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Real-time prediction of mortality,
readmission, and length of stay using
electronic health record data
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ABSTRACT
....................................................................................................................................................

Objective To develop a predictive model for real-time predictions of length of stay, mortality, and readmission for hospitalized patients using elec-
tronic health records (EHRs).
Materials and Methods A Bayesian Network model was built to estimate the probability of a hospitalized patient being “at home,” in the hospital,
or dead for each of the next 7 days. The network utilizes patient-specific administrative and laboratory data and is updated each time a new pa-
thology test result becomes available. Electronic health records from 32 634 patients admitted to a Sydney metropolitan hospital via the emergency
department from July 2008 through December 2011 were used. The model was tested on 2011 data and trained on the data of earlier years.
Results The model achieved an average daily accuracy of 80% and area under the receiving operating characteristic curve (AUROC) of 0.82. The
model’s predictive ability was highest within 24 hours from prediction (AUROC¼ 0.83) and decreased slightly with time. Death was the most pre-
dictable outcome with a daily average accuracy of 93% and AUROC of 0.84.
Discussion We developed the first non–disease-specific model that simultaneously predicts remaining days of hospitalization, death, and readmis-
sion as part of the same outcome. By providing a future daily probability for each outcome class, we enable the visualization of future patient tra-
jectories. Among these, it is possible to identify trajectories indicating expected discharge, expected continuing hospitalization, expected death,
and possible readmission.
Conclusions Bayesian Networks can model EHRs to provide real-time forecasts for patient outcomes, which provide richer information than tradi-
tional independent point predictions of length of stay, death, or readmission, and can thus better support decision making.

....................................................................................................................................................

Keywords: prediction, patient outcome, mortality, readmission, length of stay

BACKGROUND AND SIGNIFICANCE
Rapid identification of hospitalized patients at high risk for an extended
length of stay (LOS), readmission, or death has the potential to im-
prove quality of care and reduce avoidable harm and costs. Early and
accurate identification of patients at high risk of death can be used to
call emergency medical teams to prevent death or, alternatively, to ini-
tiate counseling about end-of-life care.1 Appropriate management of
patients at their end of life by the provision of emergency and hospital
medical services, particularly the transition from acute to palliate care,
is a growing challenge for our health care systems, requiring better
education and improved risk-assessment tools.2 Early and accurate
knowledge of LOS can aid hospital administrators in the management
of bed occupancy. This is a crucial problem faced by hospitals, which
are pressured to shorten the LOS of their patients, potentially increas-
ing their risk of dying after discharge.3 An accurate estimate of LOS
together with risk of readmission and death can also help clinicians
with important discharge planning strategies for their patients; these
strategies are likely to improve continuity of care, and prevent read-
missions and deaths after discharge.4

With the implementation of electronic health record (EHR) systems,
laboratory test results, surgery data, ward transfers, and other relevant
temporal clinical information are available at the point of care. This
knowledge can be used to predict mortality, LOS, and readmissions in
real time. The most successful current models, achieving a C statistic
around 0.9, are those predicting in-hospital mortality.5–8 Two of these

models update their predictions of in-hospital mortality risk as new in-
formation about the patient becomes available: (1) Rothman et al 6 pre-
dicts mortality within 24 hours using the “Rothman index,” a
heuristically built, continuously updated index of patient conditions
based on pathology results, nursing assessments, and vital signs; and
(2) Wong et al7 uses a time-dependent Cox regression method to predict
patients’ daily risk of death during hospitalization. Long-term mortality
using large administrative datasets is also estimated with high accu-
racy.9,10 In these models, history of health care utilization and services,
such as palliative care, are used as proxies for patients’ clinical status.

Prediction of LOS is also addressed in a number of studies but
mostly in the context of specific diseases. Very few studies attempt to
predict LOS across all conditions using EHRs. A notable exception is a
study by Liu et al11 that uses automated laboratory and comorbidity
measures in a regression model to predict LOS at admission, with R2

of 0.134 and a root-mean-square error of 170 days. Readmission pre-
diction using routinely collected administrative and clinical data
focuses on predicting all-cause readmission within 30 days postdis-
charge and generally achieves poor to fair results.12 Only 1 study re-
ported a C statistic above 0.8.13 In this model, the strongest predictive
power came from a comprehensive risk score trained with administra-
tive and claims data of over 5.6 million patients to classify patients
into hierarchical condition categories.

