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A B S T R A C T   

Unnecessary antibiotic regimens in the intensive care unit (ICU) are associated with adverse patient outcomes 
and antimicrobial resistance. Bacterial infections (BI) are both common and deadly in ICUs, and as a result, 
patients with a suspected BI are routinely started on broad-spectrum antibiotics prior to having confirmatory 
microbiologic culture results or when an occult BI is suspected, a practice known as empiric antibiotic therapy 
(EAT). However, EAT guidelines lack consensus and existing methods to quantify patient-level BI risk rely largely 
on clinical judgement and inaccurate biomarkers or expensive diagnostic tests. As a consequence, patients with 
low risk of BI often are continued on EAT, exposing them to unnecessary side effects. Augmenting current 
intuition-based practices with data-driven predictions of BI risk could help inform clinical decisions to shorten 
the duration of unnecessary EAT and improve patient outcomes. We propose a novel framework to identify ICU 
patients with low risk of BI as candidates for earlier EAT discontinuation. For this study, patients suspected of 
having a community-acquired BI were identified in the Medical Information Mart for Intensive Care III (MIMIC- 
III) dataset and categorized based on microbiologic culture results and EAT duration. Using structured longi-
tudinal data collected up to 24-, 48-, and 72-hours after starting EAT, our best models identified patients at low 
risk of BI with AUROCs up to 0.8 and negative predictive values >93%. Overall, these results demonstrate the 
feasibility of forecasting BI risk in a critical care setting using patient features found in the electronic health 
record and call for more extensive research in this promising, yet relatively understudied, area.   

1. Introduction 

Antibiotics can be life-saving for critically ill patients with bacterial 
infections (BIs), however, overuse or unnecessary administration can 
contribute to antimicrobial resistance (AMR) and antibiotic-associated 
morbidity [1–7]. This is a critical issue, as patients with AMR in-
fections suffer longer hospital stays, treatment complications, higher 
healthcare costs, and are more likely to die [8–11]. Furthermore, anti-
biotics can cause harm through gut microbiome dysbiosis, mitochon-
drial toxicity, and immune cell dysfunction [1–7]. Although clinicians 
have become more aware of the side effects of antibiotics, it is estimated 
that up to 50% of antibiotic prescriptions in acute care hospitals in the 
United States are still either inappropriate or unnecessary [12–17]. 
Reducing both the amount and duration of unnecessary antibiotic 
treatments is a commonly proposed strategy to reduce the risk of 

antibiotic-related side effects [12–15,18]. This is particularly relevant in 
the intensive care unit (ICU), where concerns for bacterial infections (BI) 
are high and prescribing antibiotics empirically—prior to having 
confirmatory bacterial culture results or when an occult BI is sus-
pected—is a common practice [19,20]. 

Approximately 30–50% of all ICU patients are diagnosed with a BI 
and their mortality rates can reach as high as 60% in severe infections 
[20–23]. As a result, providers in the ICU often have a low threshold to 
start empiric antibiotic therapy (EAT) despite the ramifications of 
excessive antibiotic use for patients at low risk of BI. Unfortunately, 
there is no uniform consensus on the appropriate duration of EAT. As a 
result, clinicians must continually weigh the risks of failing to treat a 
serious BI against the risks of prescribing inappropriate antibiotic regi-
mens. Moreover, physicians lack objective criteria to identify low BI risk 
in patients receiving EAT, and rely on clinical intuition and imprecise 

Abbreviations: ICU, intensive care unit; BI, bacterial infection; EAT, empiric antibiotic therapy; EHR, electronic health record; MIMIC-III, Medical Information 
Mart for Intensive Care III dataset. 
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guidelines to balance EAT decisions [3,24–26]. Strategies that shorten 
unnecessary antibiotic duration in ICU patients when BIs are no longer 
suspected offer a way to improve patient outcomes, and have been 
identified as a priority by the Society of Critical Care Medicine as part of 
their “less is more” campaign [27]. 

Leveraging electronic health record (EHR) data with machine 
learning techniques presents an opportunity to accurately identify pa-
tients with low risk of BI. The widespread adoption of EHR systems of-
fers investigators access to massive repositories of data generated 
through routine clinical care and provides opportunities to develop 
novel prediction algorithms to aid in clinical decision making. 

