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ABSTRACT
....................................................................................................................................................

Objective: To answer a “grand challenge” in clinical decision support, the authors produced a recommender system that automatically data-mines
inpatient decision support from electronic medical records (EMR), analogous to Netflix or Amazon.com’s product recommender.
Materials and Methods: EMR data were extracted from 1 year of hospitalizations (>18K patients with >5.4M structured items including clinical
orders, lab results, and diagnosis codes). Association statistics were counted for the �1.5K most common items to drive an order recommender.
The authors assessed the recommender’s ability to predict hospital admission orders and outcomes based on initial encounter data from separate
validation patients.
Results: Compared to a reference benchmark of using the overall most common orders, the recommender using temporal relationships improves
precision at 10 recommendations from 33% to 38% (P< 10�10) for hospital admission orders. Relative risk-based association methods improve
inverse frequency weighted recall from 4% to 16% (P< 10�16). The framework yields a prediction receiver operating characteristic area under
curve (c-statistic) of 0.84 for 30 day mortality, 0.84 for 1 week need for ICU life support, 0.80 for 1 week hospital discharge, and 0.68 for 30-day
readmission.
Discussion: Recommender results quantitatively improve on reference benchmarks and qualitatively appear clinically reasonable. The method assumes
that aggregate decision making converges appropriately, but ongoing evaluation is necessary to discern common behaviors from “correct” ones.
Conclusions: Collaborative filtering recommender algorithms generate clinical decision support that is predictive of real practice patterns and clini-
cal outcomes. Incorporating temporal relationships improves accuracy. Different evaluation metrics satisfy different goals (predicting likely events
vs. “interesting” suggestions).

....................................................................................................................................................

Keywords: clinical decision support systems, electronic health records, data-mining, recommender algorithms, collaborative filtering, practice
guidelines, practice variability, order sets

BACKGROUND AND SIGNIFICANCE
Variability and uncertainty in medical practice compromise quality of
care and cost efficiency. Knowledge is inconsistently applied, such as
25% of patients with a heart attack not receiving the aspirin they
should and overall compliance with evidence-based guidelines ranging
from 20% to 80%.1 A majority of clinical decisions (e.g., a third of sur-
geries to place pacemakers or ear tubes) lack adequate evidence to
support or refute their practice.1 Even with disruptive reforms,2 evi-
dence-based medicine from randomized control trials cannot keep
pace with the perpetually expanding breadth of clinical questions.
Medical practice is thus routinely driven by individual expert opinion
and anecdotal experience. The advent of the meaningful use era of
electronic medical records (EMRs)3 creates a new opportunity for
data-driven clinical decision support (CDS) that utilizes the collective
expertise of many practitioners in a learning health system.4–8

CDS tools such as order sets already help reinforce consistency
and compliance with best practices,9,10 but CDS production is limited
in scale by a top-down, knowledge-based approach requiring the
manual effort of human experts.11 One of the “grand challenges” in
CDS12 is thus the automatic production of CDS from the bottom-up by
data-mining clinical data sources. Instead of consulting individual ex-
perts for advice, a data-driven approach would allow us to effectively
consult every practitioner, learning how they all care for their similar
patients on a statistical average.

OBJECTIVE
Inspired by analogous information retrieval problems in recommender
systems, collaborative filtering, market basket analysis, and natural
language processing, we sought to automatically generate CDS con-
tent in the form of a clinical order recommender system13,14 analo-
gous to Netflix or Amazon.com’s “customers who bought A also
bought B” system.15 While a clinician may consider a broad differen-
tial diagnosis of possibilities or the risks and benefits of many inter-
ventions, clinical orders (e.g., labs, imaging, medications) are the
concrete manifestations of point-of-care decision making. Our broad
vision is to seamlessly integrate a system into clinical order entry
workflows that automatically infers the relevant clinical context based
on data already in the EMR and provides actionable decision support
in the form of clinical order suggestions. Prior approaches to auto-
mated CDS content development that predicts future or missing clini-
cal orders includes association rules, nearest neighbors, logistic
regression, Bayesian networks, and unsupervised clustering of clinical
orders.16–24 Our own preliminary work explored the impact of tempo-
ral relationships, alternative measures for uncommon but “interesting”
recommendations, and generalization towards predicting clinical out-
comes.13,14 Here we provide a more extensive evaluation of these
concepts to determine how robust the algorithm is for predicting more
varied clinical outcomes, whether it can be improved with different
approaches to item counts and score aggregation, and illustrate how
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disease-specific inferences are possible even without specified
diagnoses.

