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The rapid emergence of artificial intelligence (AI) 
deep learning models in health care has generated 
expectations that AI and its ability to deal with 
huge, complex, rapidly updating data arrays will 
deliver better patient care in data-rich intensive 
care units (ICUs), with such models holding the 
potential to inform decision making, alongside 
complementary methodological advances in modelling 
of ICU out comes.1 In The Lancet Respiratory Medicine, 
Alexander Meyer and colleagues report promising 
findings from deep learning recurrent neural network 
(RNN) models predicting severe complications in 
real time in patients recovering from cardiac surgery 
in intensive care.2 The authors considered three 
outcomes—mortality, renal failure with a need for 
renal replacement therapy, and postoperative bleeding 
leading to operative revision—and compared the 
predictive quality of their models against established 
standard-of-care clinical reference tools (Bojar’s 
algorithm for postoperative bleeding, the Simplified 
Acute Physiology Score II [SAPS II] for mortality, 
and the Kidney Disease: Improving Global Outcomes 
staging criteria for acute renal failure). The RNN 
models were trained and tested on 11 492 intensive 
care admissions, corresponding to 9269 patients, 
and the results validated externally with cases from a 
published dataset. With 52 patient features included 
in the models, 39 of which were dynamic and so could 
substantially change during hospitalisation (eg, blood 
pressure), the authors acknowledge that the volume 
and complexity of ICU data are already beyond human 
processing but are ideally suited for AI and its deep 
learning methods.

Given recent developments in these methods, it 
is not surprising that Meyer and colleagues’ models 
perform well statistically. The authors assessed the 
performance of their RNN models with a series of 
statistical measures, including area under the curve 
(AUC), which is a measure of how well a model can 
distinguish between classes; in this case, the two 
classes were whether a patient was going to experience 
a severe complication or not. Mortality prediction 
improved the AUC by 0·24, from the 0·71 achieved by 
SAPS II to 0·95 achieved by the RNN model. Similarly, 
prediction of bleeding with the RNN model increased 

the AUC by 0·29 from the 0·58 achieved by Bojar’s 
algorithm to 0·87. For individual prediction, the positive 
predictive value (PPV) of the RNN model for bleeding 
was 0·84, with a negative predictive value (NPV) 
of 0·77. Translating these numbers to the clinic, a PPV 
of 0·84 for bleeding indicates that 16 of 100 patients 
predicted to bleed are false positives, risking needless 
treatment; likewise, an NPV of 0·77 tells us that 23 of 
100 patients who are predicted not to bleed are false 
negatives, thus risking missed interventions. Prediction 
of mortality with the RNN model saw a slightly better 
performance, with a PPV of 0·90 and an NPV of 0·86, 
meaning ten of 100 patients predicted to die would be 
false positives and 14 of 100 predicted to survive would 
be false negatives.

These predictive results are important. The authors 
rehearse the model’s improvement over the clinical 
reference tools. However, by doing so, they miss the 
real target. A clinical algorithm for bleeding with an 
AUC of 0·58 is not performing much better than 
random guessing (for which the AUC would be 0·50), 
so few clinicians would use such an algorithm with 
any conviction, and thus it should not provide the 
benchmark for a model’s success. The promise of high 
performance and robust signals of RNN models will 
generate great user expectations and confidence, in 
contrast with fallible simple clinical guides; this promise, 
however, comes with the caveat that the workings 
and predictions of these models cannot be easily 
checked or adjusted. Therefore, the validated statistical 
performance of these RNN models needs to be very high 
to justify the trust clinicians will have to put in them. 
PPVs and NPVs of 0·77–0·84 are perhaps not sufficiently 
convincing in this context.

Meyer and colleagues’ models use raw, uncurated 
data without requiring time-consuming querying 
or correction, which would prohibit true real-time 
predictions. However, data quality is important 
because “Bad data can be amplified into worse 
models”.3 A specific concern about the data quality 
of electronic health records is misclassification and 
mismeasurement.4 Advantages of RNN models5,6 
are that they continuously learn, and as data feeds 
get larger and richer (eg, by including genomics and 
imaging data), computing power increases, and the 
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methodological engine improves, so the statistical 
performance of such models will improve further. 
Training RNNs on local data in both space and time 
allows the models to be personalised to diverse sets 
of patients in diverse health-care settings, and hence, 
in time, their application might have the power to 
decrease health inequalities globally. Meyer and 
colleagues’ RNN models also hold up reasonably well in 
the validation cohort,2 which is important for reliable 
implementation.

However, implementation is one of the most 
difficult challenges to realising the benefits of 
these decision-support tools. Meyer and colleagues 
acknowledge that models need testing prospectively,2 
recognising that where models predict outcomes, 
clinicians interpret signs, make decisions, and 
change behaviours to generate benefit for the 
patient.7 The clinician’s use of models for enhanced 
decision making needs rigorous assessment: do they 
understand outputs and interpret them correctly, 
and does model use lead to measurable changes in 
decisions that generate measurable patient benefits? 
The authors suggest that models could be directly 
integrated into existing electronic health record 
systems; however, this underestimates the substantial 
practical challenges to ensuring decision-support 
tools can process real-time data feeds and robustly 
deliver continuous guidance in a user-friendly format 
within the ICU. Industrial-academic collaborations 
(eg, IBM Watson and Google DeepMind) have 
encountered substantial problems in this regard.8 
In addition, issues arise around data ownership and 
access, given possible commercial exploitation of the 
required data feed inputs. 9

The greatest challenge will be integrating these 
decision-support tools into multidisciplinary shared 
decision making, ensuring that all teams involved 
are comfortable with an increased reliance on 
decision aids;10 a further challenge is making sure that 
patients and carers are properly informed about the 
methods being used and approve of this increased 
reliance on data-driven clinical decision making. This 
communication is difficult, not least because, unlike 
models such as the simple logistic prediction model 
that works with easily understood factors (eg, age, 
gender, or APACHE score), deep learning rests upon 
hidden factors that uncover complex, high-order data 

patterns; by definition, we do not know—and far less 
are able to describe or explain—what such a model 
is doing.

