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BACKGROUND: COPD is a leading cause of mortality.

RESEARCH QUESTION: We hypothesized that applying machine learning to clinical and
quantitative CT imaging features would improve mortality prediction in COPD.

STUDY DESIGN AND METHODS: We selected 30 clinical, spirometric, and imaging features as
inputs for a random survival forest. We used top features in a Cox regression to create a
machine learning mortality prediction (MLMP) in COPD model and also assessed the
performance of other statistical and machine learning models. We trained the models in
subjects with moderate to severe COPD from a subset of subjects in Genetic Epidemiology of
COPD (COPDGene) and tested prediction performance in the remainder of individuals with
moderate to severe COPD in COPDGene and Evaluation of COPD Longitudinally to Identify
Predictive Surrogate Endpoints (ECLIPSE). We compared our model with the BMI, airflow
obstruction, dyspnea, exercise capacity (BODE) index; BODE modifications; and the age,
dyspnea, and airflow obstruction index.

RESULTS: We included 2,632 participants from COPDGene and 1,268 participants from
ECLIPSE. The top predictors of mortality were 6-min walk distance, FEV; % predicted, and
age. The top imaging predictor was pulmonary artery-to-aorta ratio. The MLMP-COPD
model resulted in a C index = 0.7 in both COPDGene and ECLIPSE (6.4- and 7.2-year
median follow-ups, respectively), significantly better than all tested mortality indexes (P <
.05). The MLMP-COPD model had fewer predictors but similar performance to that of other
models. The group with the highest BODE scores (7-10) had 64% mortality, whereas the
highest mortality group defined by the MLMP-COPD model had 77% mortality (P = .012).

INTERPRETATION: An MLMP-COPD model outperformed four existing models for predicting
all-cause mortality across two COPD cohorts. Performance of machine learning was similar
to that of traditional statistical methods. The model is available online at: https://cdnm.
shinyapps.io/cgmortalityapp/. CHEST 2020; 158(3):952-964
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ABBREVIATIONS: 6MWD = 6-min walk distance; ADO = age, dyspnea,
and airflow obstruction; BODE = BM]I, airflow obstruction, dyspnea,
and exercise capacity; COPDGene = Genetic Epidemiology of COPD;
ECLIPSE = Evaluation of COPD Longitudinally to Identify Predictive
Surrogate Endpoints; MLMP = machine learning mortality prediction;
PA:A = pulmonary artery to aorta; % LAA < —950 HU = percent
emphysema determined by the percent low attenuation area of the
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lungs < —950 Hounsfield units; Pil0 = square root of wall area of a
hypothetical airway with internal perimeter of 10 mm; RSF = random
survival forest; VIMP = variable importance

AFFILIATIONS: From the Channing Division of Network Medicine
(Drs Moll, Qiao, McGeachie, Castaldi, Silverman, Hobbs, and Cho),

[ 158#3 CHEST SEPTEMBER 2020 |


https://cdnm.shinyapps.io/cgmortalityapp/
https://cdnm.shinyapps.io/cgmortalityapp/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chest.2020.02.079&domain=pdf

COPD is one of the leading causes of mortality
worldwide." Improving performance of mortality
prediction models can identify patients with COPD who
might benefit from earlier or more specific intervention.
One widely used mortality prediction tool is the BMI,
airflow obstruction, dyspnea, and exercise capacity
(BODE) index.” Studies that have modified the BODE
index by varying the input’ or adding serum
biomarkers® have resulted in similar or slightly
improved performance for mortality prediction. Other
models include the dyspnea, airflow obstruction,
smoking status, exacerbation frequency (DOSE) index’;
the age, dyspnea, and airflow obstruction (ADO) index”;
and the St. George’s Respiratory Questionnaire score,
airflow limitation, and exercise tolerance (SAFE)’ index.
A survival analysis in more than 3,500 subjects from 11
COPD cohorts compared predictive accuracy of several
of these measures, finding that ADO, BODE, and BODE
modifications performed best; after adjusting for age,
BODE modifications outperformed ADO.'’ A meta-
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analysis in 16,000 subjects from the COPD Cohorts
Collaborative International Assessment (3CIA) initiative
found that ADO and updated BODE showed a higher,
but not statistically significantly different, area under the
curve for predicting 3-year survival vs BODE."'

