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Deep-learning-based real-time prediction of acute kidney
injury outperforms human predictive performance
Nina Rank 1, Boris Pfahringer 1, Jörg Kempfert1,2, Christof Stamm1,2, Titus Kühne 2,3,4, Felix Schoenrath1,2, Volkmar Falk 1,2,4,5,6,
Carsten Eickhoff 7 and Alexander Meyer 1,2,4✉

Acute kidney injury (AKI) is a major complication after cardiothoracic surgery. Early prediction of AKI could prompt preventive
measures, but is challenging in the clinical routine. One important reason is that the amount of postoperative data is too massive
and too high-dimensional to be effectively processed by the human operator. We therefore sought to develop a deep-learning-
based algorithm that is able to predict postoperative AKI prior to the onset of symptoms and complications. Based on 96 routinely
collected parameters we built a recurrent neural network (RNN) for real-time prediction of AKI after cardiothoracic surgery. From the
data of 15,564 admissions we constructed a balanced training set (2224 admissions) for the development of the RNN. The model
was then evaluated on an independent test set (350 admissions) and yielded an area under curve (AUC) (95% confidence interval)
of 0.893 (0.862–0.924). We compared the performance of our model against that of experienced clinicians. The RNN significantly
outperformed clinicians (AUC= 0.901 vs. 0.745, p < 0.001) and was overall well calibrated. This was not the case for the physicians,
who systematically underestimated the risk (p < 0.001). In conclusion, the RNN was superior to physicians in the prediction of AKI
after cardiothoracic surgery. It could potentially be integrated into hospitals’ electronic health records for real-time patient
monitoring and may help to detect early AKI and hence modify the treatment in perioperative care.
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INTRODUCTION
Acute kidney injury (AKI) is a major postoperative complication
after cardiothoracic surgery. It is an independent risk factor for
early and long-term mortality1–4 and is strongly associated with
increased hospital costs and length of stay5–7.
AKI is defined as a major increase of serum creatinine or a

strong decline in urine output8. Compromised renal blood flow
and cardiopulmonary bypass play a critical role in the develop-
ment of AKI, but overall its etiology is highly multifactorial9–12.
Early detection of patients at high risk of developing AKI allows

for early therapeutic intervention prior to the onset of anuria and
its complications such as acidosis, hyperkalemia, or volume
overload as well as long-term complications such as lung injury,
sepsis and chronic kidney disease13–16. In a pilot study in 2011 it
was demonstrated that in patients with AKI stage I, early
nephrologist consultation can avert progression to higher AKI
stages17. It was also shown that delayed nephrologist involvement
(48 h after AKI onset) in critically ill patients was associated with an
increase of mortality and dependence on dialysis18. An immediate
post-operative “KDIGO care bundle” (optimization of volume
status and hemodynamics, avoidance of nephrotoxic drugs and
hyperglycemia) in high-risk patients has been shown to reduce
cardiac surgery-associated AKI19.
Although several classical clinical risk scores for the prediction

of postoperative AKI exist, none of them is specifically recom-
mended by guidelines20–26. With few exceptions they rely on
patient demographics, disease history and the type of surgery and
require time-consuming manual data collection and calculation.
Furthermore, they are usually based on static properties or single

point-in-time measurements that cannot adapt to the often rapid
and dramatic changes that occur in the postoperative setting.
Increased digitization of medical information opens up new

alternatives for early prediction of postoperative complications
that might potentially be integrated into existing electronic health
record (EHR) software. A vast amount of data with high temporal
resolution is collected during a hospital stay. Effectively processing
such high-dimensional data in a parallelized way, however, goes
far beyond the capabilities of the human brain27. Machine
learning (ML) offers a potential solution to this problem.
Previous studies investigating the performance of ML models in

predicting AKI have yielded promising results28–35. However,
studies directly comparing the predictive performance of ML
models against experienced physicians in the prediction of
postoperative AKI on time-series data of real clinical cases are
highly needed.
We therefore developed a recurrent neural network (RNN) that

allows real-time predictions of AKI within the first 7 postoperative
days following cardiothoracic surgery based on routinely collected
variables (features). This model was then compared to the
performance of experienced health-care professionals.

RESULTS
Performance of the RNN based prediction
A complete description of the study population, patient selection
process, development of the ML model, and the experimental
design of our RNN-vs-human comparison can be found in the
‘Methods’ section.
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In summary, we retrospectively analysed EHR time series data
with high temporal resolution (up to 1min) generated at a tertiary
care center for cardiovascular diseases. Based on n= 2224
admissions, we developed an RNN that continuously (every
15min) predicted the probability of developing AKI defined as
KDIGO8 stage 2 or 3 within the first 7 days after cardiothoracic
surgery.
Supplementary Tables 1–4 show a comparison of baseline

characteristics between AKI- and non-AKI cases in the training,
balanced and imbalanced test set and the whole study population
before matching AKI- and non-AKI cases.
Table 1 shows the performance metrics of our RNN evaluated