The primary objective of this study was to develop a novel frame-
work to identify ICU patients with a low risk of BI as candidates for 
earlier EAT discontinuation. The feasibility of this approach was 
investigated in patients suspected of having a BI by modeling data 
collected for up to 24-, 48- or 72-hours following the first dose of anti-
biotics. We compare prediction performance across different model 
types, data collection windows, and prediction thresholds. The devel-
oped algorithm could be used to identify patients at low risk of BI early 
in their hospitalization who may benefit from early discontinuation of 
EAT. Furthermore, our EHR-based phenotype of patients suspected of 
having a BI could be generalized to other datasets and used for addi-
tional analyses on antibiotic usage and BI in the ICU. 

The detailed data dictionary, code, results been made available at: 
https://github.com/geickelb/mimiciii-antibiotics-opensource. 

2. Materials & methods 

2.1. Dataset 

A summary of our data extraction and analysis workflow is presented 
in Fig. 1. The data used in this study was retrieved from the Medical 
Information Mart for Intensive Care III (MIMIC-III). The MIMIC-III 
database is an open and de-identified database comprised of health- 
related data from over 40,000 ICU patients who received care at Beth 
Israel Deaconess Medical Center between 2001 and 2012 [28,29]. 
MIMIC-III includes a variety of data such as administrative, clinical and 

physiological types, which are organized, formatted, processed and de- 
identified in accordance with the Health Insurance Portability and 
Accountability Act (HIPAA) guidelines [28,29]. 

2.2. Cohort 

Adult patients who were suspected of having a BI upon admission to 
the ICU were eligible for our study. To match this phenotype, a patient 
must have: (1) received at least one dose of antibiotics within 96h 
following ICU admission and (2) had a microbiologic culture within 24h 
of their first antibiotic dose (Fig. 2). Microbiologic cultures were defined 
as cultures obtained from any of the following: blood, joint, urine, ce-
rebral spinal fluid (CSF), pleural cavity, peritoneum, or bronchoalveolar 
lavage. Patients with multiple ICU encounters that met study inclusion 
criteria were analyzed independently; however, each patient’s ICU en-
counters were assigned to the same train/test split (see Modeling). 

Antibiotics prescriptions were recorded as the administration of any 
“antibacterial for systemic use” represented by Anatomical Therapeutic 
Chemical (ATC) code J01. ATC codes were obtained by first converting 
national drug codes (NDC) into RxNorm concept unique identifier 
(RXCUI) codes, and then into ATC codes. Regular expressions were used 
on prescription names to further filter out erroneous entries and those 
with missing NDC/RXCUI codes. We calculated the maximum length of 
cumulative antibiotic days following a microbiologic culture for each 
ICU encounter. Prescription information in the MIMIC-III database was 
stored with date level resolution. To accommodate this, the time of each 
patient’s first antibiotic dose (t0) meeting the phenotype criteria was set 
to 0:00:00. 

Patients were allocated to one of three BI groups: serious BI, non- 
serious BI/no BI, and unknown BI status (Fig. 3). Given the common 
occurrence of occult bacterial infections, a direct inference of BI status 
could not be made based off of microbiological culture results alone. 
Therefore, patient’s BI statuses were assigned based both on their 
microbiologic culture results (positive vs. negative) and duration of their 
antibiotic treatment (short [≤96h] vs. prolonged [>96h]). In this 
paradigm, patients with positive microbiologic culture and prolonged 
antibiotic treatment were considered to have serious BIs (prediction 

Fig. 1. Data Ingestion and Analysis Framework Overview. Raw data is ingested from the MIMIC-III database. First a cohort of adult patients suspected of having SBI 
is established, and both longitudinal and categorical data is extracted over the T = 24-,48-, or 72-hour window following their first antibiotic dose that corresponds 
with an microbiologic culture. Next, data is cleaned, formatted, and preprocessed prior to modeling. The cohort is then filtered to patients with positive microbiologic 
culture and prolonged antibiotics, and microbiologic culture negative with short antibiotics. A 70/30 train/test set split is then applied. Scaling and standardization 
are performed on each set independently. Missing values were imputed using median values from the training set. Machine learning models are hypertuned on the 
training set and applied to the test set. Finally, classification thresholds are tuned, and model performance metrics are output. 
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events), whereas those with negative cultures and short antibiotic 
treatment were considered to have no BIs (prediction non-events). 
Additionally, patients with short antibiotic treatment and positive 
microbiologic culture were considered non-serious BIs. Due to the pos-
sibility of occult infections, patients who received prolonged antibiotics 
despite having a negative microbiologic culture had less clear infection 
statuses, and were thus coded as unknown BI status. Conceptually, pa-
tients in that group could be further divided into those with an occult 
serious BI and those with either no BI or an occult non-serious BI. These 
patients were separated from the dataset prior to model training and 
testing, and were later used assess the clinical utility of the prediction 
model by testing its ability to identify patients at low-risk BI in that 
population. 