These prediction models did not include quantitative CT
imaging. Several quantitative CT imaging measures of
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airway,'” emphysematous,"” vascular,
interstitial ® abnormalities have been independently
associated with morbidity and mortality in subjects with
COPD. Evaluating many potential predictors is fraught
with challenges, which may be addressed by machine
learning algorithms that can learn rules from one data
set that can be used to make predictions in another data
set."” Machine learning can be broadly defined; some
consider traditional statistical methods such as logistic
or Cox regression important machine learning tools,"***
and in certain cases these perform as well as newer more
advanced methods.”” Machine learning algorithms have
the potential to improve predictive modeling of health
outcomes,”* and digitalization of health records is
facilitating incorporation into health care.”” In COPD,
machine learning has been used to identify which
features are most important for case identification®® and
predicting exacerbations.”” Machine learning methods
were used to improve prediction of 5-year all-cause
mortality in subjects undergoing CT coronary
angiography”” and cardiac motion MRL*’

We hypothesized that machine learning methods
applied to an expanded set of clinical and quantitative
CT imaging features would be useful for identifying the
most important predictors of all-cause mortality and
improving mortality prediction in moderate to severe
COPD compared with BODE, BODE modifications, and
ADO. To test this hypothesis, we used data from
subjects from the Genetic Epidemiology of COPD
(COPDGene) and Evaluation of COPD Longitudinally
to Identify Predictive Surrogate Endpoints (ECLIPSE)
studies.

Materials and Methods
Study Participants

We included individuals with moderate to severe COPD
(postbronchodilator FEV,; < 80% predicted, FEV,/FVC < 0.7; ie,
Global Initiative for Chronic Obstructive Lung Disease [GOLD] 2-4
spirometry grades) from the COPDGene and ECLIPSE studies. We
selected 30 clinical, spirometric, and imaging features as inputs for a
random survival forest. To ensure that the same variables could be
examined in both data sets, we selected a set of demographic,
clinical, spirometric, and imaging features present in at least 80% of
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subjects in both data sets (e-Table 1). Notable imaging features
included pulmonary artery-to-aorta (PA:A) ratio,”” square root of
wall area of a hypothetical airway with internal perimeter of 10 mm
(Pi10),”" mean wall area percent,'” percent emphysema determined
by the percent low attenuation area of the lungs < —950 Hounsfield
units (% LAA < —950 HU),"” and 15th percentile of the lung
density histogram on inspiratory scans.”> The primary outcome was
time to death from any cause.

Study Design

To develop a mortality prediction model that balanced prediction and
interpretability, we applied random survival forests (RSFs) for feature
selection followed by Cox regression. We used the randomForestSRC
R package™ and obtained variable importance (VIMP) by means of
the VIMP method.™ We filtered for multicollinearity of the RSF

features, removing collinear variables to ensure all variance inflation
factors were < 10°>*® and then applied Cox regression (survival R
package).”*® As a reference for comparison, we used the BODE
index,” exacerbations and BODE,” updated BODE, and ADO.* To
understand the contribution of RSF to this approach, we also
compared a range of feature selection methods and prediction
models, including standard statistical methods (see the Methods in
e-Appendix 1).

The accuracy of prediction models was assessed by using C indexes
(Hmisc R package)’®*® and receiver operating characteristic curves
(ROCR R package).”” The C indexes were compared with the
compareC R package by using the one-shot method."’. For our main
model, we developed a Web-based tool by using the Shiny R
package. Additional details are available in the Methods in e-
Appendix 1.

Results

Characteristics of Study Participants

Characteristics of subjects with complete data used in
analysis are shown in Table 1. Compared with subjects
in COPDGene, those in the ECLIPSE study had a longer

median follow-up and lower BMI and FEV; %predicted,
and ECLIPSE had a higher proportion of individuals
who died. In addition, several quantitative CT imaging
measures differed in ECLIPSE (e-Table 1, e-Fig 1). The
BODE and the exacerbations and BODE indexes were
higher in ECLIPSE, but median scores were the same

TABLE 1 | Demographic Characteristics of Subjects in COPDGene and ECLIPSE Included in Analysis

Characteristic COPDGene ECLIPSE P Value
No. of subjects 2,632 1,268
Sex, female, No. (%) 1,157 (44.0) 426 (33.6) < .001
Age, mean (SD), y 63.58 (8.92) 63.51 (7.03) .8
Race, African American, No. (%) 485 (18.4) 0 (0) < .001
FEV; % predicted, median (IQR) 52.00 (36.88-66.60) 45.95 (35-58.73) < .001
FVC % predicted, mean (SD) 77.17 (16.76) 79.16 (19.82) .001
GOLD spirometry grade, No. (%) < .001