MATERIALS AND METHODS
Figure 1 outlines the data flow to implement and execute a clinical or-
der recommender. To begin, de-identified, structured EMR data from
all inpatient hospitalizations at Stanford University Hospital in 2011
was extracted by the STRIDE project.25 These data cover patient en-
counters from their initial (emergency room) presentation until hospital
discharge. With >18K patients, these data include >5.4M instances
of >17K distinct clinical items, with patients, items, and instances, re-
spectively, analogous to customers, items in a product catalog, and
items actually purchased by a customer. The clinical item elements in-
clude >3500 medication, >1000 laboratory, >800 imaging, and
>700 nursing orders. Nonorder items include >1000 lab results,
>5800 problem list entries, >3400 admission diagnosis ICD9 codes,
and patient demographics. Medication data were normalized with
RxNorm mappings26 down to active ingredients and routes of adminis-
tration. The ICD9 coding hierarchy was rebuilt up to three digit codes,
such that an item for code 786.05 would have additional items repli-
cated for code 786.0 and 786. Numerical lab results were binned into
categories based on “abnormal” flags established by the clinical labo-
ratory. The above preprocessing models each patient as a timeline of
clinical item instances as in Figure 2, with each instance mapping a
clinical item to a patient at a discrete time point.

With the clinical item instances following the “80/20 rule” of a
power law distribution,27 most clinical items may be ignored with min-
imal information loss. In this case, ignoring rare clinical items with
<256 instances (0.005% of all instances) reduces the effective item
count from >17K to �1.5K (9%), while still capturing 5.1M (94%) of
the 5.4M item instances. Process orders (e.g., vital signs, peripheral
Intravenous (IV) care, patient weight, regular diet, transport patient,
and all PRN medications) were excluded as they generally reflect rou-
tine care. The above leaves m ¼ 1482 distinct clinical items, of which
808 are clinical orders. This reduction greatly improves subsequent al-
gorithm efficiency which requires O(m2) space and O(q * m log m)
time complexity, where q is the number of query items considered.
Eliminating rare items also avoids bizarre results when there is insuffi-
cient data for reliable statistical inference.13

Based on Amazon’s recommender method,15 co-occurrence statis-
tics are precomputed from a random training set of 15 629 patients.
This builds an item association matrix based on the definitions in Table 1,
from which association statistics and Bayesian conditional probabilities
in Table 2 can be estimated. If (repeat) items are counted, the results
yield association metrics of support, confidence, and interest/lift.28

Counting items only once per patient affords a natural interpretation of
contingency statistics (e.g., relative ratio [RR], positive predictive value
[PPV], baseline prevalence, Fisher’s P-value) as in Table 3.

Generating and Evaluating Recommendations
To generate patient-specific recommendations, the recommender en-
gine is queried with a patient’s initial clinical items (A1, . . . , Aq) to re-
trieve statistics from the precomputed association matrix for all
possible target items (B1, . . . , Bm) (excluding those already in the
query set). Target items are ranked by a score such as
ConditionalFreq(BjjAi)(t), the maximum likelihood estimator for target
item Bj occurring after query item Ai within time t.

Given q query items, q separate lists of scored target items are
generated. We evaluated several approaches to aggregating these into
a single result list. In example equation (1) below, we use N̂ ABt as our
approximation for the average number of occurrences where target
item B follows any of the A1, . . . , Aq query items within time t. The op-
tional weights (1/NAi Þ are inversely proportional to the query item
baseline frequencies (lending more weight to less common, more spe-
cific query items):

bN ABt ¼
1Xq

i¼1
NAi

Xq

i¼1

1
NAi

NAi Bt (1)

A naı̈ve Bayes29 aggregation approach makes the simplifying
assumption that all query items occur independently of one another.
This allows us to approximate the post-test probability in equation (2)
with equation (3), which is estimated with the (co)-occurrence count
statistics. Note that for recommendation ranking purposes, the de-
nominator in (3) can be removed since it is constant for all target items
B considered. Furthermore, it is often necessary to use the logarithm
of the product series (i.e., sum of component logarithms) to avoid nu-
merical underflow with extremely small values:

P B jA1; . . . ; Aqð Þ ¼ P A1; . . . ; Aq ; Bð Þ
P A1; . . . ; Aqð Þ ¼

P A1; . . . ; Aq jBð Þ
P A1; . . . ; Aqð Þ P Bð Þ (2)

P̂ B jA1; . . . ; Aqð Þ ¼

Yq

i¼1
P Ai jBð ÞYq

i¼1
P Aið Þ

P ðBÞ �

Yq

i¼1

NAi B

NB

� �
Yq

i¼1

NAi
N

� � NB

N

� �
(3)

Equations (4)–(8) outline another general approach to estimating the
post-test probability of an item B given the item’s pretest probability
and the likelihood ratio for a single diagnostic test (i.e., occurrence of