To control for Staphylococcus culture contamination, we required two 
consecutive Staphylococcus positive cultures to be considered microbi-
ologic culture positive. Additionally, we coded patients that died within 
24h of their last antibiotic dose as prolonged antibiotic treatment (n =
1266). To accommodate for date-level resolution on prescription tim-
ings, we utilized a conservative 96h threshold for short vs prolonged 
antibiotic duration. 

2.3. Data extraction 

We extracted static and longitudinal patient clinical data from the 
MIMIC-III database using open source code provided by the MIMIC-III 
team (Table 1). Longitudinal data was restricted to either the T = 24-, 
48-, or 72-hour cutoff following the administration date of the first 
antibiotic dose (t0:t0+T) (Fig. 2). 

2.4. Cleaning & pre-processing 

The raw clinical data extracted for the purpose of this study were first 
cleaned and formatted to address data quality issues and then pre-
processed to facilitate usability by selected machine learning models. 
The first cleaning step was to address desperate units of measurement by 
converting each variable into designated units (Table 1). Next, conser-
vative thresholds were set to review erroneous values and data entry 
errors for removal based upon a combination of reference laboratory 
value limits, clinical knowledge, three sigma outlier criteria, and manual 
audit of a subset of free-text to confirm concordance. Finally, event and 
windowed continuous variables, such as administration of renal 
replacement therapy or mechanical ventilation were coded and dis-
cretized. The cleaned data were then converted into unit variances 
following as in (1), where X

(− /short) is the median value of the patients 

Fig. 2. Phenotype Criteria for BI Suspicion at ICU Admission. A patient’s first Antibiotic (AB) dose (t0) needs to: (1) be administered within 96h following ICU 
admission and (2) have an microbiologic culture within 24h and (1) be administered within 96h following ICU admission. Clinical Data is collected for up to T = 24-, 
48-, or 72-hours after first antibiotic dose. 

Fig. 3. Classification of BI status and framing of the 
clinical prediction problem. Patient BI status can be 
classified into three groups based on duration of 
antibiotics and microbiological results: “Serious BI” 
are those with positive microbiological cultures 
receiving antibiotics for >96h and are the cases in 
model training. “Non-serious BI” and “No BI” pa-
tients are those with antibiotics ≤96h and are the 
controls in the model training. “Unknown BI status” 
are patient who received empiric antibiotic therapy 
[EAT] for >96h despite negative microbiological 
cultures, and are the group of patients most likely to 
benefit from correct BI risk prediction. The un-
known BI status group may be conceptually divided 
into patients with “occult serious BI” who are likely 
more similar to the cases than to the controls, and 
patients with “no BI or occult non-serious BI” who 
are likely more similar to the controls than to the 
cases.   
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with negative microbiologic culture and short duration EAT. Next, 
longitudinal and ordinal clinical variables spanning t0:t0+T were 
aggregated to produce single value(s) for each parameter using the 
operation that conferred the highest likelihood of infection (minimum, 
maximum or both). Lastly, categorical variables were encoded to 
dummy variables using the one-hot-encoding technique. The final 
dataset was represented by a 52-dimension feature vector. 

Z =
X − X(− /short)

IQR(− /short)
(1)  

2.5. Modeling 

The patients with positive microbiological cultures and prolonged 

antibiotic duration (serious BI) and those with short antibiotic duration 
(no BI or non-serious BI) were split into a training and test set following 
a 70/30 split based upon unique ICU stay identifiers. Cohort splitting 
was performed on unique ICU stay identifiers where individual patients 
were sequestered to either the training or testing set to prevent testing 
set contamination. We chose to impute missing values with median 
values from the training set in order to facilitate implementation into a 
clinical setting. Empirical studies have suggested that including imputed 
values with high missingness can improve model clinical utility, so we 
chose to include imputed values with high missingness in our model 
(Table 1) [30,31]. 