on an independent test set with n= 350 patients. The model
achieved an area under curve (AUC) (95% confidence interval (CI))
of 0.893 (0.862–0.924). In addition, we trained a model with only
serum creatinine as input and yielded an AUC of 0.805
(0.768–0.842). Thus, the addition of further parameters led to an
absolute increase of around 10 percentage points in the AUC.
However, a model using all features but creatinine and glomerular
filtration rate (GFR) (the GFR is calculated from creatinine)
performed almost as good as the full model with an AUC of
0.887 (0.855–0.919)—probably due to high correlation between
creatinine and other features, e.g., urea. For further performance
metrics of these reduced models see Supplementary Tables 5 and 6.
A table with the model performance metrics derived from an

imbalanced test set with incidence rate of 10% AKI (see
Supplementary Results 1) can be found in Supplementary Table 7.
In addition, we analysed some examples of the predictions of
individual patients including false-positive and false-negative
predictions. These can be found in Supplementary Figs. 1–3.

RNN vs. human-level performance—experimental design
We set up an experiment to compare our ML model against
experienced physicians (Fig. 1). For each of the n= 350 patients of
our balanced test set a quasi-random point in time in their
observation period was chosen, further denoted as ‘prediction
point’ (For more information about quasi-random samples see the
‘Methods’ section.).
At the chosen prediction point, seven experienced physicians

and the ML model each had to make a prediction (between 0 and
100%) of how likely the patient was to develop AKI within the first
7 days after surgery.
All time series information up to the ‘prediction point’ was

graphically displayed for the physicians to mimic the electronic
patient chart.

Performance of RNN and physicians
The performance of our RNN and the physicians’ assessment can
be found in Table 2 (Note that the metrics of the RNN are slightly
different from those in section ‘Performance of the RNN based
prediction’. The reason is that in the RNN vs. human experiment
only one prediction point per patient was evaluated, whereas for
the complete evaluation of the RNN all predictions of the whole
observation periods for all patients were evaluated.).
The median (interquartile range (IQR)) prediction value for the

physicians was 0.36 (0.15–0.70) vs. 0.51 (0.12–0.86) for the RNN.
Across all metrics, the RNN outperformed the physicians. We

obtained an AUC of 0.901 for the RNN vs. 0.745 for the physicians
(p < 0.001, Z= 6.85, DeLong’s test). The receiver operating
characteristic (ROC) curves and the precision-recall curves are
displayed in Fig. 2a and Fig. 2b, respectively.
The mean of our predictive quality score S (S= r, if the patient

developed AKI and S= 1−r, if the patient did not develop AKI)
was significantly higher for the RNN than for the experienced
physicians (0.754 vs 0.639, p < 0.001, t-statistic= 8.47, df= 349,
paired t-test).Ta
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In addition, we investigated the calibration of the RNN’s and
physicians’ predictions. Calibration describes how close the
predicted probabilities are to the observed frequencies. A
perfectly calibrated model would have one point at (0,0) and
one at (1,1) in a calibration plot (it would always predict 0 for
negatives and 1 for positives). For a well-calibrated model, the
points lie on the diagonal between (0,0) and (1,1). Figure 2c
illustrates that in the intervals of high prediction values of
physicians, the predicted frequencies of AKI largely correspond to
the observed frequencies (upper right part of the calibration
curve). However, for several patients that developed AKI,
physicians predicted low AKI probabilities (false-negative predic-
tions, lower left part of the calibration curve). This is also reflected
in the observation that the physicians’ median (IQR) prediction
value was lower than the RNN’s (Physicians: 0.36 (0.15–0.70) and
RNN: 0.51 (0.12–0.86)). Overall the physicians’ predictions were not
well calibrated (p < 0.001, Χ2= 165.5, df= 8, Hosmer-Lemeshow-
test36).
In contrast, Fig. 2d displays a very well calibration (p= 0.37, Χ2

= 8.67, df= 8, Hosmer-Lemeshow-test) for the RNN, with most of
the points lying very close to the diagonal, even in intervals of low
prediction values.
We investigated the performance of our RNN and physicians at

different points in time before the event (AKI or non-AKI/
discharge) (see Table 3). Not-surprisingly, both, humans and
RNN, performed worse when the event was further away in time.
However, low sensitivity rates could also be observed when the
event was very close (≤2 h). In this group the median total

observation length was very short, meaning that patients who
developed AKI, developed it rapidly after surgery. Thus, there was
probably not enough information available before the event to
reliably predict AKI. However, even in this interval, the RNN
reached a sensitivity of 0.789.

