  thereafter21. 
In our model, Qπ summarizes the effect of the treatment decisions on the patient’s 
mortality risk, with beneficial decisions having positive Qπ values and harmful 
decisions negative Qπ values12,13.

Evaluation of clinicians’ actions. We performed an evaluation of the actual 
actions (the policy) of clinicians using temporal difference learning (TD-learning) 
of the Q function by observing all the prescriptions of intravenous fluids and 
vasopressors in existing records (offline sampling) and computing the average 
value of each treatment option at the state level21. The advantage of TD-learning 
over policy iteration is that it does not require knowledge of the MDP (model-free) 
and makes it possible to learn simply from sample trajectories21. It was computed 
iteratively from actual patient episodes of successive state-action pairs, with 
resampling, using the following Q update formula:

← + α ⋅ + γ ⋅ ′ ′ −π π π πQ s a Q s a r Q s a Q s a( , ) ( , ) ( ( , ) ( , )) (1)

With Qπ(s,a) the current {state, action} tuple considered, Qπ(s′ ,a′ ) the next 
{state, action} tuple, α  the learning rate and r the immediate reward.

We stopped the evaluation after processing 500,000 patient trajectories with 
resampling, which is when the value of the estimated policy reached an asymptote.

Estimation of the AI policy. We learned a theoretical optimal policy (which we 
call the ‘AI’ policy) for the MDP using in-place policy iteration, which identified 
the decisions that maximize the long-term sum of rewards, hence the expected 
survival of patients21. Policy iteration started with a random policy that was 
iteratively evaluated and then improved until converging to an optimal solution. 
After convergence, the AI policy π*corresponded to the actions with the highest 
state-action value in each state:

π ← ∀πs Q s a s*( ) argmax ( , ) (2)
*

a

The value V of a policy π  was computed using the Bellman equation for Vπ and 
represented the expected return when starting in s and following π thereafter:

∑ ∑π γ= ′ ′ + ′
′

π πV s s a T s s a R s V s( ) ( , ) ( , , ) [ ( ) ( )] (3)
a s

Because 90-d mortality was not available in the eRI, hospital mortality was 
used as the outcome of interest. We verified first that the model performed well 
in the MIMIC-III database, when the model was trained using hospital mortality 
(Supplementary Fig. 4) and 90-d mortality (data not shown). This sanity check 
supported the extension of the framework into the eRI data.

Model evaluation. Our objective is to evaluate the value of a newly learnt AI policy 
using trajectories of patients generated by another policy (the clinicians’)21–23. 
This is termed off-policy evaluation (OPE). Using direct, model-based estimates 
of the policy value are known to reduce variance at the cost of adding bias to 
the estimate22,39. Therefore, we implemented a type of HCOPE method, WIS, 
and used bootstrapping to estimate the true distribution of the policy value in 
the test sets22,23,40. WIS may be a biased although consistent policy estimator, so 
the bootstrap confidence interval may also be biased, even though the literature 
suggests that consistency is a more desirable property than unbiasedness22,39,41.  
It is accepted that bootstrapping produces accurate confidence intervals with less 
data than exact HCOPE methods and is safe enough in high-risk applications, 
such as healthcare22,23. Of note, the use of bootstrap confidence intervals around 
WIS estimates has not been previously described in biomedical research, but the 
approach is suggested in reinforcement learning research22,23.

We define π0 as the behavior policy (the clinicians’), from which actual 
patient data was generated, and π1 as the evaluation, or AI policy. In OPE tasks, 
importance sampling is a simple way to correct for the discrepancy between 
π0 and π1 (ref. 42). Weighting the estimate allows reducing its variance39. Using 
importance sampling (IS) methods with a deterministic evaluation policy is 
problematic, as only a few {s,a} pairs and short sequences can be used for policy 

evaluation. Indeed, the IS weights become zero as soon as the two policies diverge. 
We softened π1, so it now recommends taking the suggested action 99% of the 
time and any of the other actions a total of 1% of the time. This allows assessment 
of the entirety of the patient trajectories. Our goal was to estimate the value of 
π1 from data trajectories. We defined π πρ = ∣ ∕ ∣a s a s: ( ) ( )t t t t t1 0  as the per-step 
importance ratio, ρ = ∏ ρ′ ′=:t t

t
t1: 1  as the cumulative importance ratio up to step 

t, = ∑ ρ ∕∣ ∣=
∣ ∣w Dt i
D

t
i

1 1:
( )  as the average cumulative importance ratio at horizon t in 

dataset D and |D| as the number of trajectories in D21,39. The trajectory-wise WIS 
estimator is given by:
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Then, the WIS estimator is the average estimate over all trajectories, namely:
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Where VWIS
i( )  is WIS applied to the i-th trajectory.