Although existing models perform well, particularly for the predic-
tion of in-hospital mortality, most of them have been designed to
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predict a single outcome within a given time period. This study repre-
sents the first model to simultaneously estimate the sequence of fu-
ture daily probabilities of being in the hospital, “at home” (for which
we mean having been discharged alive), or dead over a time period.
This provides a more comprehensive, finer-grained forecast of patient
status. In addition, these predictions are continuously updated as new
information becomes available. These properties make this model a
suitable tool to aid in decision making at the point of care.

MATERIALS AND METHODS
Data
Electronic health records from 32 634 patients admitted to a Sydney
metropolitan hospital via the emergency department (ED) from July 1,
2008 through December 31, 2011 were collected. Additionally, for
each patient, 1-year history and 6-month postadmission records of all
hospital admissions, emergency department visits, and deaths within
the State of New South Wales (NSW) were extracted from population
health datasets—namely, the NSW Admitted Patient Data Collection
(APDC), the NSW Emergency Department Data Collection (EDDC), and
the NSW Registry of Births, Deaths and Marriages (RBDM). The Centre
for Record Linkage independently carried out both data linkages—the
linkage between the hospital EHRs and the NSW administrative data-
sets, and the linkage amongst the NSW administrative datasets.14 Of
the original 32 895 patients from the Sydney metropolitan hospital, 15
could not be linked to the APDC and 246 could not be linked to the
EDDC. The linkage amongst the APDC, EDDC, and RBDM was per-
formed using a probabilistic linkage procedure, which guarantees

false-positive rates< 0.5% and false-negative rates< 0.1%.14 The
dataset was split into nonoverlapping training and test sets. The training
set contained records of 24 625 patients admitted to the hospital from
July 1, 2008 through December 31, 2010. The test set contained the
remaining records of 8009 patients admitted to the hospital in 2011.

Each patient was characterized by a set of static variables, including
patient demographics (such as age and sex), patient history (such as cu-
mulative LOS in the previous year), and administrative admission informa-
tion (such as day of the week of admission or mode of arrival to the ED).
Dynamic variables included days already in the hospital, ward type, and
the value of pathology test results per temporal event. A temporal event
was defined as the time when 1 or more pathology test results were
made available and valid in the EHR for clinicians to read (see figure 1).

Pathology test results were labeled according to the laboratory-
provided reference range as “missing,” “normal,” or “abnormal.”
Here, pathology tests were defined by test type as well as panel type.
For example, Bicarbonate appears twice—once as part of the Urea,
Electrolytes, Creatinine panel and a second time as part of the blood
gas HCO3 panel. A list of these variables and their distribution across
temporal events in the training dataset is shown in tables 1 and 2.
Hospital admissions were characterized using ward type. Patient
wards were correlated to major diagnostic categories and preferred
over them because, unlike diagnostic categories and codes, they are
readily available to use for prediction in real time. Patient comorbidities
were estimated using International Classification of Diseases, Tenth
Revision, (ICD-10) codes from patients’ hospital admissions during the
previous year. However, since only 31% of patients had a history of
hospitalization in the previous year, a comorbidity index using this

Figure 1: An illustration of how the predictive model is updated following the availability of one or more pathology test re-
sults in the EHR system. Patient outcomes comprise the probability of staying at hospital, being “at home” (ie, having been
discharged alive), or being dead during each of the 7 days following a temporal event.
Abbreviation: CT, computed tomography.
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variable was not informative. Only conditions that could not have
emerged during a hospitalization and were thought to be important co-
morbidity groups, namely cancer patients and patients with mental
health conditions, were included and defined using their correspond-
ing ICD-10 codes before and during the current hospitalization.

Patient outcomes comprised the probability of being in the hospital,
at home, or dead during each of the 7 days following a temporal event.
In the training dataset, 2% of patients died and 18% were discharged

alive in the first day following a new pathology result. By day 7, 5% of
patients had died and 41% had been discharged from the hospital.