Any implementation of such models requires 
flawless operating performance. This real-world per-
formance needs to be convincingly and continuously 
demonstrated. For example, how robust are predictions 
if crucial data feeds, alone or in combination, go 
offline? What happens if a crucial data feed goes out 
of calibration, degrading in quality until it potentially 
becomes just noise? Would the model be able to learn 
internally if or when its predictions were becoming 
unacceptably accurate and switch itself off?

Many believe widespread deployment of these 
decision-support tools is inevitable and will generate 
better effectiveness and increased safety. For example, 
better decisions around which drugs to prescribe at 
which time and dose should decrease prescribing errors. 
Additionally, Meyer and colleagues’ model predicts 
future complications to initiate early interventions, 
which are assumed proven to be safe, effective, 
acceptable, and affordable. However, it could be that 
future models will address more vexed questions of 
withholding treatments (eg, on the grounds of futility 
or cost), generating complex clinical, ethical, and—
inevitably—legal issues.

Meyer and colleagues’ deserve congratulations 
on an elegant Article,2 confirming that RNN models 
in demanding patient groups and settings are 
within our grasp. However, the effective, safe, and 
affordable implementation of these models present 
a vast number of challenges. The excellent statistical 
performance of such tools are likely to improve 
further—and quickly. The remaining challenges, such 
as the human factors of training the practitioners, 
redesigning service delivery to integrate these tools, 
and bringing the patients fully on board in this 
adventure, are more difficult to overcome and doing 
so will require diverse skills and disciplines. Ongoing 
rigorous evaluation of benefits, safety, acceptability, 
and costs8 is necessary, perhaps using hybrid 
implementation-effectiveness designs—which allow 
the integrated evaluation of both the effectiveness of 
an intervention while addressing the facilitators and 
barriers to implementation.11 These challenges must be 
faced and overcome if we are to realise the undoubted 
potential benefits of AI in health care.
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A new low represents a new high in surgical safety
In The Lancet Respiratory Medicine, Nasser Altorki and 
colleagues1 report a post-hoc analysis of perioperative 
morbidity and mortality experienced by participants 
in a randomised clinical trial (CALGB/Alliance 140503) 
designed to ascertain the optimum amount of lung 
tissue to be removed during surgical management 
of T1aN0 lung cancer. The primary endpoint of the 
study—disease-free survival—has not been reported 
yet because data are yet to mature, but at a minimum, 
this exploratory study provides an updated reference 
for expected adversity after surgery for early-stage 
lung cancer, albeit in the context of a clinical trial. Of 
697 participants in the study, ten (1·4%) had died by 
90 days after surgery, and adverse events of grade 3 
or worse were reported in 102 (15%) patients. Altorki 
and colleagues point out that these results compare 
favourably with most published outcomes from large 
registries. To be fair, the study population probably 
benefited from several factors that have been associated 
previously with more favourable surgical outcomes—
eg, healthier patients, skilled thoracic surgeons, and 
presumably high-volume study centres.2,3 However, 
one could also argue that the surgical perspective 
offered by the clinical trial is, in some ways, more 
relevant than what has been used historically to 
characterise surgical safety. The available health-
related information—eg, performance status, smoking 
history, and pulmonary function—suggests the patient 
population was similar to modern cohorts of surgically 
managed lung cancer patients. However, by requiring 
surgeons to comply with surgical standards in the 
CALGB/Alliance 140503 study (ie, preoperative workup, 

surgical lymph-node assessments, and surgical margin 
assessment), patients underwent oncological resections 
maintaining current best practices in thoracic oncology, 
which is less common in large registries.4 Finally, the 
surgical environment—eg, surgeon training and hospital 
experience—is consist ent with recommendations from 
medical societies and payers encouraging patients to 
have lung cancer surgery at high-volume hospitals, 
by surgeons who are skilled in thoracic surgery, using 
minimally invasive techniques.5–7 As such, this cohort 
reflects the direction that surgically managed lung 
cancer is ideally heading.

The comparison of lobar (more lung tissue) and 
sublobar (less lung tissue) resections is highly relevant 
because the optimum extent of parenchymal treatment 
for early-stage lung cancer is currently unclear. Therefore, 
any additional risk associated with either of these two 
resection strategies would be of great clinical importance. 
Although the study by Altorki and colleagues is not the 
first to compare the safety of these different procedures, 
retrospective studies are subject to bias because 
less healthy patients are typically offered sublobar 
resections, potentially biasing against the sublobar 
cohort. By studying a randomised cohort of similarly 
healthy patients, Altorki and colleagues provide a novel 
perspective. Because the study was a post-hoc analysis, 
the infrequency of deaths renders the study considerably 
underpowered to exclude the observed 0·5% difference in 
90-day mortality between lobar and sublobar resection. 
However, Altorki and colleagues assume that these 
two approaches would be judged similarly safe (by the 
oncology community and, presumably, patients). This 
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