Figure 1: Algorithm flowchart. Structured data extracted from
the electronic medical record (EMR) captures inpatient data
from initial (emergency room) presentation to discharge. Data
is preprocessed into timelines of clinical item instances, includ-
ing normalization of medications to active ingredient, binning of
numerical results into categories, and exclusion of rare and
routine process orders. Association statistics are precomputed
by counting item co-occurrences within a designated time
threshold parameter. Given a set of query items, the recom-
mender engine searches the association statistics to produce a
score-ranked list of related orders.
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an item A). Equations (4) – (6) include estimates based on (co)-occur-
rence count statistics:

PreProb ¼ Pretest probability ¼ P Bð Þ � NB

N
(4)

PreOdds ¼ Pretest odds ¼ PreProb
1� PreProb

� NB

N � NB
(5)

LRþ ¼ Positive Likelihood Ratio ¼ Sensitivity
1� Specificity

¼ P ðAjBÞ
P ðAj!BÞ

� NAB=NB

NA � NAB=N � NB
(6)

PostOdds ¼ Post test odds ¼ PreOdds� LRþ (7)

(Assumes positive test result. In this context, meaning that query item
A occurred.)

PostProb ¼ Post test probability ¼ PostOdds
1þ PostOdds

(8)

A serial Bayes30,31 aggregation approach uses the above equations
with a similar simplifying assumption of independent query items. If
the presence of each query item is considered a positive independent
diagnostic test for the target item, the post-test probability from one
test can be used as the pretest probability for the next test. This allows
for the overall post-test odds for target item B to be calculated from a
serial product of likelihood ratios as in equation (9):

PostOdds � PreOdds�
Yq

i¼1

LRþi �
NB

N � NB
�
Yq

i¼1

NAi B=NB

NAi � NAi B=N � NB

� �
(9)

While there is no well accepted notion of recommendation quality,
accurately predicting subsequent items (Figure 2) is the most commonly

Figure 2: Recommender testing flow diagram. Each patient’s data is modeled as a timeline of discrete clinical item instances as in the
left table. For a set of validation patients, items from the first 4 h of each patient’s timeline form a Query Set roughly corresponding to the
patient’s emergency room encounter. Each Query Set is fed into a Recommender module to produce a ranked Recommended List of all
candidate orders not already included in the Query Set. The Recommended List is compared against the Validation Set of orders that ac-
tually occur within 24 h.

Item Date Category Description
12/25/2010 12:07 ECG ECG 12-Lead 
12/25/2010 12:13 Imaging XR Chest 1V 
12/25/2010 12:13 Lab Blood Gases, Arterial 
12/25/2010 12:13 Med (Intravenous) Sodium Chloride (Intravenous) 
12/25/2010 12:13 Microbiology Blood Cultures 
12/25/2010 12:13 PoCare Test PoC Troponin I 
12/25/2010 12:28 PoCare Test PoC Venous Blood Gases and Lactate 
12/25/2010 12:30 Lab Result Albumin (Low) 
12/25/2010 12:30 Lab Result WBC (High) 
12/25/2010 12:30 Lab Result Sodium (Low) 
12/25/2010 12:30 Lab Result Blood Urea Nitrogen (High) 
12/25/2010 12:30 Lab Result Neutrophils, Absolute (High) 
12/25/2010 12:30 Lab Result WBC, Urine (Abnormal) 
12/25/2010 12:30 Lab Result Bacteria, Urine (Abnormal) 
12/25/2010 12:30 Lab Result Procalcitonin (High) 
12/25/2010 12:32 Med (Intravenous) Methylprednisolone (Intravenous) 
12/25/2010 12:35 Med (Inhalation) Levalbuterol (Inhalation) 
12/25/2010 12:54 Med (Intravenous) Levofloxacin (Intravenous) 
12/25/2010 12:55 Med (Intravenous) Piperacillin/Tazobactam (Intravenous) 
12/25/2010 12:55 Med (Intravenous) Vancomycin (Intravenous) 
12/25/2010 13:36 PROBLEM_LIST Pneumonia, organism unspecified 
12/25/2010 13:36 ADMIT_DX Shortness of breath 
12/25/2010 13:36 Admission Admit/Place Patient 
12/25/2010 15:03 ECHO ECHO – Transthoracic Echo +Doppler 
12/25/2010 15:04 Microbiology Urine Culture 
12/25/2010 20:37 Imaging US Vein Lower Extremity Bilateral r/o DVT 
12/25/2010 20:37 Isolation Droplet Isolation 
12/25/2010 20:37 Lab Lactic Acid 
12/25/2010 20:37 Lab Respiratory Virus DFA Panel-Reflex PCR 
12/25/2010 20:37 Med (Inhalation) Albuterol/Ipratropium (Inhalation) 
12/25/2010 20:37 Med (Intravenous) Pantoprazole (Intravenous) 
12/25/2010 20:37 Med (Oral) Acyclovir (Oral) 
12/25/2010 20:37 Med (Oral) Gabapentin (Oral) 
12/25/2010 20:37 Med (Subcutaneous) Heparin (Subcutaneous) 
12/25/2010 20:37 Microbiology Fungal Culture 
12/25/2010 20:37 Microbiology Respiratory Culture + Gram Stain 
12/25/2010 20:37 Respiratory Care RESP – Oxygen Administration 
12/25/2010 22:29 Med (Intravenous) Dexmedetomidine IV Infusion 
12/25/2010 22:30 Respiratory Care RESP – Non-Invasive Pos Pressure Vent (BIPAP) 
12/25/2010 23:58 Lab Heparin Activity Level 
12/25/2010 23:58 Med (Intravenous) Heparin (Intravenous) 

