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The drivers of critical coronavirus disease 2019 (COVID-19) remain unknown. Given major confounding 
factors such as age and comorbidities, true mediators of this condition have remained elusive. We 
employed a multi-omics analysis combined with artificial intelligence in a young patient cohort where major 
comorbidities were excluded at the onset. The cohort included 47 “critical” (in the intensive care unit under 
mechanical ventilation) and 25 “non-critical” (in a non-critical care ward) patients with COVID-19 and 22 
healthy individuals. The analyses included whole-genome sequencing, whole-blood RNA sequencing, plasma 
and blood mononuclear cells proteomics, cytokine profiling, and high-throughput immunophenotyping. An 
ensemble of machine learning, deep learning, quantum annealing, and structural causal modeling were 
employed. Patients with critical COVID-19 were characterized by exacerbated inflammation, perturbed 
lymphoid and myeloid compartments, increased coagulation, and viral cell biology. Among differentially 
expressed genes, we observed up-regulation of the metalloprotease ADAM9. This gene signature was 
validated in a second independent cohort of 81 critical and 73 recovered patients with COVID-19, and were 
further confirmed at the transcriptional and protein level as well as by proteolytic activity. Ex vivo ADAM9  
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INTRODUCTION 
Unlike many viral infections and most respiratory virus 

infections, coronavirus disease 2019 (COVID-19) is character-
ized by a complex and diversified spectrum of clinical mani-
festations (1). Indeed, upon infection with severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2), age-, sex-, 
and phenotype-matched individuals can be classified within 
four distinct groups: (1) asymptomatic individuals, (2) pa-
tients displaying influenza-like illnesses, (3) patients affected 
by respiratory dysfunction who eventually need an external 
oxygen supply, and (4) patients suffering from acute respira-
tory distress syndrome (ARDS) who need invasive mechani-
cal ventilation in an intensive care unit (ICU). Even though 
the last group represents only a small fraction of COVID-19 
patients, this group encompasses the most critical form of the 
disease and has an average case-fatality rate of approximately 
25% (2). Despite intense investigation, the fundamental ques-
tion of why the course of the disease shows such a marked 
difference in an otherwise, apparently indistinguishable set 
of individuals remains unanswered (3–6). To better under-
stand this issue, high-resolution molecular analyses should 
be applied to well-defined cohorts of patients and controls 
where a maximum of confounding factors have been elimi-
nated. These factors include older age as well as a number of 
comorbidities, such as cerebrovascular disease, types 1 and 2 
diabetes, chronic kidney disease, chronic obstructive pulmo-
nary disease, or heart conditions (7). 

Several studies have used single, or a restricted number 
of, omics technologies to uncover molecular processes associ-
ated with disease severity, usually in unfiltered critical 
COVID-19 patients. Systemic inflammation with high concen-
trations of acute-phase proteins (C reactive protein; CRP, se-
rum amyloid A; SAA, calprotectin) (8) and inflammatory 
cytokines, particularly interleukin (IL)-6 and IL-1β (9–11) has 
been found to be a hallmark of disease severity. In contrast, 
following an initial burst shortly after infection, the type I 
interferon (IFN) response is impaired at the RNA (12) and 
protein (13) level. Severity was also correlated with profound 
immune dysregulation, including modifications in the mye-
loid compartment with increases in neutrophils (14, 15), de-
creases in nonclassical monocytes (8) and dysregulation of 
macrophages (10, 16). The lymphoid compartment is also 
modified by both B cell activation (17) and an impaired T cell 
response, characterized by skewing toward a Th17 phenotype 

(18, 19). Moreover, coagulation defects have been identified 
in critically ill patients who are prone to thrombotic compli-
cations (20–22). Nevertheless, the full spectrum of omics 
technologies has not been applied to a highly curated cohort 
of patients with COVID-19 and controls that was established 
by eliminating a number of key confounding factors that af-
fect severity and death, such as older age and comorbidities, 
at onset. 

In this cross-sectional study, we aimed to analyze the 
SARS-CoV-2-induced molecular changes that are characteris-
tic of critical patients and differentiate them from non-criti-
cal patients. We hypothesized that certain host driver genes 
might be responsible for the development of critical illness 
and that those genes might represent therapeutic targets. To 
test these hypotheses, we performed an ensemble artificial 
intelligence (AI) and machine learning (ML)-based multi-om-
ics study of 47 young (under 50 years of age) patients with 
COVID-19 without comorbidities admitted to the ICU and un-
der mechanical ventilation (“critical” patients), versus 
matched patients with COVID-19 needing only hospitaliza-
tion in a non-critical care ward (25 “non-critical” patients) 
and an age- and sex-matched control group of 22 healthy in-
dividuals not infected with SARS-CoV-2 (“healthy”). The 
multi-omics approach included whole-genome sequencing 
(WGS), whole-blood RNA sequencing (RNA-seq), quantitative 
plasma and peripheral blood mononuclear cell (PBMC) pro-
teomics, multiplex plasma cytokine profiling, and high-
throughput immune cell phenotyping. These analyses were 
complemented by the status of anti-SARS-CoV-2 neutralizing 
antibodies and multitarget IgG serology as well as the meas-
urement of neutralizing anti-type I IFN auto-antibodies in 
the entire cohort. 

RESULTS 
A young, comorbidity-free patient cohort was ana-

lyzed by a multiomics approach 
The present study focused on patients who were hospital-

ized for COVID-19 at a university hospital network in north-
east France (Alsace) during the first French wave of the 
pandemic (March to April 2020), before the routine use of 
corticosteroids. A total of 72 patients under 50 years of age 
without comorbidities were enrolled. Fifty-three of these pa-
tients were men (74%), and the median age of the patients 
was 40 [IQR 33; 46] years. The patients were divided into two 
groups: (i) a “critical” group consisting of 47 (65%) patients 

inhibition decreased severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uptake and 
replication in human lung epithelial cells. In conclusion, within a young, otherwise healthy, cohort of 
individuals with COVID-19, we provide the landscape of biological perturbations in vivo where a unique gene 
signature differentiated critical from non-critical patients. We further identified ADAM9 as a driver of 
disease severity and a candidate therapeutic target. 
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hospitalized in the ICU due to moderate or severe ARDS ac-
cording to the Berlin criteria (23) with 45 requiring invasive 
mechanical ventilation and 2 requiring high-flow nasal oxy-
gen and noninvasive mechanical ventilation due to acute res-
piratory failure and (ii) a “non-critical” group consisting of 25 
patients (35%) who stayed at a non-critical care ward. In the 
latter group, nineteen (76%) needed low-flow supplemental 
oxygen. Patients who were transferred from the non-critical 
care ward to the ICU (n=19) were considered “critical” pa-
tients and for these the sampling was done upon ICU admis-
sion in the same conditions as patients directly admitted to 
the ICU. The median simplified acute physiology score 
(SAPS) II of the patients at the ICU was 38 [IQR 33; 47] 
points, and the median PaO2/FiO2 ratio of these patients was 
123 [IQR 95; 168] mmHg upon admission. All the patients 
were discharged from the hospital or were deceased at the 
time of data analysis. The overall hospital- and day-28 mor-
tality rate was 8.3% (6 patients, all in the critical group, for a 
mortality of 13% in this group). The characteristics of the pa-
tients in both groups are summarized in Table 1. 

Based on these two patient groups and an additional 
group of 22 healthy (SARS-Cov-2 negative) sex- and aged-
matched controls, we applied a global multi-omics analysis 
strategy to identify pathways and drivers of ARDS (Fig. 1). 
PBMCs were analyzed by mass-cytometry (CyTOF) and shot-
gun proteomics. Plasma samples were used for multiplex cy-
tokine quantification and shotgun proteomics. Serum 
samples were used for multiplex IgG serology (24), detection 
of anti-SARS-CoV-2 neutralizing antibodies and anti-type I 
IFN neutralizing autoantibodies. Finally, RNA-seq and WGS 
were performed using whole-blood samples. Unless other-
wise specified, all measures were obtained from samples that 
were collected at the time of hospital admission (whether at 
the ICU or the non-critical care ward). Validation of the iden-
tified driver genes was performed using an ex vivo model of 
SARS-CoV-2 infection. The top 600 genes found by classifica-
tion of patient cohort 1 were evaluated in a second, independ-
ent cohort of 81 critical patients and 73 recovered critical 
patients (table S1). 