2 1,407 (53.5) 518 (40.9)

3 819 (31.1) 568 (44.8)

4 406 (15.4) 182 (14.4)
Pack-years cigarette smoking, median (IQR) 47.50 (36-68) 45 (32-60) < .001
Current smoking, No. (%) 1,041 (39.6) 431 (34.0) .001
Dead at 3y, No. (%) 221 (8.4) 121 (9.5) .3
Dead at 5y No. (%) 454 (17.2) 238 (18.8) .3
Dead at 8 y No. (%) 631 (24.0) 405 (31.9) < .001
Total dead, No. (%) 631 (24.0) 405 (31.9) < .001
Days followed up, median (IQR) 2,321 2,616 < .001

(2,043-2,652) (1,110-2,924)

6-Min walk distance, mean (SD), ft 1,205.97 (392.28) 1,190.36 (389.77) 2
BODE, median (IQR) 3.00 (1-4) 3.00 (2-5) < .001
e-BODE, median (IQR) 3.00 (1-5) 3.00 (2-5) <.001
Updated BODE, median (IQR) 3.00 (1-7) 3.00 (1-7) .9
ADO, mean (SD) 4.60 (1.8) 3.84 (1.44) <.001

Percentages do not necessarily total 100% because of rounding. ADO = age, dyspnea, and airflow obstruction; BODE = BMI, airflow obstruction, dyspnea,
and exercise capacity; e-BODE = exacerbations and BODE; COPDGene = Genetic Epidemiology of COPD; ECLIPSE = Evaluation of COPD Longitudinally to
Identify Predictive Surrogate Endpoints; GOLD = Global Initiative for Chronic Obstructive Lung Disease; IQR = interquartile range.
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between samples. The ADO index was higher in subjects
in COPDGene.

Development of a Mortality Prediction Model

A schematic of the study design is shown in Figure 1.
We randomly divided 2,632 participants from
COPDGene into training (n = 1,974 [479 deaths]) and
testing (n = 658 [152 deaths]) samples (e-Table 1). We
chose features present in at least 80% of the cohort
(initial feature list in e-Table 2) and used RSFs to select
features, identifying the components of the BODE score
(BML FEV, % predicted, modified Medical Research
Council dyspnea score, and exercise as assessed by the 6-
min walk distance [EMWD)]), as well as additional
clinical (eg, age, diabetes), spirometric (FEV,/FVC ratio,
forced expiratory flow 25% to 75%), and imaging (Pil0,
mean wall area percent, % LAA < —950 HU, PA:A

10,306 COPDGene
participants

ratio) features by using the training sample. Features are
shown in order of importance in Figure 2. Before Cox
regression, features displaying multicollinearity were
excluded; the remaining features and associated hazard
ratios are shown in Table 2. Using this subset of RSF-
selected features, we developed a Cox regression model
(further denoted as machine learning mortality
prediction [MLMP] in COPD). The MLMP-COPD
model had a C index of 0.74 on the testing sample,
outperforming BODE, BODE modifications, and ADO
(P < .05) (Fig 3A, e-Fig 2A). The regression coefficients
for the MLMP-COPD model are shown in e-Table 3,
and clinical interpretations of hazard ratios are shown in
e-Table 4.

To test mortality prediction in an external validation
sample, we applied the MLMP-COPD model to 1,268
participants in ECLIPSE (Table 1, e-Table 1). As

—>{ n = 6,609 excluded ’

n = 3,697 GOLD 2-4
participants

2,211 ECLIPSE
GOLD 2-4 participants

*.{

for missingness

n = 1,065 excluded

‘ n = 2,632 participants ’

75% random split 25% random split

! '

‘ n = 1,974 Training set ’ ‘ n = 658 Testing set I

!