Rank Category Description

1 Lab NT - proBNP 

2 Med (Inhalation) Albuterol/Ipratropium (Inhalation) 

3 Med (Intravenous) Furosemide (Intravenous) 

4 Med (Oral) Aspirin (Oral) 

5 Diet Diet NPO 

6 Lab CK, MB (MASS) 

7 ECHO ECHO – Transthoracic Echo + Doppler 

8 Med (Subcutaneous) Heparin (Subcutaneous) 

9 Med (Subcutaneous) Enoxaparin (Subcutaneous) 

10 Med (Oral) Prednisone (Oral) 
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Table 1: Precomputed clinical item (co)-occurrence count
statistics

Notation Definition

nA Number of instances where item A occurs

nABt Number of occurrences where item B follows item A
within time threshold t

NA Number of patients for whom item A occurs

NABt Number of patients for whom item B follows A
within time t

N Total number of patients

Lowercase values allow for repeat item counting, while uppercase val-
ues represent patient counts that ignore repeat items per patient.
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used metric that correlates with end-user satisfaction.32 For a separate
random test set of 1903 patients, we queried different recommender
methods with each patient’s first four hours of clinical items (average of
29) to produce a score-ranked list of all other candidate orders. The
ranked recommended list is compared against the patient’s actual sub-
sequent orders within the first 24 h (average of 15) in terms of precision
(positive predictive value) and recall (sensitivity) at 10 recommendations
and receiver operating characteristic (ROC) analysis.

As previously noted,13 standard accuracy measures reward recom-
mendation of likely orders, though they may not make for “interesting”
suggestions. To quantitatively recognize recommendations that are
more specifically relevant to a query, we introduce alternative metrics
of inverse frequency weighted precision and recall, based on the fol-
lowing indicator functions.

TPi¼ {1 if recommended item i is a true positive, 0 if not}
FPi¼ {1 if recommended item i is a false positive, 0 if not}
FNi¼ {1 if recommended item i is a false negative, 0 if not}

Standard and inverse frequency weighted metrics are defined be-
low for k recommendations, with the latter components weighted by
the inverse baseline frequency of each item i¼ (Ni /N). The common
constant factor N will cancel out in the ratio to yield a weighting factor
of (1/Ni):

Precision ¼

Xk

i¼1
TPiXk

i¼1
TPi þ

Xk

i¼1
FPi

Weighted Precision ¼

Xk

i¼1
1=Nið ÞTPiXk

i¼1
1=Nið ÞTPi þ

Xk

i¼1
1=Nið ÞFPi

Recall ¼

Xk

i¼1
TPiXk

i¼1
TPi þ

Xk

i¼1
FNi

Weighted Recall ¼

Xk

i¼1
1=Nið ÞTPiXk

i¼1
1=Nið ÞTPi þ

Xk

i¼1
1=Nið ÞFNi

By “recommending” the probability of nonorder items such as pa-
tient death, need for ICU life support, hospital discharge, and readmis-
sion, the system can predict clinical outcomes. Doing so only requires
outcome events to be labeled as another clinical item in the patient
timeline. For intensive care unit (ICU) life support, a composite clinical
item was defined as the occurrence of mechanical ventilation, vaso-
pressor infusion, or continuous renal replacement therapy.
Readmission was identified as a sequence of a single discharge order
followed by a single admission order. For another random 1897 vali-
dation patients, the recommender was queried with the first 24 h of
clinical items for the positive predictive value (post-test probability) of
each outcome event within t time. Predicted probabilities were com-
pared against actual events by ROC analysis. Validation patients were
excluded if there were insufficient query items or the outcome already
occurred within the query 24 h.