Critical illness is characterized by a proinflamma-
tory cytokine storm, changes in the T, B, dendritic and 
monocyte cell compartments and is independent of the 
extent of viral infection 

The global proinflammatory cytokine profile showed sig-
nificantly increased concentrations of IFN-γ (P=0.034), tu-
mor necrosis factor (TNF)-α (P=0.022), IL-1β (P=0.0002), IL-
4 (P=0.036), IL-6 (P<0.0001), IL-8 (P=0.0004), IL-10 
(P=0.0002), and IL-12p70 (P=0.0221) in critical versus non-
critical patients (Fig. 2A). This “cytokine storm” (25) was 
more pronounced in critical patients, as only IFN-γ, TNF-α 
and IL-10 were higher in non-critical patients as compared to 
healthy controls. Although the disease severity was initially 

associated with an RNA-seq based type I IFN signature, the 
absence of an increase in the plasma concentration of IFN-α 
in critical versus non-critical patients, the decrease in the 
IFN-α concentration during the ICU stay, and the reduction 
in the number of plasmacytoid dendritic cells, which are the 
main source of IFN-α, suggest that the IFN response is indeed 
impaired in critical patients (fig. S1) (12). 

At a systemic level, lymphopenia is correlated with disease 
severity (25–27) (Fig. 2B). To further characterize the immune 
cells, we analyzed PBMCs by mass cytometry using an im-
mune profiling assay covering 37 cell populations. Visualiza-
tion of stochastic neighbor embedding (viSNE) showed a cell 
population density distribution pattern that was specific to 
the critical group (Fig. 2C). This pattern could be partly 
linked to the known immunosuppression phenomenon in 
critical patients (12, 28, 29), which was characterized by 
marked differences in the T cell compartments, where 
memory CD4 and CD8 T cells and Th17 cells were negatively 
correlated with disease severity (Fig. 2D). The latter observa-
tion is in line with the absence of a clear association between 
the plasma concentration of IL-17 and disease severity (Fig. 
2A). In contrast, the B cell compartments of critical patients 
contained more naïve B cells and plasmablasts and fewer 
memory B cells than those of healthy controls (Fig. 2E). In 
accordance with previous reports (17), the number of plas-
mablasts tended to be higher in critical versus non-critical 
patients. Moreover, non-critical and critical patients were 
also characterized by lower numbers of dendritic cells and 
nonclassical monocytes (Fig. 2F and G). The remaining cell 
populations are presented in fig. S2. Altogether, the results 
indicate that critical illness was characterized by a proinflam-
matory cytokine storm and notable changes in the T, B, den-
dritic and monocyte cell compartments. These specific 
changes were independent from the extent of viral infection, 
as both the global anti-SARS-CoV-2 antibody concentrations 
and their neutralizing activity were not different in critical 
versus non-critical patients (fig. S3A and B). 

To complete the immunologic profile, based on findings 
suggesting that at least 10% of critical patients have preexist-
ing anti-type I IFN autoantibodies (30, 31), we measured anti-
IFN-α2 and anti-IFN-ω neutralizing autoantibodies in pa-
tients and controls. Autoantibodies against type I IFNs were 
identified in two critical patients (fig. S3C) but none of the 
non-critical patients nor the healthy controls. Interestingly, 
in these two patients, the presence of autoantibodies was as-
sociated with an absence of SARS-CoV-2 neutralizing anti-
body titers (fig. S3D). 

Quantitative plasma and PBMC proteomics high-
light signatures of acute inflammation, myeloid activa-
tion, and dysregulated blood coagulation 

Quantitative nanoLC-MS/MS analysis of whole unfrac-
tionated plasma samples identified a total of 336 proteins. 
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Differential analysis was performed on an average of 178 ± 7, 
189 ± 11 and 195 ± 8 proteins in healthy individuals, non-crit-
ical and critical patients, respectively (Fig. 3A). These experi-
ments were conducted on crude liquid digested plasma 
samples without any fractionation or depletion of high abun-
dant proteins to favor repeatability and robustness of quan-
tification and differential analysis, at the cost of a lower 
proteome coverage. After validating the homogeneous distri-
bution of the three groups using a multidimensional scaling 
plot, we performed a differential protein expression analysis 
to identify protein signatures that were specific to critical pa-
tients (Fig. 3B and C). In line with previous studies (8, 32), 
the antimicrobial calprotectin (heterodimer of S100A8 and 
S100A9) was among the top differentially expressed proteins 
(DEPs) in critical versus non-critical patients, which confirms 
that calprotectin is a robust marker for disease severity (Fig. 
3D). Our data also showed dysregulation of multiple apolipo-
proteins including APOA1, APOA2, APOA4, APOM, APOD, 
APOC1 and APOL1 (Fig. 3C and E). Most of these proteins 
were associated with macrophage functions and were down-
regulated in critical patients. Acute-phase proteins (CRP, 
CPN1, CPN2, C6, CFB, ORM1, ORM2, SERPINA3, and SAA1) 
were strongly up-regulated in critical patients (Fig. 3C and E). 
These findings are consistent with previous studies showing 
that acute inflammation and excessive immune cell infiltra-
tion are associated with disease severity (26, 33, 34). 

Whole-cell lysates of PBMCs from the same groups of pa-
tients and controls were also subjected to quantitative 
nanoLC-MS/MS analysis, which led to the identification and 
quantification of a total of 2196 proteins. Differential analysis 
was performed on an average of 801 ± 213, 1050 ± 309 and 
1052 ± 286 proteins in healthy individuals, non-critical and 
critical patients respectively (Fig. 3F). Although the human 
proteome coverage was relatively low after exclusion of con-
taminating fetal calf serum peptides and the distribution of 
the three groups in the multidimensional scaling plot was 
less clear than that found for plasma proteins, the differential 
expression analysis between non-critical and critical patients 
showed dysregulation of blood coagulation and myeloid cell 
differentiation (Fig. 3G to I). The latter observation involving 
the CA2, AHSP, SLC4A1, TFRC, DMTN, FASN, and PRTN3 
proteins was in line with the plasma proteomics results evi-
dencing dysregulation of macrophages and with other re-
ports showing that severe COVID-19 is marked by a 
dysregulated myeloid cell compartment (15). The profile of 
the blood coagulation proteins HBB, HBD, HBE1, SLC4A1, 
PRDX2, SRI, ARF4, MANF, ITGA2, ORM1, and SERPINA1 
confirmed that severity is also associated with coagulation-
associated complications that can involve either bleeding or 
thrombosis (35). 

Combined transcriptomics and proteomics analysis 
supports inflammatory pathways associated with 

critical disease 
Consistent with the proteomics data, differential gene ex-

pression and gene set enrichment analysis of RNA-seq data 
from whole blood samples collected from the patients 
showed that regulation of the inflammatory response, mye-
loid cell activation and neutrophil degranulation were the 
main enriched pathways in critical patients with normalized 
enrichment scores of 2.33, 2.65 and 2.66, respectively (Fig. 4A 
and B). To identify enriched pathways that were supported 
by different omics layers, we performed nested GOSeq 
(nGOseq) (36) functional enrichment of the differentially ex-
pressed genes or proteins identified from the RNA-seq, 
plasma and PBMC proteomics data (Fig. 4C). In line with the 
cytokine profiling results (Fig. 2A), inflammatory signaling 
and the response to proinflammatory cytokine release (IL-1, 
IL-8 and IL-12) were supported by multiple omics datasets. 
As suggested by the results from immune cell profiling (Fig. 
2C and D) and previous studies, the B cell response was acti-
vated, whereas the T cell response was impaired (17, 37). As 
previously observed (8, 14, 15, 38), the activation of neutro-
phils and monocytes was confirmed by the enrichment of 
nine different nGOseq terms (Fig. 4C). The nGOseq enrich-
ment analysis also indicated that dysfunction of blood coag-
ulation involves a fibrinolytic response; however, this 
observation could also be linked to the anticoagulant therapy 
administered to most critical patients. Moreover, nGOseq 
terms related to viral entry and even viral transcription were 
strongly enriched for patients with critical disease across the 
three omics datasets. This result was consistent with the 
identification of viral gene transcripts in the RNA-seq data of 
eight critical patients, but not in those from non-critical pa-
tients (table S2). 

Integrated AI, ML, and probabilistic programming 
reveals a robust gene expression signature and identi-
fies driver genes that differentiate critical from non-
critical patients. 