DISCUSSION
We developed an RNN for real-time prediction of postoperative
AKI within 7 days after cardiothoracic surgery—based on routinely
collected features during the hospital stay and then retro-
spectively validated it on an independent test set.
To test the clinical significance, we performed a side-by-side

comparison of our model against experienced physicians. Such
direct comparisons are highly needed, but hardly ever performed
in clinical ML studies. We had expected our model to perform
nearly as well as the physicians, and had designed our study as a
non-inferiority-experiment. Surprisingly, our RNN significantly
outperformed experienced clinicians in terms of the mean of
our performance metric S. (S indicates how close a prediction is to
the observed outcome). In addition, the model reached a
significantly higher AUC than the physicians (0.901 vs. 0.745, p <
0.001, DeLong’s test) and was overall well calibrated (Hosmer-
Lemeshow-Test: p= 0.37 vs. p < 0.001 for physicians).
Physicians showed an overall low sensitivity of 0.594 at AKI

prediction. They predicted lower risk probabilities in general. They
reached a maximum sensitivity of 0.793 for the 2–6 h interval
before the event and a minimum sensitivity of 0.387 for the

patient selection 
process (see Fig. 3, 

Methods)

Test Set
350 admissions/ 

patients

EHR data

RNN

Train RNN

X
end of OP end of full  

timeseries
prediction

point

quasi-random selection of one "prediction 
point" in time-series of each patient when 

prediction has to be made prediction 
point

length of full 
time-series

Pat A 36h 15min 85h 15min

Pat B 7h 45min 33h 0min

Pat C 110h 15min 150h 30min

Physicians

prediction 
point

risk prediction 
RNN

risk prediction 
physicians

Pat A 36h 15min 78 % 55 %

Pat B 7h 45min 33 % 65 %

Pat C 110h 15min 10 % 12 %

after surgery at prediction point

patients' time-series 
till prediction point

Training Set
2,224 admissions/ 

2,180 patients

Fig. 1 Experimental design for performance comparison of recurrent neural network (RNN) against physicians. The electronic health
record (EHR) data was split into a training and a test set. The training set was used for the development of the RNN (orange path). For each
patient (Pat) in the test set, a quasi-random ‘prediction point’ in the time-series was chosen (for more information about quasi-randomness
see ‘Methods’). EHR data up to this prediction point was given to physicians and RNN (the rest of the time series data, here denoted as X, was
hidden). Both physicians and RNN, had to make a prediction for postoperative AKI at this prediction point.
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24–48 h interval before the event. Thus, they systematically
underestimated the risk of AKI. This suggests that physicians
mainly recognize AKI stage 3 or dialysis and that lower AKI stages
are erroneously considered unproblematic. It has been demon-
strated, however, that even minor increases in serum creatinine
after cardiac surgery are associated with an increased mortality
risk37.
The participating physicians each had at least one year working

experience on a cardiothoracic intensive care unit (ICU), but were
no specialists in nephrology. This reflects a realistic clinical setting
on an ICU, where nephrologists are usually not available around
the clock.
In contrast to the physicians, our RNN yielded an overall high

sensitivity of 0.851 with a maximum sensitivity of 0.971 in the
2–6 h interval before the event and a minimum sensitivity of even
0.750 in the 48–168 h interval before the event. In summary, our
RNN was superior to experienced physicians in the prediction of
AKI after cardiothoracic surgery.
From a modeling point of view, our RNN could easily be

integrated into an EHR system. It does not require any additional
human input as all data transformation is implemented program-
matically. Allowing for personalized predictions, it may enable
earlier identification and intervention in high-risk patients and
thus contribute to an improvement of patient care and safety.
However, the transfer of such a retrospective model from research
to real implementation raises additional challenges. Technical
barriers, data security when exporting personal data to external
software systems, and business considerations may be diverse and
can conflict with each other.
Our model achieved highly accurate results with an overall AUC

of 0.893 in our internal validation. It outperformed existing
classical prediction models that are based on logistic regression
from static pre- and intraoperative variables, as well as a dynamic
model that predicted AKI at three points in time (pre-operative, at
ICU admittance and 24 h after ICU admittance). These models
reached AUCs ranging from 0.72–0.85 in their respective internal
validation cohorts and used slightly different definitions of AKI20–
26,38 (see Table 4). The proposed model does not create additional
workload for physicians, as it only used routinely collected data of
the EHR. As such, it only employs data that is available at the time
of prediction and all data transformations are implemented
programmatically. It is worth noting that the model performed
very well, although it was built on a relatively small sample size of
2224 admissions.
Previous studies have demonstrated the benefits of using ML

for AKI prediction. Thottakkara et al.28 applied different ML
approaches to forecast postoperative AKI and observed promising
performances in their internal validation cohort (AUC between
0.797 and 0.858). Bihorac et al.29 used an ML algorithm to assess
the risk of 8 postoperative complications including AKI and
reported an AUC of 0.80 (0.79–0.80) for AKI prediction. The
approach of both studies, however, relied exclusively on static,
mostly preoperative features.
A multi-center ward-based AKI prediction model was developed

by Koyner et al.39 using a discrete time survival model with an
AUC (95% CI) of 0.76 (0.76–0.77) for AKI of at least stage 2.
In 2018, Koyner et al.31 published another study using EHR data

for AKI risk prediction and reached an AUC (95% CI) of 0.90
(0.90–0.90) for predicting stage 2 AKI within the next 24 h and 0.87
(0.87–0.87) within the next 48 h. Cheng et al.32 built ML models to
forecast AKI over various time horizons and obtained an AUC of
0.765 (prediction one day before the event). In these studies,
however, the urine output criterion of AKI, a central component in
the KDIGO definition was not integrated, which can lead to a false-
negative classification of AKI cases. In our training and test cohort
around 30% of the AKI cases were defined by the urine criteria of
KDIGO (see Supplementary Table 8). We can assume that a
substantial proportion of the patients in the above studies wouldTa
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Table 3. Performance metrics of recurrent neural network (RNN) and physicians in temporal dependence to the event.