RESULTS
Tables 4–7 illustrate several example order recommendations.
Figure 3 reports which recommender parameters optimize accuracy
metrics. Table 8 reports the ROC area-under-curve (AUC) prediction
accuracy for several clinical outcomes.

Table 2: Association statistics and Bayesian probability estimates based on count statistics.

Metric Related probability Estimate Notes

BaselineFreq P(B) nB/N Counting repeat items allows values >1.0. Interpreted as
average number of times B occurs per patient.

“Support” P(AB) nABt /N Not quite joint probability because nABt is a directed count
where item A occurs before B, within time t.

ConditionalFreq “Confidence” P(BjA)¼ P(AB) / P(A) nABt/nA Counting repeat items allows values >1.0. Interpret as
average number of times B occurs after A, within time t.

FreqRatio “Lift” “Interest” P(BjA) * 1/P(B)¼
P(AB) / P(A)*P(B)

(nABt/nA)/(nB/N) Equivalent to “TF*IDF.”29 Estimates likelihood ratio.
Expect¼ 1 if A and B independent (i.e., P(BjA)¼ P(B)).

Prevalence Pre-test probability P(B) NB/N Only counts items once per patient. Interpret as percentage
of all patients where item B occurs.

Positive predictive value (PPV)
Post-test probability

P(BjA) NABt/NA Percentage of patients where item B occurs after item A,
within time t

Relative risk (RR) P(BjA) / P(Bj!A) (NABt/NA)/
((NB�NABt)/
(N�NA))

Expect¼ 1 if A and B independent (i.e., P(BjA)¼ P(B)¼ P(Bj!A)).

Table 3: Contingency 2� 2 matrix of patient subgroup
counts based on the occurrence of an item A or item B, from
which association metrics like prevalence, positive predictive
value (PPV), and relative risk (RR) can be estimated.

Subgroup B !B Total

A NABt NA�NABt NA

!A NB�NABt N�NA�NBþNABt N�NA

Total NB N�NB N
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DISCUSSION
Analogous to commercial recommender systems, the described sys-
tem recommends clinical orders and predicts clinical outcomes based
on statistics data-mined from EMRs. Tables 4–7 qualitatively illustrate
how ranking orders by maximum likelihood scores of PPV and
ConditionalFreq (“Confidence”) can identify likely subsequent orders,
though these may not be “interesting” when they substantially overlap
with the generic “best seller” list ranked by prevalence or
BaselineFreq. Association measures like RR or FreqRatio (“Lift” or
“Interest”) rank less common but more specifically relevant items.
Table 7 illustrates how patient-specific recommendations are refined
with additional query information.

Results in Figure 3A demonstrate that personalizing order recom-
mendations with the ConditionalFreq ranking improves prediction of
real clinical order patterns compared to the BaselineFreq benchmark
(27–35% precision at 10 recommendations, P< 10�16) and similarly
for PPV compared to prevalence (33–38%, P< 10�10). With this level
of predictive accuracy, it is not appropriate for such algorithms to
“auto-pilot” medical decision making. The utility of such an approach
must still be to provide relevant information to a human decision
maker. In the context of passively providing suggestions to a human
user however, these results appear useful when compared to the
<33% average total click-through rate for top ten recommended links
generated by Google AdWords46 and <25% for related videos sug-
gested on YouTube (interpolated by the empirically estimated Zipf
function Y¼ bX�a with b¼ 5.6% and a¼ 0.78).47

The temporal relationship between clinical item instances is
important to improve accuracy, by training the system with an item
co-occurrence time threshold t matching the evaluation time frame.
For example, when predicting orders occurring within 24 h of
hospitalization, shorter time thresholds (e.g., 2 h) result in the system
missing relevant associations outside the threshold, while longer time
thresholds (e.g., any time) result in the system being distracted by as-
sociations outside the relevant evaluation period.

Methods based on patient counts (i.e., PPV and prevalence) slightly
outperform those based on item counts (i.e., ConditionalFreq,
BaselineFreq), as they may be less confounded by orders that are
used repeatedly for a smaller number of patients. Results
from Figure 3A and Table 9 show a slight but consistent improvement
in prediction accuracy when weighting query items to favor the influ-
ence of less common, more specific items. Despite a more theoreti-
cally sound basis, naı̈ve Bayes and serial Bayes aggregation methods
require greater implementation complexity yet yield no significant ac-
curacy benefit over weighted averaging.