‘ Random Survival ’

Forest (RSF)

H{

n = 1,599 ECLIPSE
participants

n =612 excluded
for missingness

n = 331 without 8-year
follow up data

Cox with
RSF-selected Features

| n=1268ECLIPSE
| participants

Figure 1 - Schematic of study design. A total of 2,632 participants in COPDGene were randomly split into training (n = 1,974) and testing (n = 658)
data sets. A random survival forest algorithm was applied to the training data set, and features chosen by variable importance were used to develop a
Cox regression model. Both models were tested in the testing data set of COPDGene and externally in a sample of participants in ECLIPSE (n = 1,268).
COPDGene = Genetic Epidemiology of COPD; ECLIPSE = Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints;

GOLD = Global Initiative for Chronic Obstructive Lung Disease; RSF = random survival forest.
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Figure 2 — Variable importance based on RSF trained in subjects in COPDGene. These features were all used to develop a Cox regression model, and
GOLD spirometry grade and FVC % predicted were removed for collinearity. 6MWD = 6-min walk distance; FEF,sq; 759, = forced expiratory flow
25% to 75%; mMRC = modified Medical Research Council; PA:A = pulmonary artery to aorta; % LAA < —950 HU = percent emphysema determined
by the percent low attenuation area of the lungs < —950 Hounsfield units; Pil0 = square root of wall area of a hypothetical airway with internal
perimeter of 10 mm; SaO, = arterial oxygen saturation. See Figure 1 legend for expansion of other abbreviations.

expected, the performance of the models decreased in
external validation (C index, 0.7) but retained improved
prediction compared with BODE, BODE modifications,
and ADO (P < .05 for all) (Fig 3B, e-Fig 2B). We
repeated our analyses after normalizing imaging features
to the mean values across matched subsets of individuals
from the COPDGene and ECLIPSE studies in an
attempt to reconcile differences in mean values and
distributions of imaging features (see the Methods in
e-Appendix 1). Our results were not substantially
different (e-Fig 3) from those in the original model. To
examine calibration, we plotted expected vs actual
survival as shown in e-Figure 4 and tested for evidence
of miscalibration by using the Greenwood-Nam-
D’Agostino test.*” As shown in e-Table 5, miscalibration
evaluated using the Greenwood-Nam-D’Agostino test
for the MLMP-COPD model was not statistically
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significant, which was in contrast to results for the
BODE score also shown in e-Table 5.

As all of these measured features may have variable
availability in clinical practice, we calculated the
performance of prediction models excluding select
features. A Cox model built after excluding imaging
features still improved prediction compared with
updated BODE and ADO on the ECLIPSE validation
sample (P < .05) (Fig 4A). The regression coefficients
for the Cox model without imaging features are shown
in e-Table 6. Mortality prediction models of individual
quantitative imaging features added to BODE were not
superior to updated BODE or ADO (e-Table 7).

Although theoretically easy to obtain, 6MWD is often
not available during initial clinical encounters. When we
removed 6MWD and retrained our Cox model, the
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TABLE 2 | Hazard Ratios for Mortality of Random Survival Forest-Selected Variables Used in MLMP-COPD (Cox

Regression) Model Trained on Subjects in COPDGene

Feature Unadjusted Hazard Ratio (95% CI) P Value Adjusted Hazard Ratio (95% CI) P Value
6-Min walk distance, per 100 ft 0.85 (0.83-0.87) < .0001 0.9 (0.87-0.93) < .0001
FEV; % predicted 0.96 (0.957-0.968) < .0001 0.99 (0.974-0.997) .01
Age 1.04 (1.03-1.05) < .0001 1.04 (1.03-1.06) < .0001
mMRC dyspnea score 1.49 (1.39-1.61) < .0001 1.15 (1.05-1.25) .002
FEV1/FVC ratio® 0.009 (0.005-0.02) < .0001 0.1 (0.02-0.45) .003
FEF259%.75%, L/min 0.14 (0.1-0.2) < .0001 1.74 (1.02-2.98) .04
Resting Sa0, 0.9 (0.88-0.92) < .0001 0.97 (0.948-0.995) .02
Exacerbations per year 1.2 (1.14-1.28) < .0001 1.03 (0.96-1.11) 4
Pack-years cigarette smoking 1.01 (1.006-1.011) < .0001 1.01 (1.002-1.008) .0003
BMI, kg/m? 0.97 (0.96-0.99) .00022 0.97 (0.95-0.99) .001
Severe exacerbations 1.95 (1.6-2.4) < .0001 1.33 (1.05-1.7) .02
PA:A ratio 5.8 (3.01-11.3) < .0001 2.7 (1.35-5.55) .005
Pi10 5.5(3.1-9.7) < .0001 1.6 (0.8-3.3) 2
Diabetes 1.4 (1.1-1.8) .0072 1.3 (1.01-1.73) .04
% LAA < —950 HU 1.03 (1.027-1.04) < .0001 0.995 (0.98-1.004) 3