Predictor Time to event patients AKI MOL AUC PR_AUC Brier Acc Sens Spec F1 FPR NPV PPV

RNN 0 h to 2 h 54 19 8.3 h 0.913 0.837 0.113 0.870 0.789 0.914 0.811 0.086 0.889 0.833

Physicians 0 h to 2 h 54 19 8.3 h 0.709 0.552 0.199 0.759 0.632 0.829 0.649 0.171 0.806 0.667

RNN 2 h to 6 h 63 29 12.5 h 0.881 0.88 0.13 0.825 0.862 0.794 0.820 0.206 0.871 0.781

Physicians 2 h to 6 h 63 29 12.5 h 0.853 0.861 0.152 0.794 0.793 0.794 0.780 0.206 0.818 0.767

RNN 6 h to 12 h 63 34 17.8 h 0.942 0.948 0.088 0.921 0.971 0.862 0.930 0.138 0.962 0.892

Physicians 6 h to 12 h 63 34 17.8 h 0.811 0.798 0.19 0.746 0.618 0.897 0.724 0.103 0.667 0.875

RNN 12 h to 24 h 74 42 36.4 h 0.888 0.921 0.128 0.824 0.881 0.750 0.851 0.250 0.828 0.822

Physicians 12 h to 24 h 74 42 36.4 h 0.693 0.706 0.257 0.689 0.667 0.719 0.709 0.281 0.622 0.757

RNN 24 h to 48 h 60 31 46.4 h 0.890 0.899 0.142 0.817 0.774 0.862 0.814 0.138 0.781 0.857

Physicians 24 h to 48 h 60 31 46.4 h 0.718 0.774 0.246 0.633 0.387 0.897 0.522 0.103 0.578 0.800

RNN 48 h to 168 h 36 20 99.0 h 0.875 0.929 0.132 0.806 0.750 0.875 0.811 0.125 0.737 0.882

Physicians 48 h to 168 h 36 20 99.0 h 0.647 0.741 0.274 0.611 0.400 0.875 0.533 0.125 0.538 0.800

AKI number of patients with acute kidney injury, MOL median total observation length, AUC area under curve, PR_AUC precision-recall AUC, Brier Brier score,
Acc accuracy, Sens sensitivity, Spec specificity, F1 F1-score, FPR false-positive rate, NPV negative predictive value, PPV positive predictive value.

Fig. 2 Discrimination and calibration of the predictions of recurrent neural network (RNN) and physicians. a receiver operating
characteristics (ROC), b precision-recall curve, c calibration of physicians, d calibration of RNN. AUC area under curve. H-L Hosmer-Lemeshow-
Test36, PR_AUC precision-recall AUC. The RNN outperformed clinical physicians regarding AUC (a) and PR_AUC (b). Physicians systematically
underestimated the risk of acute kidney injury (predicted risks < observed risks, c). In contrast, the RNN was overall well calibrated (d).
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also have met the urine criteria first. Probably not all of them have
been classified as false-negative, as they might have met the
creatinine criterion at a later stage. In our population, 11% of the
AKI-cases in the training set and 12% in the test set exclusively
fulfilled the urine criterion and would have been diagnosed false-
negatively without this criterion. The median (IQR) diagnosis delay
of patients who met both criteria within 7 postoperative days was
14.0 h (6.3–27.3 h) in the training set and 13.3 h (5.3–22.4 h) in the
test set. Especially in models with short prediction horizons, there
is a high risk that the prediction of imminent AKI and
consequently initiation of preventive measurements is delayed
when not integrating the urine criterion.
In addition, these previous models were restricted to patients

with a serum creatinine of <3mg/dl (Koyner et al.) or even normal
serum creatinine level and a GFR of at least 60ml/min/1.73 m2

(Cheng et al.) at admission.
Mohamadlou et al.40 developed an ML algorithm based on EHR

data for detection of AKI at onset and prediction of AKI 12, 24, 48,
and 72 h before onset. They reported AUCs from 0.872 (onset) to
0.728 (72 h before onset).
Another study for continuous AKI prediction on a large data set

was performed by Tomasěv et al.34. The developed RNN predicted
AKI stage 2 or 3 with an AUC of 0.971 24 h before onset.
Also in these studies the urine output criterion of AKI was not

incorporated. In addition, in the study of Tomasěv et al. only

patients were included for whom at least one year of EHR data
were available before admission. They added aggregate features
of up to five years of historical information of each individual
patient. This approach requires that patients are already known in
the admitting hospital, which is often not the case. It is unclear
how their algorithm would perform on patients without any prior
medical history. In contrast, we used a real uncurated data stream
in our model that only contained information generated after
admission.
Meyer et al.35 used an RNN to predict AKI requiring dialysis,