Results from related research generally cannot be compared directly,
given different use cases and problem space. Early work illustrated the
concept of identifying clinical item associations, but concluded with only
descriptive findings of the top associations found.16,19 Subsequent ef-
forts to predict clinical orders with such methods focused on problem
spaces with dozens of possible candidate items.21–23 The problem
space in this manuscript consists of hundreds of candidate orders, re-
sulting in substantially different problem “difficulty” and expected accu-
racy.48 Recommendations based on baseline prevalence provide a more
consistent internal benchmark, which is also notably much more accu-
rate than random. Prior research to impute missing medications con-
firms that baseline prevalence can be a difficult benchmark to surpass,
with more complex nearest neighbor and regularized logistic regression
models not necessarily yielding meaningful improvement.22 Association
rule methods explored here do modestly improve accuracy, though there
may be substantial opportunity for further improvement. Research into
Bayesian networks appears to improve clinical order prediction accuracy
over association rules,21 but the tradeoff in computational complexity
appears to require a smaller problem space. Perhaps more importantly,
traditional metrics of accuracy may not even reflect the most useful
recommendations.

We introduced alternative metrics, the inverted frequency weighted
precision and recall, to credit the more compelling prediction of un-
common but “interesting” items (e.g., rifaximin) over common but
mundane items (e.g., CBC). Interestingly, Figure 3C indicates that PPV
and ConditionalFreq methods still achieve the best weighted precision.
Weighted recall is where RR and FreqRatio based methods show
substantial improvement (4–16%, P< 10�16) compared to baseline
prevalence or PPV-based predictions. This reinforces the notion that
the two approaches satisfy different goals (predicting likely events vs
finding “interesting” suggestions).

Table 9 reports the system’s ability to predict clinical outcomes,
with only a semantic difference between “predicting outcomes” and
“recommending orders.” The system effectively acts as a naı̈ve
Bayes classifier for individual outcomes, using prior clinical items as
features to generate a PPV score. The system yields a prediction ROC
AUC (c-statistic) of 0.84 for 30 day mortality, 0.84 for 1 week need for
ICU life support, 0.80 for 1 week discharge from the hospital, and
0.68 for hospital readmission. Though different patient populations
and evaluation periods prevent direct comparison, these accuracies
are on par with state-of-the art prognosis scoring systems. Inverted
queries that “recommend” items preceding a clinical outcome event14

can also effectively act as a tool for feature selection to infer risk
factors.

Several limitations in this work will require future study. The pri-
mary concern with learning practice patterns from historical data is
that it will favor common practices that are not necessarily “correct.”
Such a system could theoretically recommend inappropriate orders,
resulting in a positive feedback loop that continually reinforces poor
decision making into common behavior. While some clinicians will
certainly enter inappropriate orders sometimes, Condorcet’s Jury

Table 4: Top orders by overall prevalence (pretest probabil-
ity), the generic “best-seller” list.

Rank Description Prevalence
(%)

Baseline
Freq

1 Sodium chloride (IV) 90 3.97

2 CBC with differential 79 2.60

3 Metabolic panel, basic 77 2.65

4 Potassium chloride (IV) 68 1.76

5 Glucose (IV) 60 1.25

6 Docusate (Oral) 58 1.24

7 Prothrombin time (PT/INR
(International Normalized Ratio))

58 1.93

8 Physical therapy evaluation 55 1.13

9 Metabolic panel, comprehensive 55 1.47

10 Diet NPO (Non per os) 53 1.11

BaselineFreq counts (repeat) items instead of patients. For example, an
average of 2.6 orders for CBC (Complete Blood Count) with Differential
occurs for all patients, with 79% of patients receiving them.
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Theorem49 posits that aggregating the nonrandom decisions of many
converges towards correctness. This is the same basis argument be-
hind the “wisdom-of-the-crowd50” and for machine-learning boosting
algorithms that generate strong classifiers from individually weak
ones.51 The ability to predict clinical outcomes offers a tempting possi-
bility to link recommendations to favorable outcomes, though this
would almost certainly be undermined by patient confounders without
effective cohort balancing.52 We are exploring additional work

comparing recommendations against clinical practice guidelines,53 but
ultimately this concern will only be proven or disproven in a prospec-
tive clinical trial. Towards that end, we are developing human-com-
puter interface prototypes of the system for simulation testing with
real clinicians. This will be necessary to provide more specific evalua-
tion of click through rates, user satisfaction with generated recom-
mendations, and impacts on clinical decision making. In the
meantime, the methods developed here can be useful for applications

Table 5: Top orders occurring within 24 h of an order for Spironolactone (Oral), a diuretic commonly used in the management of heart
failure and liver cirrhosis.