Adjusted models include all covariates, and FVC and GOLD spirometry grade were removed for multicollinearity. FEF;s50,-750, = forced expiratory flow
25% to 75%; MLMP = machine learning mortality prediction; mMRC = modified Medical Research Council; PA:A = pulmonary artery to aorta;
% LAA < —950 HU = percent emphysema determined by the percent low attenuation area of the lungs < —950 Hounsfield units; Pi10 = square root of wall
area of a hypothetical airway with internal perimeter of 10 mm; Sa0, = arterial oxygen saturation. See Table 1 legend for expansion of other

abbreviations.
2FEV4/FVC is reported as a ratio from 0 to 1 and not as a percentage.

resulting model (C index of 0.69 on the testing sample)
retained improved performance compared with that of
updated BODE (C index, 0.65; P < .05) and ADO (C
index, 0.65; P < .05) (Fig 4B).

We developed an online Web application (https://cdnm.
shinyapps.io/cgmortalityapp/) to facilitate use of the
MLMP-COPD model in exploring the relative
contributions of risk factors for all-cause mortality in
COPD. In addition, we provide a case study of a
hypothetical patient to demonstrate the potential
usefulness of this application (see the Results in e-
Appendix 1, e-Fig 5).

To assess the relative performance of other methods, we
evaluated several combinations of feature selection
methods and prediction models (see the Methods in e-
Appendix 1, e-Table 8). All methods performed
similarly, including stepwise regression, although RSFs
selected the most parsimonious set of features (n = 15).

Subgroup Analyses

We tested the performance of the MLMP-COPD model
in subgroups of ECLIPSE (see the Results in e-Appendix
1, e-Tables 9, 10). We divided individuals into four

groups according to BODE score categories (0-2, 3-4, 5-

chestjournal.org

6, 7-10) from Celli et al* and then used the MLMP-
COPD model predictions (log hazard ratio) to stratify
participants into four equally sized groups. We
compared the strata by using Kaplan-Meier analysis
(Fig 5). Characteristics of the sickest group defined by
BODE (score 7-10) and our model are shown in Table 3,
and the less severe groups in e-Tables 11, 12, and 13.
The sickest group had a 19.5% higher relative and
12.5% absolute mortality than did the sickest BODE
group (BODE 7-10; 64% vs 77% absolute mortality; P =
.012), with shorter median follow-up (1,281

vs 1,193 days; P = .049). The sickest group was also
older and had fewer female subjects, higher PA:A ratio,
lower % LAA < —950 HU, more comorbid diabetes,
more pack-years of cigarette smoking, and lower resting
arterial oxygen saturation. However, both groups had
similar FEV; % predicted and 6MWD, but the sickest
group had higher BMI with lower modified Medical
Research Council and BODE scores (P < .001).

Discussion
In this study, we applied a machine learning approach to
clinical features, including quantitative CT imaging, to

develop an all-cause mortality prediction model in
moderate to severe COPD. The resulting MLMP-COPD

957


https://cdnm.shinyapps.io/cgmortalityapp/
https://cdnm.shinyapps.io/cgmortalityapp/
http://chestjournal.org

Train: 75% of COPDGene, Test: 25% of COPDGene

1.0 e

s

° ° o
B ()] [ee]
1 1 1

True positive rate

o
N
1

i
00/

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

— RSF: c-index = 0.731

—— Cox with RF variables: c-index = 0.739
updated BODE prediction: c-index = 0.699
ADO prediction: c-index = 0.697
P value (RSF vs updated BODE) = .021
P value (RSF vs ADO) = .02
P value (Cox vs updated BODE) = .0025
P value (Cox vs ADO) = .00021

Train: 75% of COPDGene, Test: ECLIPSE

1.0 1

© o o
B o)) [ee)
1 1 1

True positive rate

o
N
1

00+ '

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

— RSF: c-index = 0.688

—— Cox with RF variables: c-index = 0.702
updated BODE prediction: c-index = 0.653
ADO prediction: c-index = 0.651
P value (RSF vs updated BODE) < .0001
P value (RSF vs ADO) = .00034
P value (Cox vs updated BODE) < .0001
P value (Cox vs ADO) < .0001