The final dataset was modeled using a variety of machine learning 
algorithms, including Ridge regression [32], Random Forests [33], 
support vector classifier (SVC) [34], extreme Gradient Boosted decision 
Tree (XG Boost) [35], K-Nearest Neighbors (K-NN), and Multilayer 
Perceptron (MLP). These models were chosen using a set of criteria that 
included each model’s relative interpretability, approach to handling 
nonlinearity, and ability to model categorical and continuous features. A 
soft voting classifier, or ensemble of all other models, was also used to 
test for significant performance gains or losses. 

Class imbalance was addressed by classification threshold tuning and 
modeling specific class balancing parameters, such as bootstrapping and 
class weights, during hyperparameter tuning in order to simplify the 
modeling workflow. Modeling hyperparameters were tuned using 10- 
fold cross validation with a binary cross entropy loss function on the 
training set. The binary classification threshold was tuned in 10-fold 
cross validation to achieve a high sensitivity (sensitivity ≥ 0.9) and 
was averaged across all folds. This high sensitivity was chosen in order 
to reduce the number of false negatives and predict low BI risk with 
higher certainty. Threshold tuned model performances were assessed on 
the test set using area under the receiver operator curve (AUC), F1 score, 
negative predictive value (NPV), precision, and recall. 

3. Results 

3.1. Cohort 

We identified a total of 19,633 ICU encounters (15,412 unique pa-
tients) in the MIMIC-III data that met inclusion criteria for our study. 
Within this set, we filtered our cohort down to 12,232 ICU encounters 
(10,290 unique patients) that had either prolonged antibiotics and 
positive microbiologic culture, or short antibiotics and negative micro-
biologic culture (Table 2). Table 3 summarizes the breakdown of these 
patients across the train/test splits. Additionally, 7401 ICU encounters 
(6520 unique patients) with unknown BI status (prolonged antibiotics 
and negative microbiologic culture) were set aside to test the prediction 
model’s ability to identify patients at low risk BI in that population. 

Table 4 summarizes the test set results for each threshold tuned 
model. The performance across the models for each T-hour test set 
showed little variation, where XGBoost and Random Forests slightly 
outperformed the other models in terms of AUC, F1 score, NPV, and 
precision. As the data window was increased from 24 to 72h, there were 

Table 1 
Extracted Data- Raw variables and units extracted from the corresponding table 
in the MIMIC-III database.  

MIMIC-III 
TABLE 

Data Collected Unit % Missingness 
(T = 24–72h) 

Diagnoses ICD-9 codes (Elixhauser 
Comorbidity Index) 

categorical 0–0  

Admissions Age years 0–0  
Ethnicity categorical 0–0  
Gender categorical 0–0  

ChartEvents Blood pressure (systolic, 
diastolic) 

mmHg 0.2–0  

Glasgow Coma Scale GCS score 72.5–53.3  
Glucose mg/dL 0.5–0.1  
Heart rate bpm 0–0  
Peripheral oxygen Saturation 
(SpO2) 

% 0–0  

Temperature deg. C 1.6–0.2  
Ventilation status categorical 1.3–0.9  
Weight kg 8.4–8.4  

InputEvents Dobutamine mcg/kg/ 
min 

98.8–98.3  

Dopamine mcg/kg/ 
min 

94.9–94  

Epinephrine mcg/kg/ 
min 

97.9–97.6  

Norepinephrine mcg/kg/ 
min 

83.1–80.1  

Phenylephrine mcg/kg/ 
min 

86.2–83.2  

Renal replacement therapy pos/neg 0–0  
Vasopressin mcg/kg/ 

min 
98–97  

LabEvents Bands % 87.3–82.6  
Serum bicarbonate mEq/L 2.1–0.3  
Bilirubin mg/dL 60.1–47.8  
Blood urea nitrogen (BUN) mg/dL 2–0.3  
Serum chloride mEq/L 1.9–0.3  
Serum creatinine mg/dL 2–0.3  
Serum glucose mg/dL 0.5–0.1  
Hemoglobin g/dL 2.6–0.3  
International Normalized Ratio 
(INR) 