We built 500 different models from various selections of a random 80% of the 
MIMIC-III data and evaluated the AI policies with WIS on the remaining 20% 
of the data. State membership for test set data points was determined according 
to whichever training set cluster centroid they fell closest to. Once the state 
membership was known, we knew what the suggested action and its corresponding 
recommended dose of medications were. In each model, we also estimated the 
value of a random policy and a zero-drug policy for comparison (Fig. 2b). As 
recommended, the selected final model maximizes the 95% confidence lower 
bound of the AI policy among the 500 candidate models22. We demonstrate 
that this bound consistently exceeded the 95% confidence upper bound of the 
clinicians’ policy, provided that enough models were built (Fig. 2a). Then, we tested 
the selected policy in the eRI (Fig. 3a).

We also tested the influence of the variability of the behavior policy by 
measuring the WIS estimator using 500 different behavior policies (generated by 
500 different clustering of the training data) but a fixed evaluation policy. The 95% 
lower bound of the AI policy exceeded the 95% upper bound of the clinicians’ 
policy 66.4% of the time. Considering that we selected the AI policy maximizing 
the WIS estimator, the models for which the variability in the behavior policy led 
to a low WIS estimator were discarded owing to design.

Because laboratory results are recorded in the data at the time of sampling, 
a fraction of the laboratory values would not have been immediately available to 
clinicians to inform decision-making but were available to the AI Clinician. We 
tested the effect of this potential bias by artificially shifting all the ‘slow’ laboratory 
tests (white blood cell count, platelet count, clotting, renal and liver function tests, 
etc.) in the eRI cohort 4 h into the future. This manipulation did not significantly 
alter the WIS estimator: 85.1 (interquartile range, 85.1–86.0; t-test P >  0.05).

Similarly to previous work, we also measured the performance of the AI policy 
using direct indicators and analyzed patient outcomes as a function of the gap 
between clinicians and AI policies15. Here, we analyzed patient mortality in the test 
sets for which the dose actually administered corresponded to or differed from 
the dose suggested by the AI policy (Fig. 3d,e and Supplementary Fig. 4). We used 
bootstrapping to generate confidence bounds.

Human subject data. The institutional review board (IRB) of the Massachusetts 
Institute of Technology (no. 0403000206) and Beth Israel Deaconess Medical Center 
(2001-P-001699/14) approved the use of MIMIC-III for research. The use of the  
eRI database was approved by the eICU research committee and exempt from  
IRB approval as the database security schema and the reidentification risk were 
certified as meeting safe harbor standards by Privacert (Cambridge, MA)  
(45 Code of Federal Regulations 164.514(b)(1) and Health Insurance Portability and 
Accountability Act Certification no. 1031219-2). Because this study was a secondary 
analysis of fully anonymized data, individual patient consent was not required.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

data availability
MIMIC-III is openly available. Access to the eRI data is restricted to the Philips 
eICU Research Institute. The eICU Collaborative Research Database contains 
a sample of over 200,000 patient stays from the eRI database that is freely 
available. The databases were queried in pgAdmin 4 v 1.3, and computations 
were implemented in Matlab R2017a (MathWorks, Inc.). Access to the computer 
code used in this research is available by request to the corresponding authors. To 
facilitate the reproduction of our results, we provide the list of anonymous patient 
identifiers for both databases in Supplementary Data 1 and 2.
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    Experimental design
1.   Sample size

Describe how sample size was determined. We included all adult patients from two large intensive care databases, MIMIC-III 
and eICU-RI. We conducted a secondary analysis of patient data initially collected 
routinely for patient care.

2.   Data exclusions

Describe any data exclusions. Exclusion criteria were pre-established. We excluded patients younger than 18 
years old at the time of ICU admission, patients where mortality was not 
documented and patients with evidence of withdrawal of treatment. In MIMIC-III, 
we excluded patients where intravenous fluids were not recorded. In eICU-RI, we 
excluded ICU readmissions and patient admitted in an ICU with insufficent data 
collection.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

The results were reliably reproduced in a large array of sensitivity analyses, as 
described in Methods and Extended Data.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Not relevant, this was not a randomized controlled study.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Not relevant, this was not a randomized controlled study.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

The databases were queried in pgAdmin 4 v 1.2. Computations were implemented 
in Matlab R2017a (MathWorks Inc., Natick, MA). 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used in this study.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used in this study.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used in this study.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used in this study.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used in this study.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No eukaryotic cell lines were used in this study.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

The study did not involve animals.
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Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The research involved a total of 96,156 unique adult patients admitted to 133 
separate intensive care units in the USA. The average age was 65 years old and 
53% of the subjects were male. All the patients were diagnosed with sepsis 
according to the sepsis-3 international definition.
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