Figure 3 — Receiver operating characteristic curve comparing the RSF-derived mortality prediction models with updated BODE and ADO. A, Models
were trained in 75% of the COPDGene sample (n = 1,974) and tested in the remaining 25% of the COPDGene sample (n = 658). B, Models were
trained in 75% of the COPDGene sample (n = 1,974) and tested in the ECLIPSE sample (n = 1,268). ADO = age, dyspnea, and airflow obstruction;
BODE = BMI, airflow obstruction, dyspnea, and exercise capacity. See Figure 1 and 2 legends for expansion of other abbreviations.

model outperformed BODE, BODE modifications, and
ADO across two COPD cohorts. Our model also
identified subjects at high risk of death on the basis of on
variables not included in the BODE index. We have
included an online tool to allow researchers and
clinicians to explore the contributions of our model
features to predicted COPD survival. Although the
MLMP-COPD model is a prediction tool, it also
provides valuable insights into how individual risk
factors influence mortality in the context of other known
predictors of mortality.

We developed the MLMP-COPD model in COPDGene
and used ECLIPSE for external validation. External
validation in diverse cohorts is essential, as even the
BODE index, which reported a C index of 0.74 in the
initial study, demonstrates significantly reduced
performance in several external studies.”*'***
Compared with prior models of mortality, our model
was developed with more subjects with longer follow-

ups. The BODE index, which arguably remains the gold
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standard for mortality prediction, was developed on 207
subjects followed up for 4 years and prospectively
validated in 625 subjects.” By comparison, we developed
our model by using 1,974 subjects followed up for a
median of 6.4 years from the COPDGene study and
validated our model by using data from the ECLIPSE
study. Overall, our model was highly consistent with the
Galaxy COPD model,"® which found a similar set of
important features and was externally validated,
although it underestimated mortality in one of the two
cohorts.”” However, the current study had five
important differences: (1) the use of quantitative
imaging features; (2) automated and reproducible
feature selection; (3) direct comparison with BODE,
BODE modifications, and ADO by using C-statistics; (4)
more subjects; and (5) longer follow-up.

Our analysis provides insights into the relative
contributions of predictors of mortality. Current
smoking was not selected as a predictor, possibly
because sicker patients are more likely to quit,
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Figure 4 — Receiver operating characteristic curve comparing the RSF-derived mortality prediction model with updated BODE and ADO after removing
select features. Models were trained in 75% of the COPDGene sample and tested in the ECLIPSE sample. A, Imaging variables (% LAA < —950 HU,
PAA, Pi10) were excluded when building the Cox regression model. B, The 6MWD was excluded when building the Cox regression model. See Figure 1,

2, and 3 legends for expansion of abbreviations.

confounding the relationship of current smoking and
mortality in study populations enriched for subjects with
COPD. The 6MWD was ranked substantially higher in
VIMP than all other variables. This finding is consistent
with those from prior literature, possibly because
6MWD reflects both pulmonary and extrapulmonary
(eg, muscle weakness, pulmonary vascular disease)
disease manifestations.”’>* Although the 6 MWD, in
theory, can be implemented easily, it is not always
readily available; thus, we developed a model exclusive
of 6MWD that demonstrated improved prediction
compared with other mortality prediction indexes.
However, we advocate for obtaining 6MWD when
possible. Although exacerbation history”” and severe
exacerbations requiring hospitalization®*”” are
independent predictors of COPD mortality, they have
not been evaluated in a single model together. As
exacerbation history has been reported to be a predictor
of severe exacerbations,”® and mortality increases acutely
after a severe exacerbation,” severe exacerbations may
be adequately capturing the mortality risk conferred by
exacerbation history. Diabetes was chosen as an

chestjournal.org

important predictor of mortality, which has been
previously reported.””*® The fact that diabetes was
chosen as an important predictor of mortality likely
reflects the high cardiovascular mortality of COPD but
may also support the notion that COPD may be an
inflammatory multisystem disease.