To robustly identify a set of genes that might differentiate 
between non-critical and critical COVID-19 patients and 
could thus be related to the progression to ARDS, we parti-
tioned the 69 patient blood RNA-seq data (46 critical and 23 
non-critical patients) 100 times to account for sampling vari-
ation, using 80% for training and 20% for testing, and evalu-
ated the performance of seven distinct AI and ML algorithms, 
including a quantum support vector machine (qSVM), to dif-
ferentiate between patients with non-critical and critical 
COVID-19. We have previously shown that quantum anneal-
ing is a more robust classifier for relatively small patient 
training sets (39). The receiver operating characteristic 
curves (ROCs) for the 100 partitions of the patient data as 
well as other classification performance metrics are shown in 
Fig. 5A and table S3. The classification performance on the 
test set provided a high degree of confidence that the signals 
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learned by the various AI and ML algorithms are generaliza-
ble. 

After successfully classifying non-critical versus critical 
patients based on whole-transcriptome RNA-seq profiling, 
we assessed feature scores across the six distinct ML algo-
rithms and all partitions to determine an ensemble feature 
ranking, ignoring features from the partitions of patient data 
where the test Area Under the Receiver Operating Character-
istic (AUROC) was less than 0.7. Aggregating the best per-
forming features across both the algorithm and data 
partitions afforded a more robust and stable set of general-
izable features. 

This signature represented hundreds of genes that are dif-
ferentially expressed and, by itself, did not distinguish be-
tween driver genes of critical COVID-19 and genes that react 
to the disease. Therefore, we then selected the top 600 most 
informative genes and used them as input for structural 
causal modeling (SCM) to identify likely drivers of critical 
COVID-19. We confirmed that these 600 genes are biologi-
cally relevant for distinguishing between critical and non-
critical patients by retraining an ensemble ML classifier us-
ing only those 600 genes (table S4). Previous work has shown 
that SCM of RNA-seq data produces causal dependency struc-
tures, which are indicative of the signal transduction cas-
cades that occur within cells and drive phenotypic and 
pathophenotypic development (40). However, this approach 
works best if the gene sets are stable and consistent across 
six different algorithms, as shown here. The resultant SCM 
output is presented as a directed acyclic graph (DAG) (Fig. 
5B), a gene network representing the putative flow of causal 
information, with genes on the left predicted to have the 
greatest degree of influence on the entire state of the net-
work. Perturbing these genes is the most likely to be disrup-
tive to the state of the network (fig. S4) and is expected to 
exert the greatest effect on the expression of downstream 
genes. The top five genes associated with the greatest degree 
of putative causal dependency were ADAM9, RAB10, 
MCEMP1, MS4A4A and GCLM, and all five of these genes 
were significantly up-regulated in critical patients with false 
discovery rates (FDR) of 1.6x10−11, 3.1x10−12, 1.6x10−11, 1.0x10−9 
and 5.3x10−13, respectively (Fig. 5C). 

To further assess the informativeness of this COVID-19 
gene expression signature, we employed a second independ-
ent patient cohort consisting of critical COVID-19 patients 
sampled at the time of entry into the ICU and recovered crit-
ical patients sampled at three months after discharge from 
the ICU. Patients in this second cohort were from a more typ-
ical COVID-19 ICU population as no exclusion criteria based 
on age or absence of comorbidities were applied (table S1). 
Although non-critical COVID-19 patients cannot be assumed 
to be the same as recovered critical COVID-19 patients, and 
thus the ML models from the first patient cohort cannot be 

directly applied to the second, the second patient cohort was 
used to provide additional evidence of the overall importance 
of the gene expression signature related to critical forms of 
COVID-19. The driver genes followed the same trend in the 
second patient cohort; namely that all five of these genes 
showed increased expression in the critical COVID-19 patient 
groups (fig. S5A). Moreover, an ensemble of ML classifiers 
trained on the second cohort using the 600 genes identified 
in the first group of patients was well able to differentiate 
between critical and recovered patients (fig. S5B and C); clas-
sification performance when training on the differentially ex-
pressed genes between critical and recovered patients was 
nearly the same as the first patient cohort (table S5), which 
further suggests a substantial degree of biological relevance 
of this gene signature. 

ADAM9 is a driver of ARDS in critical COVID-19 pa-
tients. 

Among the five driver genes identified by structural 
causal modeling, we primarily focused on experimentally de-
termining the role of ADAM9 (a disintegrin and a metallopro-
tease 9) in COVID-19 etiology because (i) it was the gene with 
the greatest degree of causal influence in the SCM DAG, (ii) 
it was the only driver gene that was previously shown to in-
teract with SARS-CoV-2 through a global interactomics ap-
proach (41, 42) and (iii) it is an entry factor for another RNA 
virus, the encephalomyocarditis virus (43). ADAM9 is a met-
alloprotease with various functions that are mediated either 
by its disintegrin domain for adhesion or by its metalloprote-
ase domain for the shedding of a large range of cell surface 
proteins (44). The ADAM9 gene encodes two isoforms which 
are translated into either membrane-bound or secreted pro-
tein. Although neither isoform could be detected using our 
proteomics approach, ADAM9 was up-regulated at the RNA 
level, and the secreted form was found at a higher concentra-
tion in the serum of critical versus non-critical patients (Fig. 
6A and B). The transcriptional up-regulation of ADAM9 was 
also found to be associated with disease severity in a previ-
ously published bulk RNA-seq dataset (fig. S6) (45). To assess 
the potential for increased metalloprotease activity in the 
critical cohort, we quantified the soluble form of the MICA 
protein (46), which is known to be cleaved by ADAM9 (47) by 
ELISA. The concentration of soluble MICA was indeed signif-
icantly higher in the plasma of critical patients as compared 
to non-critical patients (P=0.016) and healthy controls 
(P=0.0001; Fig. 6C). A global expression quantitative trait loci 
(eQTL) analysis using WGS and RNA-seq data identified 
eight SNPs associated with three of the top five putative 
driver genes with genome-wide significance (P<0.0001 for all 
SNPs, table S6). Among these SNPs, rs7840270 is localized 
just 0.3 kb upstream of the ADAM9 gene and an eQTL for 
blood expression was reported in the Genotype-Tissue Ex-
pression database (GTEx). In the present cohort, including all 
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3 groups together, the C allele was associated with a higher 
abundance of ADAM9 transcripts (Fig. 6D) as it is in the 
GTEx dataset. The higher expressing allele C was indeed 
more frequent in critical than in non-critical patients (71.3% 
versus 50%, OR=2.48, 95% CI: [1.14-5.36], P=0.017). This was 
not due to any difference in ethnicities between critical and 
non-critical groups (fig. S7) (48). ADAM9 RNA expression was 
significantly higher in the CC compared to CA (P=0.049) and 
AA (P=0.0046) genotypes only in the critical group, suggest-
ing that the CC genotype may contribute to higher ADAM9 
RNA expression in critical patients (fig. S8). 

To assess the role of ADAM9 in viral infection, we set up 
an ex vivo assay in which ADAM9 was silenced by siRNA in 
Vero 76 or A549-ACE2 (49) cells and subsequently infected 
the cells with SARS-CoV-2. Viral replication was monitored 
by flow cytometry quantification of the intracellular nucle-
ocapsid protein and by quantitative viral real time polymer-
ase chain reaction (qRT-PCR) of the culture supernatant (Fig. 
6E). The average silencing efficiency reached 66% in Vero 76 
cells and 93% in A549-ACE2 cells (fig. S9). In both cell lines, 
the amount of intracellular virus and the quantity of released 
virus were lower when ADAM9 was silenced as compared to 
the control condition that was treated with a control siRNA 
(Fig. 6F and G). Our results collectively demonstrate that 
ADAM9 is an in vivo up-regulated driver in critical patients. 
We also show a higher global proteolytic activity in serum 
samples of critical patients and demonstrate that a higher 
amount of ADAM9 facilitates viral infection and replication 
in an ex vivo cellular model. 

DISCUSSION 
A number of studies have detailed the molecular and cel-

lular modifications associated with COVID-19 disease sever-
ity (8, 11, 12, 15, 16, 34, 45, 50–54), yet very few studies have 
targeted a young population with no comorbidities to reduce 
confounders that may also drive severity and mortality, and 
these confounders were limited to epidemiology or standard 
clinical parameters such as CRP, D-dimers or SOFA scores 
(55–57). A comprehensive understanding of the immune re-
sponses to SARS-CoV-2 infection is fundamental to develop 
an explanation as to why some young patients without 
comorbidities progress to critical illness whereas others do 
not, a phenomenon that has been exacerbated with new viral 
variants in current epidemic waves across the globe (58, 59). 
In particular, knowledge of the molecular drivers of critical 
COVID-19 is urgently needed to identify predictive bi-
omarkers and more efficient therapeutic targets that function 
through drivers of critical COVID-19 rather than to down-
stream or secondary events (60–62). 