Rank Description PPV (%) Prevalence (%) Conditional Freq Baseline Freq

1 Metabolic panel, basic 42 77 0.41 2.65

2 Furosemide (Oral) 41 11 0.52 0.31

3 Magnesium, serum 35 52 0.35 1.84

4 Prothrombin time (PT/INR) 35 58 0.35 1.93

5 CBC with differential 31 79 0.28 2.60

6 Potassium chloride (Oral) 28 27 0.34 0.82

7 Furosemide (IV) 27 17 0.35 0.84

8 Pantoprazole (Oral) 24 38 0.19 0.62

9 CBC 24 53 0.20 1.50

10 Sodium chloride (IV) 23 90 0.19 3.97

Results are ranked by PPV (positive predictive value � post-test probability), meaning 41% of patients subsequently receive an order for
Furosemide (Oral) (another common diuretic), with an average of 0.52 orders per patient (ConditionalFreq¼ “Confidence”). Related orders include
additional diuretics (Furosemide), monitoring of electrolytes affected by diuresis (Magnesium, Serum), and repletion of lost electrolytes (Potassium
Chloride). Notably, many of the orders are the same “best-seller” items that are common overall.

Table 6: Top orders occurring within 24 h of Spironolactone (Oral), ranked by Fisher’s exact test P-value, where RR (relative risk)>1.

Rank Description P-Fisher RR PPV (%) Prevalence (%) Freq Ratio Conditional Freq Baseline Freq

1 Furosemide (Oral) 6.E-87 4.0 41 11 1.7 0.52 0.31

2 Carvedilol (Oral) 2.E-27 3.1 19 7 1.0 0.19 0.18

3 Digoxin (Oral) 1.E-25 4.4 12 3 1.8 0.12 0.07

4 Rifaximin (Oral) 1.E-16 5.5 6 1 1.9 0.07 0.03

5 Furosemide (IV) 1.E-11 1.7 27 17 0.4 0.35 0.84

6 Sildenafil (Oral) 1.E-10 5.4 4 1 1.6 0.04 0.03

7 Propranolol (Oral) 7.E-10 3.6 5 2 1.4 0.05 0.04

8 Lactulose (Oral) 7.E-09 2.4 8 4 1.2 0.12 0.10

9 PoC (Point of Care)
Venous Blood Panel

3.E-08 3.9 4 1 0.8 0.11 0.14

10 Diet Sodium Restricted 3.E-08 1.6 20 13 0.6 0.15 0.24

Furosemide (Oral) is 4.0 times more likely to be ordered after Spironolactone than if Spironolactone was not ordered. This correlates to
the FreqRatio¼ “Lift”¼ “Interest” indicating Furosemide (Oral) is ordered 1.7 times more often after Spironolactone than for all patients. Even without
a clinical diagnosis or patient history, this example illustrates how a clinical order (i.e., spironolactone) is itself predictive of other orders specifically rel-
evant to the implied clinical scenarios. For example, furosemide, carvedilol, digoxin, and sodium restriction are used to manage congestive heart fail-
ure,33 while furosemide, rifaximin, propranolol, and lactulose all help manage complications of liver cirrhosis (ascites,34 hepatic encephalopathy,35 and
esophageal varices36). A less obvious suggestion is sildenafil, likely based on its concurrent use for pulmonary hypertension.37
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ranging from patient risk stratification to practice pattern analysis to
computer-aided drafting of decision support rules.

CONCLUSIONS
Collaborative filtering methods successful in non-biomedical do-
mains can automatically generate CDS from historical practice data in
the form of order recommendations. Clinical orders can be both re-
sults and predictive features for other clinical decisions and

outcomes. Association-based recommendations are predictive of real
practice patterns and clinical outcomes as compared to baseline
benchmarks. Temporal relationships are important to improve accu-
racy. Different evaluation metrics will satisfy different query goals to
either predict likely events or find “interesting” suggestions. This work
represents another step towards real-time CDS tools that will unlock
the Big Data potential of EMRs, uniquely tying together the afferent
and efferent limbs of a learning health system.

Table 7: Top orders occurring within 24 h of an order for Spironolactone (Oral) and Lactulose (Oral), score-ranked by P-value, where RR
> 1 and scores are estimated by weighted averaging of underlying count statistics.