Of quantitative imaging features, % LAA < —950 HU,
Pi10, and PA:A ratio were chosen by the RSF algorithm,
yet only the PA:A ratio was significant in the fully
adjusted model. These features likely have a complex
relationship with survival, and the PA:A ratio may
capture vascular disease less directly captured by other
features. Our results are consistent with those of a recent
study reporting that PA:A is associated with mortality in
patients with COPD after adjusting for BODE variables.”
However, this and other articles reporting the association
of individual risk factors with mortality do not directly
address whether combinations of these individual
features leads to better prediction. In the current study,
we observed that adding the PA:A ratio and other CT
imaging-based disease features individually to BODE
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Figure 5 — Kaplan-Meier analysis of subjects in a pooled COPDGene and ECLIPSE sample. A, Subjects were grouped by BODE score (0-2, 3-4, 5-6, 7-
10). B, Subjects were stratified into four groups based on the machine learning mortality prediction (MLMP)-COPD model. Participants were ranked
according to their calculated risk by the MLMP-COPD model and divided into four groups of mortality risk that were of equal size as those of the

BODE groups. Circles indicate the probability of survival at each time point, and the bars are 95% ClIs. See Figure 1 and 3 legends for expansion of other
abbreviations.
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does not significantly improve predictive performance.
Instead, a combination of clinical variables and CT
imaging features are required to improve mortality
prediction over that of existing models.

To our knowledge, our study is the first to evaluate
multiple imaging features simultaneously in the context
of mortality prediction. Removal of quantitative CT
imaging features from the MLMP-COPD model
decreased predictive performance only slightly. This
finding is consistent with the RSF VIMP measures,
which ranked quantitative imaging features as less
important than most of the other features included. In
contrast, a study using coronary CT angiography found
age followed by imaging features as the most important
predictors of all-cause mortality.”® This finding is likely
consistent with the ability of coronary imaging to
measure directly the specific lesions that lead to the most
likely cause of death, in contrast to COPD, for which CT
imaging features may be more important for describing

COPD heterogeneity and play a more limited role in
predicting all-cause mortality. Future work may use
imaging to define and predict mortality directly in
COPD.**"!

When stratifying subjects by using the MLMP-COPD
model, the sickest group of the same-sized BODE group
(score 7-10) had 19.5% higher mortality. Older age,
lower resting arterial oxygen saturation, higher PA:A
ratio, lower % LAA < —950 HU, increased pack-years of
smoking, and diabetes added prognostic information for
these subjects. Thus, it is important to think beyond the
BODE variables when trying to identify patients with
COPD at the highest risk of death.

RSFs have been used for feature selection in COPD case
identification®® and for identifying risk factors for
COPD exacerbations.”” The current study differs in that
we used a survival implementation of RSFs (ie, time-to-
event analysis) to identify predictors of all-cause

TABLE 3 | Characteristics of Subjects With the Highest Predicted Mortality

Characteristic BODE Group Model Group P Value
No. of subjects 184 184
Age, mean (SD), y 63.76 (7.47) 69.83 (6.44) < .001
Race, African American, No. (%) 18 (9.8) 16 (8.7) .857
Sex, female, No. (%) 82 (44.6) 57 (31.0) .010
Total dead, No. (%) 118 (64.1) 141 (76.6) .012
Days followed up, median (IQR) 1,280.50 (940.50-2,243.50) 1,192.50 (791.75-1,833.75) .049
BODE, median (IQR) 7.00 (7.00-8.00) 6.00 (5.00-7.00) < .001
6-Min walk distance, mean (SD), ft 608.18 (343.20) 593.19 (263.68) .639
FEV; % predicted, median (IQR) 27.65 (21.60-33.28) 28.10 (20.88-34.38) .942
mMRC dyspnea score, No. (%) .009

1 0 (0.0) 5(2.7)

2 19 (10.3) 32 (17.4)

3 58 (31.5) 64 (34.8)

4 107 (58.2) 83 (45.1)
FEV1/FVC ratio, median (IQR) 0.34 (0.28-0.41) 0.33 (0.27-0.37) .053
FEF2506-506, median (IQR), L 0.24 (0.19-0.33) 0.23 (0.17-0.30) .080
Resting Sa0,, median (IQR) 94.00 (91.00-96.00) 93.00 (88.00-94.25) < .001
Exacerbation frequency, mean (SD), No./y 1.26 (1.33) 1.52 (1.57) .086
Pack-years cigarette smoking, median (IQR) 45.00 (34.60-67.62) 61.40 (40.00-88.92) < .001
BMI, mean (SD), kg/m? 23.81 (6.30) 25.47 (5.63) .008
Severe exacerbations, No. (%) 86 (46.7) 95 (51.6) 404
PA:A ratio, mean (SD) 0.97 (0.16) 1.02 (0.18) .006
Pi10, mean (SD) 4.12 (0.35) 4.10 (0.37) 611
Diabetes, No. (%) 20 (10.9) 38 (20.7) .015
% LAA < —950 HU, median (IQR) 30.80 (18.50-39.40) 24.48 (15.83-36.96) .021

