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Abstract— Appearance changes due to weather and seasonal
conditions represent a strong impediment to the robust im-
plementation of machine learning systems in outdoor robotics.
While supervised learning optimises a model for the training
domain, it will deliver degraded performance in application
domains that underlie distributional shifts caused by these
changes. Traditionally, this problem has been addressed via the
collection of labelled data in multiple domains or by imposing
priors on the type of shift between both domains. We frame the
problem in the context of unsupervised domain adaptation and
develop a framework for applying adversarial techniques to
adapt popular, state-of-the-art network architectures with the
additional objective to align features across domains. Moreover,
as adversarial training is notoriously unstable, we first perform
an extensive ablation study, adapting many techniques known
to stabilise generative adversarial networks, and evaluate on a
surrogate classification task with the same appearance change.
The distilled insights are applied to the problem of free-space
segmentation for motion planning in autonomous driving.

I. INTRODUCTION

In this paper we revisit the prominent issue in field robotics
of appearance change under the influence of numerous
factors including time of day, weather, and seasonal variation.
Dealing with these changes becomes relevant in all modules
of the robotic perception system including localisation [1],
mapping [2] and obstacle detection [3]. Given the recent
adoption of high capacity deep neural networks for many
robotic vision tasks, the effects of condition variation have
been moderately alleviated with the assumption that the
labelled training data is diverse enough to capture the variation
expected during deployment. However, due to the expense and
impracticality of collecting labels across all environmental
conditions, the training data is commonly captured in a subset
of episodes which exacerbates the effects of appearance
change when deployed.

This work addresses the problem of appearance change
by reframing it in the context of unsupervised domain
adaptation. With this view, we are acknowledging that the
underlying distribution of our labelled training data may
differ considerably from unlabelled data encountered in the
application domain. Methods for domain adaptation have
already found success in robotics for transfer from 3D models
to laser data [4] or from simulation to real images collected
indoors [5]. Here we focus on developing a general and
flexible framework for adapting supervised machine learning
models to address appearance change for outdoor robotics
problems (as depicted in Figure 1).
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Fig. 1: Appearance change between training and test time of
machine learning systems. Adversarial domain adaptation (ADA)
provides a robust, systematic way to adapt the supervised task
to perform in the application domains without supervised label
information.

Traditional approaches for addressing the general domain
adaptation problem have focused on modelling the density
of the source and target distributions separately [6] or with
imposed prior structure [7]. However, density estimation itself
is a challenging issue, particularly for appearance, as it is
difficult to impose a prior without making assumptions on
the distribution. Recently, generative adversarial networks
(GAN) were proposed [8] as a framework to model any
arbitrary distribution where a generating network is opti-
mised to produce data indistinguishable from real data as
considered by a discriminating network. Building on the
flexibility of GANs, adversarial domain adaptation (ADA)
has demonstrated astonishing performance for unsupervised
domain adaption [9], [10].

Extending existing work [11], [10], we demonstrate a
straightforward framework for the adaptation of existing,
commonly used network architectures that allows to benefit
from recent progress in deep learning and crystallise the
principal factors of influence on target domain performance.
To address real world applicability of ADA with this schema,
we modify two popular network architectures, AlexNet [12]
and FCN-VGG16 [13] for the tasks of classification and pixel-
wise image segmentation respectively. When considered in
an outdoor context, both tasks are affected by change in
appearance caused by factors such as time of day or weather
conditions.

Due to the documented evidence of training instability of
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adversarial training procedures [8], [14], [15], we first use
place classification as a surrogate task to perform an extensive
evaluation of approaches for balancing our objectives and
stabilising the training process. The reduction in complexity
enables us to enumerate and explore various potential config-
urations of the network structure and training procedures to
identify the key factors of influence before scaling up to the
more challenging segmentation task. Particularly, we seek to
answer the following questions:

1) Trade-offs: How do we stabilise training and balance
supervised and adversarial objectives?

2) Architecture: How can we directly adapt existing
network architectures that are known to perform well?

3) Performance: Where does ADA work best and how do
larger appearance changes influence performance?

A series of experiments is presented to provide valuable
insights around the above questions facilitating the extension
to full image pixel-wise traversability segmentation commonly
used as an input to motion planning systems. In the final
segmentation task we see a significant performance increase
in the target domain by applying ADA over the FCN-
VGG16 [13] baseline. We benefit from applying the confusion
loss method for training generative adversarial networks [8]
and furthermore investigate a patch-wise discriminator schema
for the segmentation task. Finally, we also demonstrate the
method’s pertinence as a regulariser by observing performance
gains within the original domain as more unlabelled data
becomes available from similar domains.