mortality and postoperative bleeding after cardiac surgery using
routinely collected parameters within the first 24 hours after
surgery. The deep-learning model provided very accurate predic-
tions (positive predictive value (PPV)/sensitivity for AKI: 0.87/0.94)
that outperformed usual clinical risk scores.
Our model predicted AKI in a time frame up to 7 days after

cardiothoracic surgery. Compared to the observation windows of
the studies mentioned above, this is a much longer time period.
Events in the near future are usually easier to predict than those in
the more distant future. To intervene early when the kidneys are
merely at risk of injury, a longer prediction window might be
necessary. It has been shown that early intervention can prevent
AKI or its progression to higher stages17,19. Therefore, the
prediction of our model was not limited to AKI requiring dialysis,

Table 4. Comparison between classical prediction models20 based on logistic regression and our recurrent neural network (RNN).

Authors, model Sample size
derivation

Sample size
internal
validation

Validation method “Real-time”
prediction

Predicted outcome Manual
calculation

AUC on internal
validation

Chertow et al.,
CICSS21

42,773 42,773 100-sample bootstrap No 30 days post-op. AKI Yes 0.76 (AUC on
derivation
cohort)

3795 Prospective validation Not reported

Brown et al.,
NNECDSG38

8363 8363 Bootstrap validated
C-index (AUC)

No Severe post-op. AKI
(eGFR < 30ml/min)

Yes 0.72* (0.68–0.75)

Palomba et al.,
AKICS24

603 215 Prospective validation No 7 days post-op. AKI Yes 0.85 (0.8–0.9)

Aronson et al.,
MCSPI25

2381 2420 Split sample validation No Renal dysfunction or
renal failure (dialysis
or evidence of renal
failure at autopsy)

Yes 0.80

Wijeysundera et al.,
SRI26

10,751 10,751 200-sample bootstrap No Post-op. renal
replacement therapy

Yes 0.81* (0.78–0.84)

2566 Prospective validation 0.78 (0.72–0,84)

Mehta et al.,
STS (Mehta)23

simplified model

449,524 86,009 Independent sample No Post-op. dialysis Yes 0.83

Thakar et al.,
Cleveland Clinic22

15,838 15,839 Split sample validation No Post-op. dialysis Yes 0.82 (0.80–0.85)

Jiang et al., Dynamic
Predictive Score67

6081 1152 Independent sample No AKI ≥ stage 1 KDIGO Yes 0.74
preoperative,
0.75 at ICU
admission,
0.82
postoperative

This study,
RNN

2224 350 Independent
Sample (balanced,
incidence 50%)

Yes 7 days post-op. AKI
stage 2 or 3

No 0.89 (0.86–0.92)

1945 Independent sample
(imbalanced,
incidence 10%)

0.85 (0.83–0.86)

AKI acute kidney injury, AUC area under curve.
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but included the prediction of AKI stages 2 or 3 according to the
KDIGO definition.
To conclude, based on a relatively small sample size, we

developed a highly accurate model for the prediction of AKI after
cardiac surgery that significantly outperformed experienced
physicians, could potentially be integrated into EHR systems and
might prevent severe complications following AKI through real-
time patient surveillance. In a long-term perspective, an extension
of the application from a simple risk prediction model to
treatment decision support tool is also conceivable.
This study has several shortcomings. The observation periods of

the included patients varied widely in length. For most patients it
ended in <3 days while some outliers lasted for up to 7 days. We
only used the start of nephrotoxic drug administration as a feature.
Consideration of exact dose, administration route (e.g., i.v., p.o, …),
and administration length could reflect the underlying pharmaco-
dynamics better and improve the prognostic performance.
Our RNN is currently cohort specific for cardiothoracic surgery

patients that most likely have different characteristics and risk
factors than, e.g., neurosurgical patients. Implementing the same
approach on other patient cohorts could give a deeper insight
into the generalizability of our method.
Our study is retrospective. Thus, in our RNN vs. physicians head-

to-head comparison, physicians only received EHR data and could
not clinically evaluate patients. Information such as volume status
(except for weight), general condition, etc. or additional examina-
tions (e.g., ultrasound) were not available to them and to the RNN.
This deviation from the physicians’ usual workflow in clinical
practice may explain some of the observed performance deficits.
Real clinical data can be very noisy, leading to reduced
performance and greater burden of deploying completely
automated systems. This stresses once again the fact that artificial
intelligence should be utilised in support systems for physicians
and not as their replacement.
External validation trials should be performed on prospective

data. In addition, they should focus on usage and acceptance of a
system such as the one described here in a real clinical setting.

METHODS
Ethics and reporting guideline
This study was approved by the institutional data protection officer and
ethics committee of Charité – Universitätsmedizin Berlin (EA2/180/17). The
approval included the collection of data on implied consent. We only used
retrospective data and the patients were not actively involved in the study.
The requirement of informed consent of the participating physicians was
waived by the Institutional Review Board (IRB) of Charité – Universitäts-
medizin Berlin due to anonymized data acquisition. Reporting of
development and validation of the prediction model follows widely the
guideline of the TRIPOD statement41.