ratio 24.9–13.3  

Serum lactate mmol/L 48.1–42.3  
Urine leukocyte pos/neg 69.5–57.6  
Urine nitrite pos/neg 69.5–57.6  
Partial pressure of arterial 
oxygen (PaO2)/fraction of 
inspired oxygen (FiO2) ratio 

ratio 67.9–65.1  

Partial thromboplastin time 
(PTT) 

sec 25.2–13.8  

Partial pressure of arterial 
carbon dioxide (pCO2) 

mmHg 39.9–34  

Serum pH n/a 41.9–36.7  
Platelet count K/uL 2.6–0.3  
Serum potassium mEq/L 1.6–0.3  
White blood cell count K/uL 2.9–0.3  
Serum calcium mmol/L 63.1–56.6  

Table 2 
Demographics- distribution of cohort demographics.  

Variable Mean/stdev 

Gender- N, % 
Female 5709 (47%) 
Male 6523 (53%) 
Age (yr) 64.7 ± 17.0  

Ethnicity- N, % 
African-American 1385 (11%) 
White 8855 (72%) 
Hispanic 507 (4%) 
Other 1485 (12%)  
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small increases in AUC across the best performing models for each time 
window. Fig. 4 summarizes the ROC curve for all the T = 24-hour 
models where all, except K-nearest neighbors, performed similarly. 
Additionally, when tested with the 72-hour test data, the 24-hour 
Random Forests model obtained an AUC of 0.787 (~0.013 increase). 
Similarly, the 72-hour Random Forests model produced an AUC of 0.765 
(~0.028 decrease) when tested on the 24-hour data. These changes in 
AUC suggest that both the 24-hour and 72-hour models maintain similar 
model performances when making predictions on data collected over 
48-hour longer and shorter collection windows, respectively. 

Fig. 5 displays how variable importance changed across the models. 
For this plot, a list of 20 variables was selected based on the top ten most 
important variables for the Random Forests, logistic regression, 
XGBoost, and SVC models. Fig. 5 suggests that although the models 
perform similarly, each model prioritized predictors. This interpretation 
is reinforced by the results of the soft voting ensemble models, which 
performed comparably to the best performing model within each T-hour 
test set. This further suggests that the models are identifying the same or 
similar patients regardless of the underlying algorithm. 

The T = 24-hour Random Forests model was chosen for the subse-
quent analyses given that the T = 24-hour timepoint provides more 
clinical utility, and thus the Random Forests model was the best per-
forming model within this timepoint. Table 5 summarizes the confusion 
matrix for this model with a high sensitivity classification threshold 
(0.26) in the test set. The model achieved an NPV of 0.944 in the test set; 
however, this figure is based on the 0.20 BI prevalence from the training 
and testing set. Fig. 6 displays how the model NPV changes as a function 
of population BI prevalence and classification threshold. We found that 
as the BI prevalence changed from 0.5 to 0.1, the NPV of the T = 24-hour 
random forests model changed from 0.82 to 0.98 when using a high 
sensitivity threshold, and 0.59 to 0.93 when using a 0.5 threshold. These 
results suggest that our model performance will be more robust to 
changes in prevalence when using the high sensitivity prediction 
threshold. The remaining patients falsely predicted as negatives by all of 
the T = 24-hour models were investigated for observable patterns. These 
investigations suggested that the false negatives are a heterogeneous 
group with no reproducible patterns. 

Of the 1208 true negatives, 458 (37.9%) cases received antibiotics 
for 24h or less, while 750 (62.1%) received antibiotics greater than 24h. 
We estimated that 1289 out of the 2375(53.2%) total antibiotic days 
administered to patients in the true negative group could have been 
avoided if our model with a high sensitivity threshold were hypotheti-
cally used to stop EAT early. 