II. RELATED WORK

In robotics, the problem of appearance change has long
been an issue for both laser and image data. Lai and Fox [4]
presented an exemplar based approach to align spin-image
features from web based 3D models to dense laser scan.
For visual appearance, the colour-constant transform [16] is
commonly applied directly on the image to achieve lighting
invariance for localisation [17], visual teach and repeat [1]
and segmentation [3]. Other works in localisation take a multi-
view approach by either exploiting temporal structure [18]
or by accumulating multiple experiences covering different
appearances [2] to avoid the issue of modelling appearance
change. The work of Neubert et al. [19] is the closest to our
approach where they learn to synthesise stored images into
the current season. By casting the appearance change issue
as an unsupervised domain adaption problem our approach
differs from the previous work as we do not require known
cross domain correspondences.

In the context of domain shift between training and test
data, Ben-David et al. [20] derived theoretical upper bounds
on a classifiers performance. While unsupervised domain
adaptation is an open research problem in theoretical and
practical terms [10], [21], recent successes have shown the
capability to train expressive, flexible models and address
high dimensional input distributions and therefore made first
steps in enabling real world applicability [9], [22].

The majority of recent successes have built on the empirical
superiority of Neural Networks that enable hierarchical
representation learning with respect to arbitrary combinations
of differential objectives. In the context of domain adaptation
we can minimise the mutual information between feature
representations and the underlying domain while maximising
relevance towards a supervised objective in the source domain.
Long et al [23] focus on minimising the Maximum Mean
Discrepancy for the feature distributions of multiple layers of
the network architecture. Sun et al. [24] align second order
statistics of layer activations for source and target domain.

Recently, the field has been extended with adversarial
methods to domain adaptation [11], [25] which have resulted
in strong performance benefits [10]. Adversarial unsupervised
domain adaptation relies on training a discriminator to
differentiate the domains underlying feature distributions
while competing against an encoder which attempts to
conceal the origin domain of input samples. While the loss
formulation for the discriminator stays consistent between
most approaches, different objectives have been applied for
the encoder, including the minimax formulation resulting from
a ‘gradient reversal layer’ [11], and the confusion loss [26]
that was found to address problems with vanishing gradients
based on discriminator saturation in Generative Adversarial
Networks (GAN) [8]. These methods have recently been
employed to address tasks in medical image segmentation
[27], gaze estimation [9] and transfer for reinforcement
learning [5].

III. ADVERSARIAL DOMAIN ADAPTATION

The principal goal of ADA is to maximise the performance
of a supervised task not only in the source domain - where
labels are available - but also in the unlabelled target domain.
As a domain shift potentially exists between training and
application domains, the approach tries to align the marginal
feature distributions independent of label for both domains
to achieve its goal.

Therefore, we train the supervised task module and encoder
to maximise the likelihood of source labels given the source
inputs. Additionally, to adapt the model towards performing
well in the target domain, we train the encoder to confuse a
discriminator which tries to estimate the domain of a data
sample and serves as density model.

The adversarial training process works towards aligning the
marginal feature distributions of source and target domains.
With both domains sharing partial structural similarity, this
also implicitly aligns the conditional distributions given the
labels. Consequently, by aligning the distributions, ADA
increases the performance of a supervised module with
decision boundaries optimised for the source domains as
displayed in Figure 2.

An existing network architecture is divided into two
functional blocks referred to as encoder and supervised
task as represented in Figure 3. Let E : Rn → Rm be
the encoder that transforms an input image ii into the feature
representation fi, which subsequently serves as input for both



Fig. 2: An illustration of domain shift where the distribution
of the unlabelled target domain is misaligned with the labelled
source domain but both distributions share structural similarities. By
aligning the two domains the decision boundary of the supervised
task (denoted in colour) better aligns across both domains.

the supervised task S : Rm → Rc producing label li and the
adversarial domain discriminator D : Rm → R computing
domain label di. To reduce the memory footprint of the model,
we can remove the discriminator at test time as it is only an
auxiliary module to determine the encoder objective.

The model is optimised to simultaneously minimise su-
pervised and adversarial losses, respectively LS and LA.
The adversarial loss is furthermore divided into the loss
applying to the encoder LAE and discriminator LAD (see
Equations 1 and 3). The supervised objective is minimising
the cross-entropy loss from Equation 2. While the adversarial
encoder and discriminator losses both depend on encoder
parameters θE and discriminator parameters θD, each loss
is only applied to the corresponding module to realise the
adversarial training procedure. The filters of the supervised
module θS are only optimised with respect to the supervised
loss on data only from the source domain. The factor λ
determines the relative strength of supervised and adversarial
objective. In this arrangement, the encoder is encouraged to
extract features that balance the relevance of the supervised
task and the maximisation of domain invariance.