Here, we used a multi-omics strategy associated with in-
tegrated AI, ML, and probabilistic programming methods to 
identify pathways and signatures that can differentiate criti-
cal from non-critical patients in a population of patients 

younger than 50 years without comorbidities. This in silico 
strategy provided a detailed view of the systemic immune re-
sponse that was globally in accordance with previously pub-
lished data. The thrust of our work, however, was to define a 
consistent transcriptomic signature that can robustly differ-
entiate critical from non-critical patients, as shown by the 
classification performance metrics assessed in this study. 
Moreover, one can infer the biological relevance of the 
COVID-19 gene expression signature found in patient cohort 
1 as the same classification performance was achieved in the 
second, independent patient cohort composed of 81 critically 
ill and 73 recovered critical patients. 

Using the top 600 gene expression features of the signa-
ture as the input for structural causal modeling, we derived a 
causal network that uncovered five putative driver genes: 
RAB10, MCEMP1, MS4A4A, GCLM and ADAM9. RAB10 (Ras-
related protein Rab-10) is a small GTPase that regulates 
macropinocytosis in phagocytes (63), which is a mechanism 
that has been suggested to be involved in the entry of SARS-
CoV-2 into respiratory epithelial cells (64). MCEMP1 (mast 
cell expressed membrane protein 1) is a membrane protein 
specifically associated with lung mast cells, and decreasing 
the expression of this protein has been shown to reduce in-
flammation in septic mice (65, 66). MS4A4A (a member of the 
membrane-spanning, four domain family, subfamily A) is a 
surface marker for M2 macrophages that mediates immune 
responses in pathogen clearance (67) and regulates arginase 
1 induction during macrophage polarization and lung inflam-
mation in mice (68). GCLM (glutamate-cysteine ligase modi-
fier subunit) is the first rate-limiting enzyme of glutathione 
synthesis and has been linked to severe COVID-19 (68). Alt-
hough these four genes are all good candidates that can at 
least partially explain the severity of the disease, we focused 
our functional validations on ADAM9, which represented, 
from an in silico standpoint, the most promising driver gene. 
The confirmed up-regulation of ADAM9 at the RNA and pro-
tein levels in critical patients, which might partly be linked 
to pre-stored ADAM9 release by neutrophils (69), the in-
creased metalloprotease activity in these same patients, and 
our ex vivo validation of its effect on viral uptake and repli-
cation are strong arguments supporting the targeting of this 
protein as a potential therapeutic strategy for the treatment 
or prevention of critical COVID-19. In vitro, we found that 
ADAM9 dramatically affects viral uptake or replication. The 
inhibition of this presumed mechanism of action of ADAM9 
might represent a target for the treatment SARS-CoV-2 or 
other viral infections. Moreover, therapies that block viral up-
take rather than host receptor binding are more likely to be 
variant-independent, a known virological behavior which 
might, at least partially, compromise current vaccination ef-
forts (70). 

Due to its implication in tumor progression and 
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metastasis, ADAM9 is currently being tested as a target of 
antibody-drug-conjugate therapy for solid tumors (71). A re-
purposing strategy using ADAM9-blocking antibodies for the 
treatment of critical COVID-19 patients could therefore be en-
visioned. Alternatively, other therapeutic agents to reduce 
the ADAM9 concentration or activity could be pursued. 

Our study has several limitations. Based on the present 
experimental results, we cannot conclude yet as to the molec-
ular mechanism linking ADAM9 and viral uptake or replica-
tion. The predictive performance of ADAM9 as diagnostic 
marker for disease severity, as well as therapeutic target has 
to be evaluated in further studies. In addition, due to the dif-
ferences in the first and second patient cohorts, we were un-
able to fully assess the generalizability of the RNA-seq gene 
signature found in the first patient cohort to the second pa-
tient cohort. Finally, we did not test the silencing of ADAM9 
on various SARS-CoV-2 variants. 

In conclusion, this study presents a detailed multi-omics 
investigation of a well-characterized cohort of young, previ-
ously healthy, critical COVID-19 patient series compared with 
non-critical patients and healthy controls. In addition to un-
covering a landscape of molecular changes in the blood of 
critical patients, we applied a data-driven ensemble AI/ML 
strategy, which was independent of prior biological 
knowledge and thus minimized possible annotation biases, to 
gain insights into COVID-19 pathogenesis and to provide po-
tential candidate diagnostic, prognostic and especially much 
needed therapeutic targets that might be helpful in combat-
ing the COVID-19 pandemic. 

MATERIALS AND METHODS 
Study design 
In March and April 2020, patients aged less than 50 years, 

who had no comorbidities (of note, obesity alone was not con-
sidered an exclusion criterion) and were admitted for COVID-
19 to the infectious disease unit (hereafter designated non-
critical care ward) or to the designated ICUs at the university 
hospital network in northeast France (Alsace) were investi-
gated within the framework of the present study. Follow-up 
was performed until hospital discharge. SARS-CoV-2 infec-
tion was confirmed in all the patients by qRT-PCR tests for 
COVID-19 nucleic acid of nasopharyngeal swabs (72). The eth-
ics committee of Strasbourg University Hospitals approved 
the study (COVID-HUS, reference CE: 2020-34). Written in-
formed consent was obtained from all the patients. The de-
mographic characteristics, medical history, and symptoms 
were reported. Three groups were considered: (1) the “critical 
group” which included 47 patients admitted to the ICU, (2) 
the “non-critical group”, which was composed of 25 hospital-
ized patients at the non-critical care ward, and (3) the 
“healthy control group”, which included 22 healthy age- and 
sex-matched blood donors aged less than 50 years. A second, 
independent cohort composed of 81 critical patients and 73 

recovered critical patients from one of the ICU departments 
of Strasbourg University hospitals was used to further evalu-
ated our molecular classification findings. No sample size cal-
culations, randomization, or blinding was performed. 

Sampling 
Venipunctures were performed within the first hours af-

ter admission to the ICU or medical ward within the frame-
work of routine diagnostic procedures. A subset of ICU 
patients (73%) were sampled every 4 to 8 days posthospitali-
zation until discharge or death. Patient blood was collected 
into BD Vacutainer tubes with heparin (for plasma and 
PBMCs), EDTA (for DNA) or without additive (for serum) and 
into PAXgene Blood RNA tubes (Becton, Dickinson and Com-
pany). Blood from healthy donors was sampled in BD Vacu-
tainer tubes with heparin, with EDTA or without additive. 
Plasma and serum fractions were collected after centrifuga-
tion at 900 × g at room temperature for 10 min, aliquoted, 
and stored at -80°C until use. PBMCs were prepared within 
24 hours by Ficoll density gradient centrifugation. Aliquots 
of 1 × 106 dry cell pellets were frozen at -80°C until use for 
proteomics. Aliquots of a minimum of 5 × 106 cells were fro-
zen at -80°C in 90% fetal calf serum (FCS)/10% dimethyl sul-
foxide (DMSO). The EDTA and PAXgene tubes were stored at 
-80°C until use for DNA and RNA extraction, respectively. 

Cytokine profiling 
The plasma samples were analyzed using the V-PLEX Pro-

inflammatory Panel 1 Human Kit (IL-6, IL-8, IL-10, TNF-α, 
IL-12p70, IL-1β, IL-2, IL-4 and IFN-γ) and the S-PLEX Human 
IFN-α2a Kit following the manufacturer’s instructions 
(Mesoscale Discovery). Undiluted plasma was used for the S-
PLEX Human IFN-α2a Kit and plasma was diluted two-fold 
for use with the V-PLEX Proinflammatory Panel 1. The MSD 
plates were analyzed with an MS2400 imager (Mesoscale Dis-
covery). Soluble IL-17 in undiluted serum was quantified by 
Quantikine HS ELISA (Human IL-17 Immunoassay) following 
the manufacturer’s instructions (R&D Systems). All stand-
ards and samples were measured in duplicate. 