3.2. Performance in patient set with unknown BI 

Finally, the best performing T = 24-hour Random Forests model was 
applied to the patient group with unknown BI status, which are those 
who stand to benefit the most from correct BI risk prediction. Using the 
high sensitivity and 0.5 probability thresholds, the model predicted 861 
out of 7,401 (11.6%) and 5,525 out of 7,401 (74.7%) patients to be at 
low risk of BI, respectively (Table 6). Using the NPV from the test set 
with high sensitivity and 0.5 thresholds (NPV = 94.5%, 84.3%) we 
estimated that approximately 48 (0.6%) and 860 (11.6%) of all un-
known BI status patients would have been predicted to have a low BI risk 
but actually have had a BI (false negatives). By subtracting these esti-
mated false negative patients from the total negative predictions, we 
estimated that the high sensitivity and 0.5 thresholds would have 
theoretically benefited 813 (11.0%) and 4,664 (63.0%) patients, 
respectively. We estimated that as a lower bound, our T = 24-hour 
Random Forests model with a high sensitivity threshold could have 
reduced approximately 5,684 (9.5%) antibiotic days administered to 
this group, and as an upper bound with the 0.5 probability threshold 
could have reduced approximately 35,831 (60.0%) antibiotic days. A 
manual chart review and clinical assessment of 10 patient records with 
unknown BI status (5 predicted high BI risk, 5 predicted low BI risk) 
found that 8 out 10 model BI risk classifications matched the clinical 
reviewer’s assessment of BI risk, 2 out of 10 were probably correct but 
remained indeterminate, and 0 out of 10 were misclassified 
(Appendix A). 

4. Discussion 

In this study, we developed a novel framework to extract patient 
features from raw clinical data and identify patients at low risk of BI 
who, in theory, could benefit from earlier EAT discontinuation within 

Table 3 
Cohort Split- Breakdown of the train/test split against patient classes.  

Microbiologic 
Culture 

Antibiotic 
Durationa 

BI Status 
Classification 

Train 
No. 
(%) 

Test 
No. 
(%) 

Total 
No. (%) 

Negative Short Positive 5512 
(65%) 

2355 
(65%) 

7867 
(65%) 

Positive Prolonged Negative 1693 
(20%) 

745 
(20%) 

2438 
(20%) 

Positive Short Negative 1296 
(15%) 

631 
(15%) 

1927 
(15%) 

Negative Prolonged Unknown N/A N/A 7401 
(100%)  

a Time on antibiotics, short (≤96h) vs. prolonged (>96h). 

Table 4 
Preliminary Model Results - Modeling parameters for each model on the test set 
using the high sensitivity threshold.  

Model AUC F1 NPV Precision Recall High 
Sensitivity 
Threshold 

72-hour Test set 
Random 

Forests 
Classifier 

0.793 0.431 0.941 0.284 0.891 0.124 

XGBoost 0.795 0.439 0.943 0.291 0.891 0.096 
MLP 

Classifier 
0.779 0.395 0.948 0.25 0.936 0.09 

Logistic 
Regression 

0.781 0.423 0.932 0.278 0.876 0.298 

SVC 0.778 0.425 0.935 0.28 0.881 0.101 
K-NN 0.734 0.357 0.936 0.219 0.963 0.04 
Voting 

Classifier 
0.793 0.429 0.946 0.281 0.905 0.147  

48-hour Test set 
Random 

Forests 
Classifier 

0.788 0.43 0.943 0.283 0.897 0.126 

XGBoost 0.796 0.436 0.946 0.288 0.9 0.091 
MLP 

Classifier 
0.771 0.456 0.92 0.318 0.805 0.084 

Logistic 
Regression 

0.774 0.421 0.938 0.275 0.893 0.296 

SVC 0.773 0.42 0.941 0.274 0.9 0.099 
K-NN 0.733 0.393 0.922 0.252 0.887 0.044 
Voting 

Classifier 
0.788 0.436 0.939 0.29 0.881 0.147  

24-hour Test set 
Random 

Forests 
Classifier 

0.774 0.424 0.944 0.277 0.905 0.258 

XGBoost 0.776 0.416 0.94 0.271 0.901 0.104 
MLP 

Classifier 
0.764 0.439 0.925 0.297 0.84 0.087 

Logistic 
Regression 

0.764 0.411 0.94 0.266 0.907 0.302 

SVC 0.763 0.411 0.937 0.267 0.9 0.105 
K-NN 0.714 0.382 0.922 0.243 0.903 0.044 
Voting 

Classifier 
0.776 0.421 0.939 0.275 0.895 0.177  
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24h of initiation. Our main finding is that our models can predict pa-
tients with low risk of BI with good performance when applied to 
structured clinical data collected for T = 24-hours after the EAT initia-
tion. We also found that increasing the data collection time and model 
complexity yielded only slight performance increases. Finally, our re-
sults suggest by that applying our T = 24-hour Random Forests model 

with a high sensitivity threshold to the patient set with unknown BI 
status (prolonged antibiotics and negative microbiologic culture), we 
would be able to identify around 11.6% of patients as candidates for EAT 
removal with high confidence and could reduce total antibiotic days by 
approximately 9.5%. 