Model
A predictive model was built in 5 steps as depicted in figure 2:

1. For each target day after the time of prediction (day 1, 24 hours
after admission, to day 7), a feature selection algorithm (described

Table 1: Patient and admission characteristics across temporal events in the training dataset

Feature Temporal Statistics

Mean SD 25th percentile Median 75th percentile

Age, y No 57 21 39 58 74

Cumulative LOS previous year, d No 6 18 0 0 1

No. of days since previous admissiona No 268 139 132 365 365

No. of days since admission Yes 6.1 12.1 0 2 7

Day since last event Yes 0.4 1.4 0 0 0

Pathology tests from admission Yes 29.4 62.4 2 6 2

Gender, % No Male Female

61 39

No Yes

Mental Disorders, % No 60 40

Cancer, % No 89 11

Triage Codeb, % No 1 2 3 4 5 Empty

17 21 52 7 2 1

Day of Week, % No Mon Tue Wed Thu Fri Sat Sun

14 16 14 13 15 14 13

Time of Day, % No 00:00-07:59 08:00-15:59 16:00-23:59

20 44 36

Marital Code, % No Married Divorced Widow Others

36 4 10 50

Mode of Arrival to Emergency, % No Ambulance Service 61

Private Car 17

Community Public Transport 17

Others 5

Ward, % Yes Emergency Department 22

Intensive Care/High Dependency Unit 13

Cardiothoracic Surgery/Transplant 12

Neurology/Vascular/Stroke Unit 11

Gastrointestinal Unit 9

Cardiology 9

Oncology/Hematology/Immunology/Pharmacology 8

Others combined (< 7% each) 16

Abbreviation: LOS, length of stay.
aNote that past history spans for 1 year and 31% of patients were admitted during the previous year.
bTriage codes: 1¼ Resuscitation, 2¼ Emergency, 3¼ Urgent, 4¼ Semi-urgent, 5¼ Non-urgent.
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below) was used to select those variables most highly correlated
with the target day values and yet uncorrelated with each other.
We will call these the primary features.

2. For each primary feature, the same feature selection algorithm
was used to select those variables most highly correlated with the
primary feature values and yet uncorrelated with each other. We
will call these the secondary features. This strategy allows missing
values from the primary set of features to be inferred from the
added secondary set of features, and represents a model-based
imputation approach within a Bayesian Network (BN)
framework.15

3. Primary and secondary features were included as nodes in a BN.
Arcs were created from the target days to the primary features
and from the primary features to the secondary features.

4. Prior and conditional probabilities were learned from the training
dataset. This dataset consisted of a set of temporal events with
their corresponding primary and secondary features and patient
outcomes.

5. In the test dataset, outcomes for each patient on each target day
after each temporal event were predicted using the “learned” BN
model.

Feature Selection Algorithm
We selected features using a correlation-based feature selection ap-
proach and a “best-first search” algorithm.16 In this approach, a fea-
ture Vi is said to be relevant to the class C if there exists some feature
values vi and class value c for which P(Vi¼ vi)> 0 such that

P C ¼ cjVi ¼ við Þ 6¼ P ðC ¼ cÞ:

Starting with an empty set of features, the space of feature sub-
sets is searched by a “greedy hill-climbing” algorithm16 augmented
with a backtracking facility. The final selected feature subset contains
those features most highly correlated with the output classes and yet
uncorrelated with each other. Correlation is defined by the Pearson
correlation coefficient.17

Table 2: Summary of laboratory test results across temporal events in the training dataseta

Pathology Missing,
%

Abnormal,
%

Normal,
%

Pathology Missing
(%)

Abnormal
(%)

Normal
(%)