Immune phenotyping by mass cytometry 
PBMCs were thawed rapidly, washed twice with 10 vol-

umes of RPMI-1640 (Roswell Park Memorial Institute) me-
dium (Thermo Fisher Scientific) and centrifuged for 7 min at 
300 × g at room temperature between each washing step. 
Cells were then treated with 250 U of DNase (Thermo Fisher 
Scientific) in 10 volumes of RPMI-1640 medium for 30 min at 
37°C in the presence of 5% CO2. During this step, the viability 
and the number of the cells were determined with Trypan 
Blue (Thermo Fisher Scientific) and Türk’s solution (Merck 
Millipore), respectively. After the elimination of DNase by 
centrifugation for 7 min at 300 × g at room temperature, a 
total of 3 × 106 cells were used for immunostaining with the 
Maxpar Direct Immune Profiling Assay kit (Fluidigm), fol-
lowing the manufacturer’s instructions, except that we used 
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32% paraformaldehyde (Electron Microscopy Sciences). A red 
blood cell lysis step was included after the immunostaining 
following the manufacturer’s instructions. The prepared cells 
were stored at -80°C until use for acquisition with a Helios 
mass cytometer system (Fluidigm). An average of 600000 
events were acquired per sample. The mass cytometry stand-
ard files produced with the Helios instrument were analyzed 
using Maxpar Pathsetter software v.2.0.45 that was modified 
for live/dead parameters: the tallest peak was selected in-
stead of the closest peak for the identification and quantifi-
cation of the cell populations. The FCS files from each group 
(healthy, critical, non-critical) were then concatenated using 
CyTOF software v.7.0.8493.0 for viSNE analysis (Cytobank 
Inc). A total of 300000 events were used for the viSNE map 
that was generated with the following parameters: iterations 
(1000), perplexity (30) and theta (0.5). viSNE maps are pre-
sented as the means of all samples in each group. 

Plasma proteomics analysis 
Two microliters of plasma were prepared using the Pre-

Omics iST Kit (PreOmics GmbH) according to the manufac-
turer’s protocol prior to nanoLC-MS/MS analysis on a 
nanoAcquity Ultra-Performance LC (UPLC) device (Waters 
Corporation) coupled to a Q-Exactive Plus mass spectrometer 
(Thermo Fisher Scientific), as detailed in the supplementary 
materials. A sample pool comprising equal amounts of all 
protein extracts was constituted and regularly injected dur-
ing the course of the experiment as an additional quality con-
trol. 

The raw data obtained from each sample (45 critical pa-
tients, 23 non-critical patients, and 22 healthy controls) were 
processed using MaxQuant (version 1.6.14). Peaks were as-
signed using the Andromeda search engine with trypsin/P 
specificity. A database containing all human entries was ex-
tracted from the UniProtKB-SwissProt database (May 11 
2020, 20410 entries). The minimal peptide length required 
was seven amino acids, and a maximum of one missed cleav-
age was allowed. Methionine oxidation and acetylation of the 
proteins’ N-termini were set as variable modifications, and 
acetylated and modified methionine-containing peptides, as 
well as their unmodified counterparts, were excluded from 
the protein quantification step. Cysteine carbamidomethyla-
tion was set as a fixed modification. The “match between 
runs” option was enabled. The maximum false discovery rate 
was set to 1% at the peptide and protein levels with the use 
of a decoy strategy. The normalized label-free quantification 
(LFQ) intensities were extracted from the ProteinGroups.txt 
file after the removal of nonhuman and keratin contami-
nants, as well as reverse and proteins only identified by site. 
This resulted in 336 quantified proteins. Complete datasets 
have been deposited in the ProteomeXchange Consortium 
database with the identifier PXD025265 (73). 

The LFQ values from MaxQuant were used for differential 

protein expression analysis. For each pairwise comparison, 
the proteins expressed in at least 80% of the samples in either 
group were retained. Variance stabilization normalization 
(Vsn) was performed using the justvsn function from the vsn 
R package (74). Missing values were imputed using the ran-
dom forest approach (75). This process resulted in 161 pro-
teins. Differential protein expression analysis was performed 
using the limma bioconductor package in R (76). Significant 
differentially expressed proteins were determined based on 
an adjusted P-value cutoff of 0.05 using the Benjamini-
Hochberg method. 

PBMC proteomics analysis 
PBMC pellets were prepared using the PreOmics’ iST Kit 

(PreOmics GmbH) according to the manufacturer’s protocol 
prior to nanoLC-MS/MS analysis on a nanoAcquity UPLC de-
vice (Waters Corporation) coupled to a Q-Exactive HF-X mass 
spectrometer (Thermo Fisher Scientific, Waltham), as de-
tailed in the supplementary materials. 

The raw data obtained from each sample (34 critical pa-
tients, 21 non-critical patients and 22 healthy controls) were 
processed using MaxQuant (version 1.6.14). Peaks were as-
signed using the Andromeda search engine with trypsin/P 
specificity. A combined human and bovine database (because 
of contamination with fetal calf serum in the samples) was 
extracted from UniProtKB-SwissProt (8 September 2020, 
26413 entries). The minimal peptide length required was 
seven amino acids and a maximum of one missed cleavage 
was allowed. Methionine oxidation and acetylation of the 
proteins’ N-termini were set as variable modifications, and 
acetylated and modified methionine-containing peptides, as 
well as their unmodified counterparts, were excluded from 
protein quantification. Cysteine carbamidomethylation was 
set as a fixed modification. The “match between runs” option 
was enabled. The maximum false discovery rate was set to 1% 
at the peptide and protein levels with the use of a decoy strat-
egy. Only peptides unique to human entries were retained 
and their LFQ intensities were summed to derive the protein 
intensities. This process resulted in 2196 quantified proteins. 
Complete datasets have been deposited in the Proteo-
meXchange Consortium database with the identifier PXD 
025265 (73). 

Summed peptides normalized label-free quantification 
(LFQ values from MaxQuant software) values were used for 
differential protein expression analysis. For each pairwise 
comparison, proteins expressed in at least 80% of the samples 
in either group were retained. Variance stabilization normal-
ization (Vsn) was performed using the justvsn function from 
the vsn R package (74). Missing values were imputed using 
the random forest approach (75). This resulted in 732 pro-
teins. Differential protein expression analysis was performed 
using the limma bioconductor package in R (76). Significant 
differentially expressed proteins were determined based on 
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an adjusted P-value cutoff of 0.05 using the Benjamini-
Hochberg method. 

Whole-genome sequencing (WGS) 
WGS data was generated from DNA isolated from whole 

blood. Novaseq 6000 (Illumina Inc.) machines were used for 
DNA sequencing to a mean 30X coverage. The raw sequenc-
ing reads from FASTQ files were aligned using Burrows-
Wheeler Aligner (BWA) (77), and Genomic Variant Call For-
mat (GVCF) files were generated using Sentieon version 
201808.03 (78). Functional annotation of the variants was 
performed using Variant Effect Predictor from Ensembl (ver-
sion 101). GATK version 4 (79, 80) was used for the joint gen-
otyping process and variant quality score recalibration 
(VQSR). We removed one duplicate sample based on kinship 
(king cutoff of 0.3) and retained 24476739 SNPs that were 
given a ‘PASS’ filter status by VQSR. The analysis of the 72 
samples from the critical and non-critical groups identified 
15870076 variants with MAF < 5%. The first two principal 
components were generated using plink2 on LD-pruned var-
iants with Hardy-Weinberg equilibrium in the controls with 
a P-value ≥ 1 × 10−6 and MAF > 5% and were used as covari-
ates to correct for population stratification. 

Analysis of expression quantitative trait loci 
(eQTLs) 

We performed local (cis-) eQTL analysis to test for associ-
ations between genetic variants and gene expression in 67 
samples having both RNA-seq and SNP genotype data. 
Briefly, we used the MatrixEQTL R package (81) where we 
selected a linear model and a maximum distance for gene-
SNP pairs of 1 × 106. The top two principal components iden-
tified from the genotype principal component analysis were 
used as covariates to control for population stratification. We 
selected 304044 significant eQTLs with FDR ≤ 0.05. 