Patient selection process
We retrospectively analysed EHR time series data generated between
October 2012 and February 2018 at a tertiary care center for cardiovascular
diseases.
We included adult patients (18+) that were admitted at least once to the

operating theatre for cardiothoracic surgery (15,564 admissions/13,895
patients). We excluded patients without any creatinine or urine flow values,
patients receiving hemodialysis before the end of the operation or having
a baseline creatinine level ≥4.0 mg/dl (2322 admissions/1487 patients).
Within this collection of 12,978 admissions, 1308 cases were identified

with severe postoperative AKI defined as stage 2 or 3 according to KDIGO
AKI guidelines—briefly, an increase in serum creatinine to at least twice the
baseline value or a decrease in urine flow < 0.5ml/kg/h for ≥12 h.
As AKI can develop over multiple days, we defined a study period of

7 days after cardiothoracic surgery. The global AKI label of a patient was
set positive when the KDIGO criteria stage 2 or 3 was fulfilled at any point
within these 7 postoperative days.
The observation time of each patient started when the patient was

transferred to the ICU or recovery room. It ended when the patient was

either discharged, or when the KDIGO criteria for AKI stage 2 or 3 were
fulfilled, or after 7 days after the end of the first surgery.
Each AKI-case was assigned a control out of the non-AKI pool (11,670

admissions/11,046 patients). The controls were matched to the cases on

Fig. 3 Flow chart of patient selection process. adm admissions, pat
patients.
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observation length. Thus, we generated a balanced data set that we then
randomly split into a training set (85%, 2224 admissions/2180 patients)
and the remaining set (15%, 392 admissions/patients) while keeping the
cases with their respective controls.
For the 392 patients of the remaining set we manually checked

physicians’ notes in the EHR data and consequently excluded 28 patients.
Exclusion criteria were primarily insufficient documentation of the type of
surgery, false recording of surgery times or notion of end-stage kidney
disease in the patients’ history that was not detected by automated
filtering.
Out of this set, we randomly selected 350 patients that formed the final

test set for model evaluation and comparison with human-level
performance. A detailed flow chart of the patient selection process is
shown in Fig. 3.
The baseline characteristics were well balanced between the training

and the test and are summarized in Supplementary Table 8.
The density distribution and a histogram of the observation periods for

patients in the training and test sets is shown in Fig. 4. Most patients were
either discharged or diagnosed with AKI within the first 3 days after the
first surgery.

Feature selection and preprocessing
We developed our model based on 96 routinely collected clinical
parameters. Table 5 gives an overview of all considered features. They
can be grouped into static features (e.g., most patient and surgery
characteristics, 25 features) that do not change over the observation
period and frequently measured dynamic features (e.g., lab values, vital
signs, blood gas values and fluid output, 49 features). In addition, we
included a variety of widely administered agents that have been reported
to potentially cause nephrotoxic effects42–47 (22 features).
The last creatinine/urea value before surgery was used as a baseline. If

there was none available in the five days before surgery, we used the first
postoperative value.
We observed that urine output was sometimes incompletely documen-

ted on normal wards. As this could lead to false-positive AKI diagnoses we
considered urine values reliable only when they were recorded in the
operation theatre, the recovery room or the ICU. Thus, on normal wards
AKI was only defined by the creatinine criterion whereas in the recovery
room or the ICU both AKI criteria (creatinine and urine) were used.
EHR systems are often designed with billing and revision purposes in

mind, making certain retrospective therapeutic analyses difficult to
conduct due to missing information48. In our case, the type of operation
that patients underwent was available partly in unstructured textual and
partly in categorical form. To access both types of data, we developed a
separate set of bag-of-words logistic regression models that predicted the
type of operation based on unstructured text describing the operation
procedures. As explanatory variables we used all single words or
abbreviations that occurred in the pool of text information in its training
set. The probability of a specific surgery type Yi (i= 1, 2, …, 17) was
given by

PðYi ¼ 1Þ ¼ expðβ0 þ β1x1 þ β2x2 þ :::Þ
1þ expðβ0 þ β1x1 þ β2x2 þ :::Þ (1)

where xj, denotes a count variable indicating how often word/abbreviation
j occurred in a patient’s surgery procedure description (j= 1, 2, …, no.

distinct words/abbreviations). For further information see Supplementary
Note 1, Supplementary Tables 9 and 10.
Time sequences with 15-min intervals of all features served as input to

our model.
Except for the nephrotoxic agents, missing values were filled by forward

imputation. If no precedent value was available, static default values
defined by a clinical expert were imputed (one value per feature). The
same default values were used for all patients and they were imputed
programmatically. They are shown in Supplementary Table 11.
It is extremely difficult to determine the exact effect duration of a drug

due to varying excipients, dosages, drug combinations, application types
and patient conditions. Therefore, the administration of a drug was
considered as an event. For each nephrotoxic agent class in Table 5 a
binary feature was created and its value was set to 1 only at the single time
slice immediately following the administration of the drug.
Except for the operation types all continuous features were then scaled

as follows49:

Xscaled ¼ X � μðXtrainÞ
IQRðXtrainÞ (2)

where μ(Xtrain) denotes the median and IQR(Xtrain) the IQR of the feature X
in the training set. In total, the model was built on a data matrix of
36,244,608 single data points.
For patient selection, preprocessing of features and imputation of

missing data, we used R v3.3.3 (R Core Team (2017). R: A language and
environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. URL https://www.R-project.org/) and Python
v3.6.7 (The Python Software Foundation, Beaverton, OR) with modules
IPython50 (v7.5.0), Matplotlib51 (v3.1.0), Scikit-learn52 (v0.19.1), Pandas53

(v0.24.2) and Numpy54 (v1.16.2).

Modeling
In contrast to classical prediction models such as logistic regression, RNNs
are able to capture the temporal development of features in a truly
sequential fashion as they incorporate information about preceding time
steps, links between single timesteps and a direct indicator of the current
position in the timeline (see Fig. 5).
We constructed a set of RNNs with different architectures (preceding

convolutional layer, different cell types) which allow to process dynamic
temporal information.
Hyperparameter tuning was performed on the training set using fivefold

cross-validation with balanced class proportions in each fold. We used the
Adam optimizer55 with a fixed learning rate of 0.001. The hyperparameter
configurations leading to the highest overall AUC on cross-validation folds
of the training set were chosen as final models.
As the parameters of an RNN depend on their initialization and the order

in which the training instances are presented, 10 final models with the
same hyperparameters but different initializations were trained on the
training set. Our final model comprised a uniform ensemble of the 10
constituent models.
For the modeling process we used Python v3.6.7 (The Python Software

Foundation, Beaverton, OR) with modules Tensorflow56, IPython50 (v7.5.0),
Matplotlib51 (v3.1.0), Scikit-learn52 (v0.19.1), Pandas53 (v0.24.2) and
Numpy54 (v1.16.2).

Fig. 4 Total observation period for the training and test set. a Density distribution. b Histogram. For most patients the observation period
ended within three days after surgery.
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Measuring RNN performance
We measured the performance of the RNN on an independent test set. No
instance of this test set was used for training of the final model. We
calculated AUC, precision-recall-AUC (PR_AUC), accuracy, sensitivity,
specificity, PPV, negative predictive value (NPV), false-positive rate (FPR)
and the F1-score to measure prediction correctness.
In addition, we calculated the mean of the Brier score57—or mean

squared error—of each patient (MSEpat)—a measure of accuracy of
predictions, without the need for a set threshold.
A single patient’s Brier score—or mean squared error—is calculated as

follows:

MSEpat ¼ 1=tsj
Xtsj

i¼0

ðyji � yjtÞ2 (3)

where tsj is the number of timesteps, yji the prediction at time step i and yjt
the true label of patient j.
The MSEpat ranges from 0 to 1, with value 0 meaning perfect prediction

and 1 meaning worst prediction. Random guessing (always predicting
50%) would result in a MSEpat of 0.25. In contrast to the metrics mentioned
above, the MSEpat is independent of the individual observation length of a
patient and the resulting number of predictions per patient.
We adjusted the threshold for positive class prediction until a fixed

sensitivity of 0.85 on cross-validation folds in the training set was reached
(threshold= 0.41).
Our model predicted the risk of developing AKI every 15min after the

initial surgery. The predictions of an individual patient can be regarded as a
cluster of usually highly correlated data. We therefore had to adjust the CIs
of our model’s metrics. We calculated the 95% CI of each metric X as
follows:

X þ�1:96σðXÞ
with a standard error σðXÞ of variable X of

σðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xð1� XÞ

neff

s
(4)

To account for intracluster correlation, our sample size n was adjusted,
resulting in an effective sample size of58,59

neff ¼ n
DE

¼
Pk

i¼1

Pmi
j¼1 1

DE
(5)

where k is the number of patients and mi the number of time steps of
patient i. DE denotes the design effect, also called variance inflation factor,
and can be calculated as follows60:

DE ¼ mk
Pk

i¼1
mi

1þðmi�1ÞICC
(6)

with ICC as the intracluster correlation coefficient. The ICC was calculated
using the R package ICC61 (v2.3.0).

Comparing RNN vs. human performance
We set up an experiment to compare the performance of our RNN against
that of experienced physicians (see Fig. 1). For each patient in the test set,
a quasi-random point in time in their observation period was chosen,
further denoted as the ‘prediction point’. In contrast to real uniform
random samples, which tend to form clusters and contain regions without
any points at all, quasi-random sequences reduce the probability of cluster
formation while still being uniformly distributed62,63. This method
prevented us from accidentally exclusively sampling prediction points
from e.g. the first half of the patients’ observation periods.

Table 5. Input feature overview.