Designing data-driven approaches to accurately stratify patients 
based on their BI risk has the potential to greatly improve antibiotic 
stewardship efforts. Antibiotic stewardship in the ICU can be viewed as a 
two-stage process. The first stage requires administering broad-spectrum 
antibiotics to maximize treatment of serious BI. In the second stage, 
physicians either stop EAT for patients at low risk of BI or narrow the 
spectrum of antibiotics once the infection is characterized [3]. Many 
stewardship techniques focusing on the later stage hinge upon sensitive 
and specific identification and monitoring of BI risk. Bacterial cultures 
and inflammatory biomarkers are currently the most common methods 
of monitoring BI risk in the ICU, but are not necessarily optimal. Bac-
terial cultures, the current gold standard for diagnosing BI, may take 
days to result and are often unreliable in detecting all BIs [36]. To 

Fig. 4. Receiver operating characteristic curves for all T = 24-hour models. We use different colors and line styles to differentiate models. AUC: Area under the curve.  

Fig. 5. Stacked Relative Variable Importance 
Across Prediction Models. Variable importance for 
Random Forests and XGBoost were based on 
standardized Gini importance, while SVC and lo-
gistic regression used standardized coefficients. 
Variable importance values from all models were 
scaled relative to the value of the most important 
variable for all 20 values in the variable list. pCO2: 
carbon dioxide partial pressure; PaO2:FiO2: ratio 
of arterial oxygen partial pressure to fractional 
inspired oxygen; PTT: platelets; MAP: average 
arterial blood pressure over one cardiac cycle; 
WBC: white blood cell count; BUN: Blood urea 
nitrogen; sysBP: Systolic blood pressure.   

Table 5 
Confusion Matrix Statistics- Test set classification summary for the T = 24-hour 
Random Forests model with a high sensitivity threshold.   

True 
Negatives 
(%) 

False 
Positives 
(%) 

False 
Negatives 
(%) 

True 
Positives 
(%) 

High Sensitivity 
Threshold 

1208 
(32.4%) 

1773 
(47.5%) 

71 (1.9%) 679 (18.2%) 

0.5 Probability 
Threshold 

2826 
(75.7%) 

155 (4.2%) 521 (14.0%) 229 (6.1%)  
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address this, bacterial cultures are frequently supplemented with Gram 
staining, which provide additional information more immediately about 
a patient’s BI risk. However, Gram staining suffers from high variability 
and low reliability that results from individual differences in slide 
preparation and interpretation [37–39]. Assays based on inflammatory 
biomarkers, such as C-reactive protein and procalcitonin, have 
improved sensitivity and specificity for detecting community-acquired 
infections, but have high rates of false-positives and -negatives for 
hospital-acquired infections [3,40–42]. Newer rapid multiplex di-
agnostics for infectious organisms have also been introduced; however, 
these are still being tested for efficacy, costly, and not yet widely 
available [43]. Designing better methods to identify patients with low 
risk for BI is critical to shorten the duration of unnecessary EAT and 
facilitate antibiotic stewardship. 

Numerous prior studies have presented EHR-based machine learning 
models and clinical decision support systems to predict infection related 
conditions, such as bacteremia, sepsis, and ICU mortality [44–55]. The 
goal of such models has been to ensure all septic and/or bacteremic 
patients are identified and treated early with appropriate antibiotic 
regimens [45–48,51–53,55]. For instance, Nemati et al. achieved 
AUROCs ranging from 0.83 to 0.85 in predicting the early onset of sepsis 
using data collected during the 12, 8, 6, and 4 h prior to diagnosis for 
patients across two Emory University hospitals and the MIMIC-III 
dataset. In contrast to these prior studies, the models we present differ 
by clinical timeframe (it is intended to be used after a patient is already 
suspected of having BI and has started EAT) and by the goal of the model 
(identify patients on EAT who are candidates for EAT discontinuation). 
Currently, no other prominent EHR-based prediction models exist with 
the goal of identifying patients on EAT with low risk of having BI who 
are candidates for EAT discontinuation. Existing methods for forecasting 
patient-level BI risk have focused around the use of protein and genetic 
biomarkers [6,40,41]. The models we present rely on data commonly 
recorded in the ICU and do not require any specialized laboratory di-
agnostics or data from current BI risk prediction methods. Our study 

adds to the body of research surrounding EHR-based prediction models 
and provides a complementary approach to biomarker-based forecasting 
of patient-level BI risk. When used in combination with current BI risk 
metrics and clinical intuition, our model promises to help assist care 
providers in the de-escalation process of antibiotic stewardship. 