RNA sequencing (RNA-seq) 
Whole-blood RNA was extracted from PAXgene tubes 

with the PAXgene Blood RNA Kit following the manufac-
turer’s instructions (Qiagen). A total of 69 samples, including 
46 critical and 23 non-critical patients were processed. The 
RNA quantity and quality were assessed using the Agilent 
4200 TapeStation system (for the RIN) (Agilent Technolo-
gies) and RiboGreen (for the concentration) (Thermo Fisher 
Scientific). RNA sequencing libraries were generated using 
the TruSeq Stranded Total RNA with Ribo-Zero Globin kit 
(Illumina) and sequenced on the Illumina NovaSeq 6000 in-
strument with S4 flow cells and 151-bp paired-end reads. The 
raw sequencing data were aligned to a reference human ge-
nome build 38 (GRCh38) using the short reads aligner STAR 
(82). Quantification of gene expression was performed using 
RSEM (83) with GENCODE annotation v25 
(http://www.gencodegenes.org). Raw and processed datasets 
have been deposited in GEO with identifier GSE172114. 

Differential gene expression (DGE) analysis was 

performed for two different purposes: 1) for the combined 
omics analysis of differentially expressed genes and proteins, 
and 2) as step to determine feature selection for classification 
in the in silico computational intelligence approach. For the 
combined omics analysis, we first removed lowly expressed 
genes for the 69 samples by removing genes with less than 1 
count per million in less than 10% of the samples. We then 
performed DGE analysis on all 69 samples using the trimmed 
mean of M-values method (TMM) from the edgeR R package 
(84, 85). 

In our computational intelligence approach, we per-
formed DGE analysis for each partition of the train data us-
ing a frozen TMM normalization to calculate normalization 
factors based only on the training data, in order to avoid data 
leakage. Briefly, we removed lowly expressed genes for the 69 
samples with genes with 1 count per million in less than 10% 
of samples. For each partition of the training data, we calcu-
lated the normalization factors, and then selected the library 
that had a normalization factor closest to 1. We used this li-
brary as a reference library to normalize all the samples keep-
ing the training normalization factors unchanged. 
Differentially expressed genes were identified using quasi-
likelihood F-test (QLF)-adjusted P-values from the edgeR R 
package. Differentially expressed genes with FDRs less than 
0.05 were used for further downstream analysis. 

Identification of potential driver genes through 
structural causal modeling 

To identify potential biomarkers that might differentiate 
patients in the non-critical group from those in the critical 
group, we used classification as a feature selection approach 
and then used the most informative features as input for 
structural causal modeling to identify potential driver genes. 
More specifically, classification was performed using the 
RNA-seq data by repeatedly partitioning non-critical and crit-
ical patients into 100 unique training and independent test 
sets representing 80% and 20% of the total data, respectively, 
ensuring that the proportions of non-critical and critical pa-
tients were consistent in each partition of the data. One hun-
dred partitions of the data were used to capture the biological 
variation and to obtain increased statistical confidence in the 
results. After classification, feature scores for each method 
were determined and combined across all 100 partitions of 
the data and six of the ML algorithms, not including the deep 
learning algorithm. In order to capture as much information 
as possible while still being able to finish the analysis in a 
reasonable amount of time, the 600 most informative fea-
tures were retained for structural causal modeling (600 fea-
tures is the maximum that the structural causal modeling can 
finish in a reasonable amount of time). We used seven dis-
tinct ML approaches for our classification models: LASSO, 
Ridge, support vector machine (SVM), quantum support vec-
tor machine (qSVM), eXtreme Gradient Boosting (XGB), 
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random forest (RF), and a deep artificial neural network 
(DANN). A description of the algorithms and their relevant 
hyperparameters are mentioned in their respective sections 
in the supplementary materials. Hyperparameters were se-
lected by using 10-fold cross-validation of the training data, 
and the performance was evaluated using the held-out test 
data. 

Ensemble feature ranking 
To derive an ensemble ranking of the feature importance, 

we first calculated the feature importances for each algo-
rithm. LASSO, Ridge, SVM, and qSVM are linear models, and 
thus the feature importance was determined based on the 
value of the weight assigned to each feature, with a larger 
score corresponding to greater importance. RF creates a for-
est of decision trees, and as part of the fitting process, it de-
termines an estimate of the feature importance by randomly 
permuting the features one at a time and determining the 
change in the accuracy. XGB calculates the feature im-
portance by averaging the gain across all the trees, where the 
gain is the difference in the Gini purity of the parent node 
and the two children nodes. 

The top 1000 most informative features of each model and 
for each partition of the data were retained. Because there 
were 100 partitions of the data, six algorithms (LASSO, Ridge, 
SVM, qSVM, RF, and XGB; DANN was not included because 
it lacks a robust approach to determine the feature im-
portance), and up to 1000 features were retained, a total of 
up to 600000 possible features were considered for each fea-
ture set, though it may be lower as the features may not be 
unique such that the 1000 features for one partition of the 
data might exhibit some overlap with the top 1000 features 
for another partition of the data). We discarded the feature 
scores from an algorithm on any partition with a test AUROC 
< 0.7 in an attempt to exclude scores that might not truly be 
informative. To aggregate the scores, we scaled the scores by 
the most informative feature for each algorithm on each par-
tition such that the feature scores were all between 0 and 1; 
for the first partition of the data, we scaled the 1000 most 
informative features from LASSO, then proceeded to do the 
same for Ridge, SVM, RF, and then repeated the process for 
each partition of the data. The scores were then averaged 
across all the partitions of the data to obtain a feature rank-
ing for each method. If a feature was determined to be im-
portant for one partition of the data but not for others, it was 
given a value of 0 for all partitions of the data in which it did 
not appear. To determine a final ensemble feature ranking, 
the grand mean across all training partitions and algorithms 
was taken, and the features were sorted by the average score. 

Structural causal modeling 
We generated Bayesian Belief Networks (BBNs) for the 

top 600 most informative genes as defined by ensemble fea-
ture ranking described above on the first patient cohort (the 

informativeness of those 600 genes was evaluated in the sec-
ond patient cohort). 600 genes were chosen to capture as 
much information possible while still allowing the algorithm 
to finish in a reasonable amount of time. A BBN is a directed 
acyclic graph (DAG), where the directionality of the arcs rep-
resents conditional dependencies between the nodes. Train-
ing of BBNs was performed in R using the bnlearn package 
(86). See supplementary materials for more details. 

Real-time reverse transcription quantitative PCR 
(qRT-PCR) 

Total RNA was extracted from cells using the RNeasy Mini 
Kit (Qiagen), and the RNA quality was assessed using an Ag-
ilent 2100 BioAnalyzer before reverse transcription into 
cDNA with Maxima H Minus Mastermix and following the 
manufacturer’s instructions (Thermo Fisher Scientific). RT-
qPCR was performed using QuantStudio3 (Thermo Fisher 
Scientific) according to the manufacturer's protocol, and us-
ing PowerTrack SYBR Green Master Mix (Thermo Fisher Sci-
entific, Waltham, MA, USA). The following primers were 
used: ADAM9, forward 5′-
GGACTCAGAGGATTGCTGCATTTAG-3′, reverse 5′-
CTTCGAAGTAGCTGAGTCATGCTGG-3′; and GAPDH 
(housekeeping gene), forward 5′-
GGTGAAGGTCGGAGTCAACGGA-3′ and 5′-
GAGGGATCTCGCTCCTGGAAGA-3′ (Integrated DNA Tech-
nologies). The qRT-PCR protocol consisted of 95°C for 2 min 
followed by 40 cycles of 95°C for 5 s and 60°C for 30 s. All 
reactions were performed in duplicate, and the relative 
amounts of transcripts were calculated with the comparative 
Ct method. Gene expression changes were calculated using 
the 2-ΔΔCt values calculated from averages of technical dupli-
cates relative to the negative control. Melting-curve analysis 
was performed to assess the specificity of the PCR products. 

Enzyme-linked immunosorbent assays (ELISA) 
The concentrations of soluble ADAM9 (sADAM9) and sol-

uble MICA (sMICA) in the serum of critical and non-critical 
patients and healthy controls were quantified by ELISA. For 
soluble ADAM9, we used the Human sADAM9 DuoSet ELISA 
kit (R&D Systems) following the manufacturer’s instructions. 
sMICA concentrations were measured with an in-house de-
veloped sandwich ELISA using two monoclonal mouse anti-
bodies for capture (A13-C485B10 and A9-C255A9 at 
concentrations of 2 mg/ml and 0.2 mg/ml, respectively) and 
one biotinylated monoclonal mouse antibody for detection 
(A15-C199B9 at 60 pg/ml); all three antibodies were made in 
house and described in Carapito et al. (87). Coating of Max-
iSorp ELISA plates (Thermo Fisher Scientific) was performed 
in phosphate-buffered saline (PBS) at 4°C overnight. After 
three washing steps with PBS, the wells were blocked with 
200 μl of 10% bovine serum albumin (BSA) in PBS for 1 hour 
at room temperature. All the following steps were carried out 
at room temperature with PBS/0.05% Tween 20/10% BSA, 
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which was used as a diluent for all the reagents and serum 
samples. The plates were washed three times with PBS/0.05% 
Tween 20 between incubation steps. After blocking, the 
plates were incubated with 100 μl of sera, standards and con-
trols for 2 hours, followed by incubation with 100 μl of bioti-
nylated detection antibody for 1 hour. The plates were 
subsequently incubated for 1 hour with 100 μl of a 5000-fold 
dilution of streptavidin poly-horseradish peroxidase (HRP, 
Thermo Fisher Scientific) per well. The reactions were finally 
revealed using 3,3′,5,5′-tetramethylbenzidin (TMB) Ultra 
(Thermo Fisher Scientific) at 100 μl/well for 15 min and 
stopped with 100 μl of 1 M HCl. The absorbance was meas-
ured at 450 nm on a Varioskan LUX (Thermo Fisher Scien-
tific). 