Feature Group (no. features) Features

Patient characteristics (4) Age, sex, weight, height

Laboratory results (25) Phosphate, total bilirubin, baseline creatinine, creatinine, baseline urea, urea, glomerular filtration rate, creatine
kinase (CK), CK-MB, red blood count, white blood count, platelets, C-reactive protein, gamma-
glutamyltransferase, glutamic oxaloacetic transaminase, hemoglobin, international normalized ratio, lactate
dehydrogenase, magnesium, hematocrit, prothrombin time, partial thromboplastin time, mean corpuscular
hemoglobin, mean corpuscular volume, mean corpuscular hemoglobin concentration

Surgery characteristics (20) Aortic cross-clamp time, cardiopulmonary bypass time, time in operation theatre, surgery procedure (from
logistic regression text model, see Supplementary Note 1)

Vital signs (8) Systolic, mean and diastolic arterial pressure, central venous pressure, heart frequency, pulse, body
temperature, oxygen saturation

Arterial blood gas values (BGA) (15) Base excess, bicarbonate, glucose, hemoglobin, oxygen saturation, partial pressure of carbon dioxide and
oxygen, total carbon dioxide, pH level, potassium, sodium, calcium, lactate, carboxyhemoglobin,
oxyhemoglobin

Fluid output (2) Bleeding Rate, urine flow rate

Nephrotoxic agents (22) Allopurinol, Aminoglycosides, Amphotericin B, Antiplatelet agents (clopidogrel, ticlopidine), Benzodiazepines,
Cephalosporins, Cyclosporine, Haloperidol, Ketamine, Nonsteroidal anti-inflammatory drugs, Paracetamol,
Penicillines, Proton pump inhibitors, Pyrazolone derivatives, Quinolones, Ranitidine, Rifampin, Sulfonamides,
Tacrolimus, (Val-)/Ganciclovir, Aciclovir, Vancomycin
Red Blood Cell Transfusions

Fig. 5 Architecture of a recurrent neural network (RNN). At each
time step, the model receives the current time slice data as input as
well as the own output from the preceding time step. The features
are captured in a truly sequential fashion.
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At each prediction point, a physician and the RNN had to predict
whether a patient would develop AKI within the first 7 days after surgery.
All time series information up to the ‘prediction point’ was graphically

displayed for the physicians to mimic the electronic patient chart—
although here not in 15-min intervals but in the originally recorded time
resolution (up to 1min).
To create a realistic setting, physicians not only received information

about nephrotoxic agents, but of all administered drugs. In addition, the
surgery type was given to them as unstructured text manually extracted
from physicians’ notes. This information was not available to the RNN
model. Physicians were explicitly informed about the incidence rate of 50%
AKI in our test set.
A physician as well as the RNN made a probability prediction r of the

development of AKI for each patient at the respective prediction point. In
addition, the physicians made a binary decision (development of AKI: yes/
no).
We asked 14 physicians to participate in our study, 10 of whom agreed

(response rate= 0.71). All had to meet the selection criteria of ≥5 years of
clinical experience and ≥1 year of work experience on a cardiothoracic ICU.
From the 10 volunteers we selected seven physicians with different levels
of expertise (senior resident up to senior consultant) to create a most
realistic setting. Their working experience on a cardiothoracic ICU ranged
from at least one year up to several years. None of the participating
physicians were specialists in nephrology as nephrologists are usually not
constantly available on an ICU. Each physician made predictions for 50
different patients.

Statistical analysis
The initial aim of our study was to show that the RNN is not inferior to
experienced physicians in the prediction of AKI. For both, RNN and
physicians, the predictive quality of each probability prediction r was
measured by a score S as follows:

S ¼ r; if the patient developedAKI

S ¼ 1� r; if the patient did not developAKI

A prior investigation of the RNN’s predictions had shown that S was non-
normally distributed. Thus, for sample size calculation and power analysis
we considered the transformed score X, which was approximately normally
distributed:

X ¼ �logð�logðSÞÞ (7)

We assumed that X of the physicians’ predictions would also be normally
distributed.
Based on a significance level of α= 0.025, a power of at least 80% and a

non-inferiority margin of δ= 0.3 (this corresponds to a non-inferiority
margin of 5.5% for sensitivity+ specificity), we obtained a sample size of N
= 350.
Both, for RNN and physicians, we calculated AUC, PR_AUC, brier score,

accuracy, sensitivity, specificity, PPV, NPV, FPR and F1-score. We set the
threshold for positive class prediction to 0.5 as this was also the threshold
in the physicians’ predictions that corresponded to the ‘yes/no’-classifica-
tion. We calculated CIs for all metrics as described in Section ‘Measuring
RNN Performance’ whereas the effective sample size was neff= n= 350 as
there was no clustering.
For the statistical comparison of S between RNN and physicians we

applied a paired t-test. We used DeLong’s64 method to compare the two
correlated ROC curves using the R package pROC65 (v1.9.1). In addition, we
investigated the calibration of both, physicians’ and RNN’s predictions,
with the Hosmer-Lemeshow-Test using the R package ResourceSelection66

(v0.3-2). All three comparisons mentioned above were tested on a
significance level of α= 0.05.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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