Albumin 57 13 30 Lymphocytes 41 32 27

Alkaline Phosphatase 57 11 32 Magnesium 60 7 34

Alanine Aminotransferase 57 16 27 Mean Corpuscular Hemoglobin 41 18 42

Activated Partial Thromboplastin
Time

76 9 15 Mean Corpuscular Hemoglobin
Concentration

41 2 58

Aspartate Aminotransferase 57 16 26 Mean Corpuscular Volume 41 9 50

Base Excess 67 11 21 Methaemoglobin 67 5 28

Basophils 41 1 58 Monocytes 41 9 50

Bicarbonate 39 20 41 Neutrophils 41 23 37

Calcium 60 9 31 Oxygen Saturation 67 11 22

Carboxyhemoglobin 67 10 23 Carbon Dioxide Partial Pressure 66 11 23

Chloride 39 6 55 Potential Hydrogen 67 13 20

Creatinine 39 16 44 Platelets 41 13 46

C-Reactive Protein 72 16 12 Oxygen Partial Pressure 67 20 13

Glomerular Filtration Rate 40 15 45 Urine Potassium 39 7 54

Eosinophils 41 3 57 Potassium (UEC) 67 4 29

Fraction of Inspired Oxygen 66 0 34 Prothrombin Time 82 6 12

Gamma Glutamyl Transferase 57 20 23 Red Blood Cell 41 30 30

Glucose 67 14 18 Red Cell Distribution Width 41 24 36

Hemoglobin 41 26 33 Urine Sodium 39 14 47

Bicarbonate 67 13 19 Sodium (UEC) 67 14 19

Hematocrit 41 33 27 Total Bilirubin 57 7 36

Inorganic Phosphate 60 8 33 Total Protein 57 13 30

Ionised Calcium 67 18 15 Urea 39 21 40

Lactate 67 4 28 White Blood Cell 41 19 40

Abbreviation: UEC, urea, electrolytes, creatinine.
aPathology test results were labeled as “missing,” “normal,” or “abnormal” according to the laboratory-provided reference range.
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Bayesian Network
A BN, B¼ (G, P) consists of an acyclic directed graph (G), with nodes
corresponding to a set of random variables X; P is the joint probability
distribution of the variables in X such that

P Xð Þ ¼
Y

x2X

P ðx jpG ðx ÞÞ

where pG(x) denotes the parents of X in G. In our patient risk predic-
tion problem, X corresponds to the input data (features) and output
(probability of an outcome). The representation of a joint probability
distribution in a BN generally reduces the number of parameters that
need to be estimated and allows for more efficient probabilistic
inference.18

Our BN model included the 7 target days, selected primary
features, and selected secondary features as nodes, representing ran-
dom variables. Arcs representing direct dependencies between 2 vari-
ables were created from each of the target days to their corresponding
selected primary features, and from these primary features to their
corresponding selected secondary features. Prior probability distribu-
tions for nodes without parents and probability distributions conditional
on parent nodes were learnt from the training dataset and are shown
in appendix A. The full network containing all nodes and arcs is shown
in figure 3. The BN model was programmed using Structural
Modeling, Inference, and Learning Engine, a fully portable library
of Cþþ classes implementing graphical decision-theoretic methods
developed at the Decision Systems Laboratory, University of
Pittsburgh.19

RESULTS
Temporal validation was used to evaluate the ability of the model to
predict events for unseen patients within the same population from
which the model was derived.20 Area under the receiving operating
characteristic and accuracy for each outcome class in the testing set
are shown in table 3. Other model performance indicators have been
included in appendix A. The highest predictive power was achieved on
day 1 (24 hours after a given prediction time), with a daily average ac-
curacy of 86% and AUROC¼ 0.83, and decreased slightly with time.
Daily average AUROC remained above 0.80 for all days. As with previ-
ous models, prediction of death was the most accurate outcome, with
average accuracies of 93% and AUROC¼ 0.84.

One of the advantages of our approach is that, for each patient,
the model provides a sequence of future daily probabilities (days 1–7)
for each outcome class, as opposed to independent single point pre-
dictions of LOS, readmission or death within a prespecified period. In
order to illustrate this approach, we selected 4 groups from the testing
dataset: patients who die during the week after the time of prediction,
patients who are discharged alive, patients who continue to be hospi-
talized, and patients who are readmitted after discharge. For each
group, we randomly picked patients for whom the model correctly
classified the patient outcome for all, or most of, the 7 future days.
These predictions of future “patient trajectories” are displayed in
figure 4.

Figure 4A illustrates a prediction of expected continuing hospitali-
zation, where the probability of staying in the hospital dominates all
others throughout the 7-day forecasting period. Figure 4B shows a

Figure 2: Overview of how the predictive model was built in 5 steps.
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Figure 3: The Bayesian Network model includes 7 target days (in yellow), selected primary features (in purple), and se-
lected secondary features (in blue) as nodes, representing random variables. Arcs were created from each of the target
days to their corresponding selected primary features, and from these primary features to their corresponding selected
secondary features. Rectangular nodes represent dynamic variables while elliptical nodes represent static variables.
Abbreviations: U. Sodium, urine sodium; U. Potassium, urine potassium; HCT, hematocrit; WBC, white blood cell count;
Hgb, hemoglobin; UEC, urea, electrolytes, creatinine; Alk. Phos., alkaline phosphatase; pH, potential hydrogen; CRP, C-re-
active protein; RBC, red blood cell count; APTT, activated partial thromboplastin time; Tot. Protein, total protein; ED arrival,
mode of arrival to emergency department; Triage, triage category; Prev. LOS, cumulative length of stay in previous hospi-
talizations; Inorg Phos, inorganic phosphate; Test Count, number of laboratory tests performed so far during hospitalization;
HOS days, days already in the hospital; Hours since HOS, hours since previous hospitalization.
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typical prediction of expected discharge, where the probability of dying
remains low throughout the week, and the probability of being at
home increases steadily from day 1 until it becomes higher than that
of being in the hospital at day 5. This indicates that discharge without
complications is expected around that day. Figures 4C and D show typ-
ical predictions of expected death. Figure 4C represents expected im-
mediate death, since the probability of dying in day 1 is already higher
than all others and remains so throughout the week. In Figure 4D, the
probability of staying in the hospital initially dominates but decreases
at the same time as the probability of death increases; and on day 4,
the latter surpasses all other probabilities and remains dominant until
the end of the forecasting period. This indicates that the patient is ex-
pected to die around or after day 4. Figure 4E shows a prediction of
expected readmission, where the probability of being at home exceeds
that of being in the hospital on day 3 but becomes lower again after
day 4. This indicates the possibility of a readmission after day 4. In re-
ality the patient for whom this prediction was made, was discharged
on day 6 and readmitted on day 7. This type of trajectories, where the
daily probabilities of being in the hospital and at home fluctuate
around 50%, are common in patients who are discharged and read-
mitted within a fortnight, indicating that readmission is hard to predict
with the variables available in this study.