For our clinical use case, false negative patients, i.e. those with a 
serious BI who were predicted as unlikely to have an infection, 
encompass the largest source of potential patient harm given the risk of 
untreated BIs in the ICU and therefore need to be minimized. Similarly, 
the largest source of potential patient benefit of our model from the 
current standard of care comes from reducing the number of antibiotic 
days given to patients who don’t have known BI. Our T = 24-hour 
Random Forests model uses a high sensitivity decision threshold to in 
order to reduce false negative predictions and therefore improve the 
potential clinical utility in an ICU setting. 

We recognize several limitations of this study. First, the retrospective 
data used was collected for clinical care purposes at a single academic 
medical center. The retrospective design of our study required us to infer 
information regarding BI suspicion, consecutive antibiotic days, and 
culture results based upon sensible criteria that may not completely 
reflect real world conditions. To address this, chart review and a variety 
of other quality checks were performed throughout the workflow to 
ensure appropriate coding of outcomes. Results from our 10-patient 
chart review of unknown BI status patients found two indeterminate 
cases and zero misclassifications by our proposed model. Details in the 
chart notes of one of these indeterminate cases suggested that this pa-
tient experienced a prolonged stay in the emergency department prior to 
transferring to the ICU and that the data from the emergency department 
was not available in the MIMIC-III dataset. This case suggests that the 
performance of our phenotype and model can be improved with more 
complete data on patients prior to ICU transfer. Future work will include 
retrospective data from additional ICU centers for external model vali-
dation and assessment of clinical utility, including data prior to ICU 
admission. Next, our estimates of antibiotic reduction provide an upper 
and lower bound on the potential clinical impacts of our model and 
makes numerous assumptions. To better understand the clinical utility 
of our model, further study is necessary to test the hypothesis that dis-
continuing antibiotic therapy on the patients predicted as low risk of BI 
would clinically benefit them. In future work, we will perform a 
propensity-matched analysis to estimate the effects of receiving short vs. 
prolonged antibiotics on outcome in patients with a predicted low risk of 
BI. Finally, the longitudinal patient data collected over T = 24-,48-, or 
72-hours was aggregated prior to modeling using the aggregation 

Fig. 6. NPV across BI prevalence for T = 24-hour Random Forests tuned and 0.5 prediction thresholds. NPV was simulated for a variety of BI prevalence values using 
the sensitivity and 1-specficity for the high sensitivity and 0.5 prediction thresholds from the test set. 

Table 6 
Prolonged antibiotic negative microbiologic culture predictions- prediction 
distribution for the T = 24-hour Random Forests model.   

High Sensitivity Threshold 0.5 Threshold 

Predicted low BI risk 861 (11.6%) 5525 (74.7%) 
Predicted high BI risk 6540 (88.4%) 1876 (25.3%)  
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function(s) most associated with increased BI risk for each variable. 
With this design, the time for patients to exhibit symptoms most indic-
ative of BI risk increases as the data collection window increases; 
however, time-window aggregation methods do capture temporal pat-
terns present in the data to the fullest extent. To better leverage the 
longitudinal nature of our data, future work will focus on testing more 
complex algorithms to explore temporal trends and improve model 
performances. 

5. Conclusion 

The goal of this paper was to detail the design and initial application 
of a novel collection of algorithms which extract patient features from 
clinical data and identify patients at low risk of BI who can be safely 
removed from EAT at 24-hours after initiation. Our models achieved up 
to 0.8 AUC and demonstrate the feasibility of forecasting BI risk in a 
critical care setting using patient features found in the EHR. Future work 
will focus on validating models with external datasets, measuring clin-
ical utility more accurately, and improving model performance by ac-
counting for temporal information in patient data. Overall, these results 
call for more extensive research in this promising, yet relatively 
understudied, area. 
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