Silencing and cell transfection 
Vero 76 cell lines (Vero C1008, Cat. Nr. CRL-1586, Clone 

E6) were grown at 37 °C under 5% CO2 and maintained in 
DMEM (Thermo Fisher Scientific) containing 100 units/ml 
penicillin and supplemented with 10% fetal bovine serum 
(Pan Biotech). ACE2-expressing A549 cells (A549-ACE2; a gift 
from Olivier Schwartz, Institut Pasteur) were grown at 37 °C 
under 5% CO2 and maintained in DMEM (Thermo Fisher Sci-
entific) containing 10 μg/ml of blasticidin S (Invitrogen). The 
cells were transfected with predesigned Stealth siRNA di-
rected against ADAM9 (HSS112867) or the control Stealth 
RNAi Negative Control Duplex medium GC (45-55%) 
(Thermo Fisher Scientific) using Lipofectamine RNAiMAX 
Transfection Reagent (Thermo Fisher Scientific). One day 
prior to transfection, the cells were seeded in a 24-well plate 
at 0.05 × 106 cells per well. First, 1.5 μl of Lipofectamine 
RNAiMAX Transfection Reagent was added to 25 μl of Opti-
MEM medium, followed by addition of the mix containing 5 
pmoles of siRNA in 25 μl of Opti-MEM medium (Thermo 
Fisher Scientific). The mixture was incubated at room tem-
perature for 5 min and then added to the cells. The cells were 
collected or infected after 48 hours. 

In vitro viral infections 
Vero 76 and A549-ACE2 cell lines were infected with wild-

type SARS-CoV-2 virus at Multiplicities Of Infections (MOIs) 
of 10 and 400, respectively. The percentage of infected cells 
was determined by staining with SARS-CoV-2 nucleocapsid 
(% of nucleocapsid positive cells), and virus released into the 
supernatant was analyzed by RT-PCR (copies/ml), after 2 and 
3 days of infection for Vero 76 and A549-ACE2 cells, respec-
tively. The cells were fixed for 20 min in 3.6% paraformalde-
hyde at 4°C, washed in 5% FCS in PBS and stained with anti-
nucleocapsid antibody (GTX135357, Genetex) at a 1:200 dilu-
tion in Perm/Wash (Becton, Dickinson and Company) for 45 
min at room temperature. Samples were then incubated with 
Alexa Fluor 647-labeled goat anti-rabbit monoclonal antibody 
(Ab150083, Abcam, Cambridge, UK) diluted 1:200 in 5% FCS 
in PBS for 45 min at room temperature. Samples were 

acquired with a MACSQuant flow cytometer (Miltenyi Biotec) 
and analyzed with the Kaluza software (Beckman Coulter). 

RNA was extracted from the supernatant of infected cells 
using the NucleoSpin Dx Virus Kit (Macherey-Nagel GmbH & 
Co.KG). RT-qPCR was performed using TaqPath 1-Step RT-
qPCR Master Mix (CG) on the Quanstudio3 instrument 
(Thermo Fisher Scientific). The primer/probe mix used for 
absolute quantification of the virus was N1 and N2 from the 
2019-nCoV RUO Kit (Integrated DNA Technologies), and the 
positive control for the standard curve was 2019-nCoV N Pos-
itive Control (Integrated DNA Technologies). The reaction 
was performed in 20 μl, which included 5 μl of eluted RNA, 
5 μl of TaqPath Master Mix and 1.5 μl of the primer/probe. 
The qRT-PCR protocol consisted of 25°C for 2 min, 50°C for 
15 min, and 95°C for 2 min, and 40 cycles of 95°C for 3 s and 
60°C for 30 s. All reactions were performed in duplicate, and 
absolute quantification was calculated with the standard 
curve of the positive control. 