DISCUSSION
This study presents a validated model for estimating the probability
that a hospitalized patient will remain in the hospital, be discharged,
readmitted, or dead in each of the next 7 days immediately after a
new pathology test result is available in the EHR system. To the best
of our knowledge, our model is the first non–disease-specific model
that combines the following features: (1) consolidates remaining days
of hospitalization, death, and readmission in the same outcome vari-
able; and (2) predicts a sequence of future daily probabilities rather
than a single probability over a given time period. As illustrated in fig-
ure 4, estimating simultaneously the future daily probability of being in
the hospital, at home, or dead over a time period provides a more
comprehensive, finer-grained forecast of patient risk.

Similar to the Rothman index,6 this model has been built to provide
continuously updated information of a patient’s status independent of
disease type or reason for admission. This provides a longitudinal
view of the patient, which may help with earlier detection of acute
events, discharge planning, and continuity of care. In our model, pa-
tients’ risk of extended LOS, readmission, or death is updated when-
ever a new pathology test becomes available. This time for updating

has been chosen due to the higher frequency of laboratory tests as
compared with other temporal events such as ward movements or
surgeries. However, it could be easily extended to incorporate other
events. Additionally, in this model, a pathology test that is not updated
at the time of a temporal event is considered as missing. A possible
alternative may be to consider the last available result or the last avail-
able result within a time range.

This model uses both patient history and administrative and clinical
information contained in patients’ EHRs. Most of this information was
available in real time, with the exception of the diagnostic codes used
to identify cancer patients and the data on previous hospitalizations at
different hospitals. Although we used ICD-10 codes in this study, iden-
tification of cancer patients and other phenotypes is currently possible
using data contained in the EHR system.21 As shown in our experi-
ments, administrative and clinical variables are discriminative vari-
ables that are suitable for predicting death, at least within the
following week. However, prediction of discharge time and readmis-
sion is more challenging, since those outcomes might depend on other
variables not available to this study, such as social or economic fac-
tors, and may also require larger training sets. We expect that as the
accuracy, consistency, completeness, and availability of EHRs rapidly
improve, so will the predictive power of these types of models, en-
abling new decision support tools.

We have used a graphical static probabilistic model in which both
the network structure as well as the parameter learning has come
from data. Desirable extensions of this work include the incorporation
of knowledge-based information in the construction of the network
structure, alternative ways of dealing with missing values, and the ex-
tension to dynamic BNs.

CONCLUSION
We have developed a BN model that simultaneously estimates the fu-
ture daily probabilities of being in the hospital, at home, or dead for a
hospitalized patient over a week after a new pathology test result be-
comes available. This model has good predictive power and provides
a finer-grained longitudinal forecast of patient status to aid in decision
making at the point of care.
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Figure 4: Model predictions for selected individual patients. Each line represents a future daily probability of being in the
hospital (red), “at home” (blue), or dead (green). Days 1 to 7 represent the future consecutive days relative to the time of
prediction. The dotted vertical lines indicate true events. Patients and times of prediction have been randomly selected
among examples for which the model correctly classifies patient outcomes for all, or most of, the 7 days. Panel A shows a
typical prediction of expected continuing hospitalization; Panel B illustrates a prediction of expected discharge. Panels C
and D are typical predictions of expected death, and Panel E predicts possible readmission.
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