The BODE group with the highest predicted mortality had BODE score 7 to 10 (see Materials and Methods). See Table 1 and 2 legends for expansion of

abbreviations.
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mortality in people with COPD. Combinations of
feature selection methods and traditional prediction
models performed similarly to more advanced methods,
although the combination of using RSFs for variable
selection and Cox yielded the most parsimonious model.
This result is perhaps not surprising, as simpler machine
learning methods or models have been observed to
perform similarly to or better than more advanced
methods, depending on the data set.”” In addition, a
simpler model that explains the data equally well is more
likely to generalize in independent cohorts, presumably
because of less overfitting or overparameterization.'® In
a survival analysis of 1,371 patients with head and neck
cancer, RSF identified the most important predictors of
survival, whereas Cox regression performed slightly
better than RSF.®” Thus, although the more advanced
RSF machine learning method reduced the number of
predictors, it provided accuracy similar to that of
traditional Cox regression.

Many have attempted, but failed, to develop a mortality
prediction model as consistently superior and equally
parsimonious as the BODE index.”>” "' Most
previously published models were not directly compared
with BODE in their initial publication, nor were they
externally validated. A 2018 study examined the
predictive power of 10 COPD mortality prediction
models and reported that none performed significantly
better than BODE. " By contrast, our model
demonstrated superior predictive performance for long-
term mortality across multiple cohorts in patients with
moderate to severe COPD. The MLMP-COPD model,
although more accurate than BODE, is more complex;
however, even relatively simple measures like BODE, in
our experience, are not calculated by hand. The use of
online clinical calculators as diagnostic, prognostic, and
decision aids has increased in clinical practice.””** There
is evidence that such point-of-care resources may
improve diagnostic accuracy, adherence to guidelines,
and accuracy of calculations.”” Therefore, we developed
an online Web application that allows users to observe
how altering input values affects predicted survival.
Although our model should undergo further validation,
future endeavors may include automated calculations via
the electronic medical record to facilitate clinical
implementation.

This study had several limitations. First, the COPDGene
and ECLIPSE studies were multicenter case-control
studies and not representative of the general population.
The MLMP-COPD model should ideally be validated in
general population samples. Differences in imaging
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protocols between the COPDGene and ECLIPSE studies
may have accounted for the higher proportion of
interstitial lung abnormalities and greater amount of
emphysema in ECLIPSE and, thus, diminished the
predictive power of quantitative imaging features.
However, a simple harmonization (z score
transformation) of imaging features did not improve
mortality prediction, which could reflect the relatively
lower effect of imaging compared with clinical features
or the need to both standardize imaging protocols and/
or develop more advanced image harmonization
techniques. Despite these differences, the MLMP-COPD
model performed well across these two heterogeneous
populations.

Our study used all-cause mortality, which, although
arguably more generalizable, given that many deaths in
COPD are not due to respiratory disease, is nevertheless
a limitation because of the lack of cause-specific
mortality. Age was initially not included in the BODE
index to maintain respiratory-specific mortality;
however, our model performed better than ADO, which
also accounts for age. Age, smoking history, and diabetes
may be proxies for cardiovascular disease, which was not
included in the model because of differences in
assessment and missingness between the cohorts. The
BODE index is currently used for selection of lung
transplant recipients,”® and it is possible that our score
could be used to improve this process, given that the
median survival after lung transplant is approximately 5
years®” and BODE predicts out only to 4 years (vs 8
years with the MLMP-COPD model). Additional testing,
ideally in a transplant population, is needed before
considering its use as a selection tool. Future studies
should examine the performance of the MLMP-COPD
model in predicting respiratory- and cardiovascular-
specific mortality with cause-specific comorbidities.
Finally, previous studies have demonstrated the
usefulness of adding blood-based biomarkers to
predictive models®*’; however, our study did not
include biomarkers because of the missingness in these
cohorts.

Conclusions

In conclusion, the MLMP-COPD model demonstrated
predictive performance superior to that of four prior
mortality prediction indexes in subjects with moderate
to severe COPD across two large cohorts. Further
investigation across diverse populations and
investigation of cause-specific mortality will help
support the validity of this model.
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