Statistical analysis 
Statistical analysis was performed with GraphPad Prism 

(GraphPad Software) unless stated otherwise. A P-value be-
low 0.05 was considered significant. For two groups compar-
isons, data were analyzed by unpaired, two-sided Mann-
Whitney or student’s t test. For three or more groups compar-
isons, data were analyzed by unpaired, two-sided Kruskal-
Wallis test, followed by Dunn’s post-test; * P < 0.05, ** P < 
0.01, *** P < 0.001, **** P < 0.0001. In figures and tables, “n” 
represents the number of biological replicates and “N” the 
number of times an experiment was independently per-
formed. 
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Fig. 1. A multi-omics analytical strategy identifies key pathways and drivers of Acute Respiratory 
Distress Syndrome in COVID-19. (A) Forty-seven critical patients (C), 25 non-critical patients (NC) and 22 
healthy controls (H) were enrolled in the study. PBMCs were isolated by density gradient and frozen until 
utilization for mass cytometry and whole proteomics. Plasma was used for cytokine profiling and whole 
proteomics. Serum was used to measure anti-type I IFN neutralizing antibodies, anti-SARS-CoV-2 
neutralizing antibodies and multi-target antiviral serology. Whole blood was used for RNA-seq and whole-
genome sequencing (WGS). The number of treated samples per group and per omics is indicated below 
each omics designation. (B) The RNA-seq pipeline is shown based on the NC versus C comparison. To 
increase robustness of downstream analyses, an ensemble intelligence approach with seven algorithms was 
applied to multiple partitions of the RNA-seq data (see Methods) to classify NC versus C patients, 
performing differential analysis on each partition of the data. An ensemble ranking score across six of the 
seven algorithms and all partitions of the data was then determined, and the top 600 of those genes were 
used as the input for structural causal modeling to derive a putative causal network. To support the key 
findings from the first patient cohort, RNA-seq data from a second patient cohort consisting of 81 critical 
and 73 recovered critical patients were used. The data was partitioned analogously to the first patient 
cohort, but only the top 600 features from the first patient cohort were used to assess the informativeness 
of the gene signature. (C) Cytokines and immune cells were quantified. WGS data were used for eQTL 
analysis together with the gene counts from the RNA-seq. Proteomics data were subjected to differential 
protein expression and nGOseq enrichment analyses. (D) The key pathways and drivers resulting from the 
omics analyses in (B and C) were validated in a second cohort of 81 critical and 73 recovered critical patients. 
The differential expression of ADAM9, the main driver gene, was compared to publicly available bulk RNA-
seq data. Finally, ex vivo infection experiments with SARS-CoV-2 were conducted to validate a driver gene 
candidate. 
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Fig. 2. Immune profiling differentiates healthy individuals, non-critical patients with COVID-19 and 
critical patients with COVID-19. (A) The concentrations of proinflammatory cytokines in plasma were 
quantified by cytokine profiling assays or ELISA. (B) Absolute lymphocyte counts are shown. Each dot 
represents a single patient. The dashed horizontal line indicates the lower limit of normal lymphocyte 
concentrations. (C) viSNE maps are shown colored according to the cell density across the three 
groups. Red indicates the highest density of cells. The plots are representative of 40 critical patients, 
23 non-critical patients and 22 healthy controls. (D to G) The proportions of modified lymphocyte 
subsets from patients with COVID-19 and healthy controls were determined by mass cytometry. 
Proportions of T cell subsets (D), B cell subsets (E), dendritic cells (F) and nonclassical monocytes 
(G) are shown. Each dot represents a single patient. In (A) and (D-G), the P-values were determined 
with the Kruskal-Wallis test followed by Dunn’s posttest for multiple group comparisons; *P < 0.05, ** 
P < 0.01, *** P < 0.001, **** P < 0.0001; ns, not significant. In (B), the P-value was determined by a 
two-tailed unpaired t test; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001; ns, not significant. 
In (A), data are shown as box-and-whiskers plots with medians, 25th to 75th percentiles, maximal and 
minimal values, and include n=41 critical patients, n=24 non-critical patients and n=21 healthy 
controls. In (B), (D) and (E to G), all data points are shown and bars represent means with n=40 critical 
patients, n=23 non-critical patients and n=22 healthy controls. 
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Fig. 3. Plasma and PBMC proteomics distinguish healthy individuals, non-critical patients with 
COVID-19 and critical patients with COVID-19. (A) The total number of proteins identified and used for 
quantification and differential analysis in the plasma of patients and healthy controls is shown. Each dot 
represents a patient. Bars represent means ± standard deviations. (B) A multidimensional scaling plot 
of the normalized intensities of all individuals in the three groups is shown. (C) A volcano plot 
representing the differentially expressed proteins (DEPs) in critical versus non-critical patients is 
shown. The orange dots represent the proteins that are differentially expressed with a corrected P-value 
< 0.05. Proteins labeled in green and purple represent down-regulated apolipoproteins and up-
regulated acute phase proteins, respectively. (D) Normalized intensities of the proteins S100A8 and 
S100A9 in the three groups are shown. Data are shown as box-and-whiskers plots with medians, 25th 
to 75th percentiles, maximal and minimal values, and include n=45 critical patients, n=23 non-critical 
patients and n=22 healthy controls. P-values were determined with the Kruskal-Wallis test, followed by 
Dunn’s posttest for multiple group comparisons; *P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001; 
ns, not significant. (E) The heatmap shows the expression of apolipoproteins involved in macrophage 
functions and acute phase proteins in the three groups. Up-regulated proteins are shown in red and 
down-regulated proteins are shown in light blue. (F) The total number of proteins identified and used for 
quantification and differential analysis in PBMCs of patients and healthy controls is shown. Each dot 
represents a patient. Bars represent means ± standard deviations. (G) A multidimensional scaling plot 
of the normalized intensities of all patients/individuals in the three groups is shown. (H) A volcano plot 
representing the DEPs in critical versus non-critical patients is shown. The orange dots represent the 
proteins that are differentially expressed with a corrected P-value < 0.05. Proteins labeled in green and 
purple are up-regulated proteins involved in the regulation of blood coagulation and myeloid cell 
differentiation, respectively. (I) The heatmap shows the expression of proteins involved in the regulation 
of blood coagulation and myeloid cell differentiation in the three groups. Up-regulated proteins are 
shown in red and down-regulated proteins are shown in light blue. 
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Fig. 4. RNA-seq and combined omics analysis reveal critical patient-specific pathways. (A) A volcano plot 
representing the differentially expressed genes in critical versus non-critical patients is shown. The orange dots 
represent the genes that are differentially expressed with a corrected P-value < 0.05. Proteins labeled in green 
and purple represent up-regulated genes involved in blood pressure regulation and viral entry, respectively. (B) 
Gene set enrichment analysis plots show positive enrichment of inflammatory response, myeloid leukocyte 
activation and neutrophil degranulation pathways in samples from patients with critical COVID-19. NES, 
normalized enrichment score. (C) Enriched nested gene ontology (nGO) categories are shown for critical versus 
non-critical patients using RNA-seq, plasma proteomics and PBMC proteomics data. 
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Fig. 5. Integrated AI, ML, and probabilistic programming distinguishes non-critical and critical patients with 
COVID-19. (A) ROCs of the train and test sets for critical versus non-critical comparisons are shown each of the 
seven modeling methods. All methods performed similarly. Other classification metrics are provided in table S3. 
(B) A putative network shows the flow of causal information based on the top 600 most informative genes for 
classifying RNA-seq data of critical versus non-critical patients. (C) Box plots show the normalized gene counts 
of the five driver genes identified that distinguish critical and non-critical patients. The indicated values 
correspond to the FDR. Data are shown as box-and-whiskers plots with medians, 25th to 75th percentiles, 
maximal and minimal values, and include n=46 critical and n=23 non-critical patients. 
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Fig. 6. ADAM9 is a key driver of SARS-CoV-2 infection and replication in vitro. (A) Quantitative RT-PCR 
confirmation of the differential expression of ADAM9 in non-critical (n=19) versus critical patients (n=38) and in 
healthy controls (n=20) is shown. (B) Soluble ADAM9 (sADAM9) concentration in serum samples isolated from 
healthy controls (n=15), non-critical (n=22) and critical patients (n=43) was determined by ELISA. (C) Soluble MICA 
concentration (sMICA) in serum samples isolated from healthy controls (n=11), non-critical (n=22) and critical 
patients (n=43) was determined by ELISA. (D) Expression of ADAM9 according to the genotype of the eQTL 
rs7840270 is shown (n are indicated below the genotypes). (E) The experimental approach for assessing viral uptake 
and viral replication in silenced Vero 76 or A549-ACE2 cells is shown. (F) Flow cytometry-based intracellular 
nucleocapsid staining in control and ADAM9-silenced Vero 76 and A549-ACE2 cells was quantified. One 
representative experiment of N=3 independent experiments with n=3 in each group is shown. (G) Quantitative RT-
PCR for SARS-CoV-2 in culture supernatant after the silencing of ADAM9 in Vero 76 or A549-ACE2 cells is shown. 
The results from probe N1 are shown. One representative experiment of N=3 independent experiments with n=3 in 
each group is shown. In (A to D), the P-values were determined with the Kruskal-Wallis test followed by Dunn’s 
posttest for multiple group comparisons; * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001; ns, not significant. 
In (F to G), the P-values were determined from a two-tailed unpaired t test; * P < 0.05, ** P < 0.01, *** P < 0.001, **** 
P < 0.0001. In (A to C) and (F to G) bars represent means ± standard deviations. 
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Table 1. Patient descriptions.  

Characteristics of all patients admitted to the hospital for COVID-19 

  
All patients 

(n=72) 
Non-critical Group 

(n=25) 
Critical Group 

(n=47) 
P 

Age – median, IQR 40 [33; 46] 38 [31; 45] 41 [34; 46] 0.24 

Male - n (%) 53 (73.6) 17 (68.0) 36 (76.6) 0.61 

BMI (kg/m2) – median, IQR 30.0 [26.8; 35.0] 29.7 [23.8; 33.0] 30.2 [27.1; 35.6] 0.54 

Time since first symptoms 
(days) – median, IQR 

8.0 [6.0; 11.0] 9.5 [7.2; 13.5] 7.0 [6.0; 10.0] 0.08 

COVID-19 treatments  
(during hospital stay) - n (%) 

    

Lopinavir/Ritonavir 21 (29.1) 3 (12.0) 18 (38.3) 0.02 

Remdesivir 3 (4.1) 1 (4.0) 2 (4.2) 1.00 

Hydroxychloroquine 19 (26.4) 2 (8.0) 17 (36.2) 0.01 

Corticosteroids 6 (8.3) 1 (4.0) 6 (12.8) 0.25 

Neurological symptoms -  
n (%) 

26 (50.0) 10/25 (40.0) 16/27 (59.2) 0.27 

Outcome - n (%)     

In-hospital and day-28- 
mortality 

6 (8.3) 0 6 (12.8) 0.09 

Characteristics of ICU patients 

  
Critical Group 

(n=47) 
 

Baseline severity scores 
SAPS II – median, IQR 

  

38 [33; 47]  

SOFA – median, IQR 6 [4; 9]  

ARDS - n (%) 45 (95.7)  

Moderate 21 (46.7)  

Severe 24 (53.3)  

Supportive treatments   

Invasive mechanical ventilation – n (%) 45 (95.7)  

Duration of invasive mechanical ventilation (days) – median, IQR 13 [7;24]  

NMBA – n (%) 40 (89.0)  

Catecholamines – n (%) 41 (91.1)  

Catecholamines (days) – median, IQR 4 [2;10]  

RRT – n (%) 7 (15.6)  

ECMO – n (%) 2 (4.4)  

BMI: body mass index; IL-6R: interleukin 6 receptor; IQR: interquartile range; ARDS: acute respiratory distress syndrome; 
ECMO: extracorporeal membrane oxygenation; NMBA: neuromuscular blocking agent; RRT: renal replacement therapy; 
SAPS II: simplified acute physiology score II; SOFA: Sequential Organ Failure Assessment. 
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