Rank Description P-Fisher RR PPV (%) Prevalence (%) Freq Ratio Conditional Freq Baseline Freq

1 Rifaximin (Oral) 2.E-54 14.2 13 1 5.1 0.17 0.03

2 Furosemide (Oral) 2.E-21 2.3 25 11 1.1 0.33 0.31

3 Propranolol (Oral) 5.E-12 4.2 6 2 1.8 0.07 0.04

4 Zinc Sulfate (Oral) 2.E-07 2.7 6 2 2.1 0.09 0.04

5 Albumin, Fluid 4.E-07 3.6 4 1 1.9 0.06 0.03

6 Digoxin (Oral) 7.E-05 2.1 6 3 0.9 0.06 0.07

7 Alpha Fetoprotein 1.E-04 3.2 3 1 1.8 0.02 0.01

8 Ammonia 3.E-04 1.9 6 4 0.9 0.07 0.08

9 Lactulose (Enema) 5.E-04 2.9 3 1 2.5 0.05 0.02

10 Sildenafil (Oral) 5.E-04 3.1 2 1 1.0 0.03 0.03

The results illustrate progressively patient focused suggestions by demoting orders for non-liver diseases while promoting rifaximin, zinc sulfate,
lactulose enemas, and ammonia levels for hepatic encephalopathy; furosemide, propranolol, and albumin fluid checks for portal hypertension with
ascites; and alpha fetoprotein for monitoring hepatocellular carcinoma.

Table 8: ROC AUC (c-statistic) prediction results for clinical outcomes based on 1897 validation patients’ first 24 h of query clinical items.

Property Death ICU Life Support Hospital Discharge / Length of Stay Readmission

Evaluation period 30 days 2 days 4 days 1 week 2 days 4 days 1 week 2 week 30 days

Patients included 1890 1772 1772 1772 1742 1742 1742 1742 1890

Patients
w/outcome, n (%)

35 (1.9) 17 (1.0) 28 (1.6) 41 (2.3) 387 (22.2) 1020 (58.6) 1380 (79.2) 1570 (90.1) 157 (8.3)

ROC AUC (c-stat) 0.84 0.87 0.83 0.84 0.69 0.75 0.80 0.82 0.68

ROC AUC 95% CI 0.75-0.94 0.80-0.95 0.76-0.90 0.79- 0.89 0.66-0.72 0.72-0.77 0.78-0.83 0.79-0.85 0.64-0.73

Related Prediction
Models

APACHE,
MPM, SAPS38

CURB-65, PSI, SCAP,
REA-ICU39

Tu et al.40, ISS, NISS,41 CSI42 Amarasingham
et al.,43,
LACE,44 CMS45

ROC AUC for
Related

0.75-0.90 0.69-0.81 0.69 (Only Tu et al. reports as ROC AUC) 0.56-0.72

Confidence intervals (95%) empirically estimated by bootstrapping 1000 data samples with replacement. ROC¼ Receiver Operating Characteristic;
AUC¼ Area Under Curve; CI¼ Confidence Interval; APACHE¼ Acute Physiology and Chronic Health Evaluation; MPM¼Mortality Probability
Models; SAPS¼ Simplified Acute Physiology Score; CURB-65¼ Confusion, Urea, Respiratory Rate, Blood Pressure, 65 Years Old;
PSI¼ Pneumonia Severity Index; SCAP¼ Severity Community-Acquired Pneumonia; REA-ICU¼ Risk of Early Admission to ICU; ISS¼ Injury
Severity Score; NISS¼ New Injury Severity Score; CSI¼ Computerized Severity Index; LACE¼ Length of Stay, Acuity, Comorbidity, Emergency
Department Use; CMS¼ Center for Medicare and Medicaid Services
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Figure 3: (A) – Accuracy of clinical order recommendations using different parameters. For 1903 validation patients, clinical items from
the first 4 h of their hospital encounter are used to query for a ranked list of clinical order recommendations. Each recommended list is
validated against the actual set of new orders occurring within 24 h of hospitalization. Metrics include average receiver operating charac-
teristic area under curve (ROC AUC) (c-statistic) and top 10 recommendation precision (positive predictive value) and recall (sensitivity).
Ranking by BaselineFreq serves as a reference benchmark. ConditionalFreq methods are further refined by what time threshold t was
used when counting item co-occurrences. The Prevalence (pretest probability) and PPV (positive-predictive value � post-test probability)
methods are directly analogous to BaselineFreq and ConditionalFreq, except they count patients with item co-occurrences, ignoring re-
peat items. Two-tailed, paired t-tests for the first row results compared to the BaselineFreq benchmark all yield P< 10�16, while second
row results compared to the Prevalence benchmark all yield P< 10�10. (B) Accuracy of clinical order recommendations/predictions using
simple unweighted averaging vs the default weighted averaging of underlying count statistics to favor the influence of less common,
more specific query items. Two-tailed, paired t-tests of respective unweighted vs weighted aggregation methods all yield P< 10�27. (C)
Inverse frequency weighted accuracy of clinical order recommendations, all using a time threshold t¼ 1 day and considering the top 10
recommendations. Two-tailed, paired t-tests for first row results compared to the ConditionalFreq(Day) method all yield P< 10�29, while
second row results compared to the PPV(Day) method all yield P< 10�16.RESEARCH
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