L(θS ,θD,θE) = LS(θS ,θE) + λLA(θD,θE) (1)
LS(θS ,θE) = El=S(E(i,θE),θS),i∼S [− log(l)] (2)
LA(θD,θE) = LAD(θD) + LAE(θE) (3)
LAD(θD) = Ef=E(i),i∼S [− log(D(f, θD))] + (4)

Ef=E(i),i∼T [− log(1−D(f, θD))]

The adversarial encoder loss LAE is characterised in-
dependently of the discriminator loss with two common
formulations considered in this work. As with the original
generator loss in the GAN framework [8], the encoder in
ADA can be trained to maximise the discriminators domain
confusion [26]:

confusion loss :
LAE(θE) = −Ef=E(i,θE),i∼S [log(1−D(f))](5)

−Ef=E(i,θE),i∼T [log(D(f))].

Contrary to the GAN framework, this loss applies to
samples from both domains instead of only applying to
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Fig. 3: Schema for adversarial domain adaptation. Given a well-
established network architecture, we determine a split layer and pass
the activations of that layer additionally to a discriminator module.
While the supervised module is only applied to source data, both
domains share the same encoder.

generated samples. An alternative is the minimax formulation
which simply negates the discriminator loss [21], [9]. When
applied with gradient reversal [11], the minimax loss can be
expressed as:

minimax loss :
LAE(θE) = −LAD (6)

= Ef=E(i,θE),i∼S [log(D(f))]

+Ef=E(i,θE),i∼T [log(1−D(f))].

Both the confusion and minimax losses are evaluated in
Section IV-A.

IV. ABLATION STUDY

Unsupervised domain adaptation is an inherently complex
task as the lack of labelled information complicates the
alignment between feature representations from source and
target domain. While a high capacity encoder such as a
deep neural network is per se capable of modelling even
complex relations, the process of alignment might remove
important information if it simplifies the alignment. The
difficulty of the process is proportional to the difference
between the underlying source and target domains. The field
of autonomous driving presents a strong opportunity here as
the use of overlapping routes can provide a partial alignment
which simplifies the overall learning process.

We focus for our main evaluation on the surrogate task of
classification and extend the evaluation subsequently to image
segmentation with focus on path proposals for autonomous
driving [28]. The hyperparameter study is built on a small
subset of labelled data from the publicly available Oxford
RobotCar Dataset consisting of over 1000 km of driving data
with corresponding images, LIDAR, GPS and INS data [29].

The principal experiments were performed based on 9,000
training and 1,000 test images for each domain and 20 distinct
location classes. We focus on the adaptation between overcast
weather to sunny as displayed in Figure 4.

The network architecture builds on AlexNet [12] and
while we adapt the split between encoder and classifier /



Fig. 4: Example images for source domain: overcast (top), and
target domain: sunny (bottom).

discriminator, the overall pipeline from image to location label
is kept the same for all experiments, making this approach
easy to apply to other common architectures such as FCN-
VGG [13], which underlies the segmentation experiments.

We determine the mean classification accuracy PT and
standard deviation σ for all tested hyperparameter configu-
rations over 5 runs to investigate for GAN-typical training
instability. All experiments are performed on an NVIDIA
GTX TITAN GPU. All evaluations included in this work are
run with the best found set of hyperparameters for the fixed
parameters in each test.

The following subsections now address the questions posed
in Section I.

A. Trade-offs: How do we stabilise training and balance
supervised and adversarial objectives?

One of the most common issues with ADA is the potential
inability to learn task-relevant and informative features as the
domain confusion loss tries to reduce discriminator perfor-
mance and can result in degenerate feature representations.

1) Stabilising: Pretraining and Supervised Warm-up: Ini-
tialising network architectures via pretraining of convolutional
layers on large and diverse datasets is generally known to
speed up the learning process as well as leading to better
generalisation [30]. Furthermore, in the context of ADA,
it can be helpful to include a warmup phase where only

Supervised Warmup Pretraining Both

PT [%] 52.68 72.03 82.03
σT [%] 6.57 4.88 2.09

TABLE I: Evaluation of performance for network initialisation
and warmup phase. The combination of both approaches leads to
significant improvement

the supervised task loss is used before switching on the
adversarial loss.

We evaluate pretrained convolutional layers for AlexNet
(based on ImageNet classification task [31]) as well as a
supervised warmup phase of 15 epochs which, based on a
small test run, has been found to work well in a large range
of evaluation settings.

Table I shows that for the given small number of samples,
supervised warmup on its own does not suffice for a strong,
classifier relevant feature representation therefore we build
our following evaluation on pretrained convolutional layers
as well as a 15 epochs supervised warmup phase.
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Fig. 5: Effect of different encoder loss formulations on the gradients.
The confusion loss results in significantly stronger gradients against
a well performing discriminator (close to 1 for source data and 0
for target data).

2) Balancing: Adversarial Loss: While the discriminator
loss stays fixed across most recent work on ADA based on
Equation 4, the choice of the encoder loss varies and has
been shown to have significant influence on convergence
properties and stability of training in Generative Adversarial
Networks [15], which have strong similarities with ADA. The
two main generator objectives to consider are the minimax
formulation (negated discriminator loss) which is equal to
the gradient reversal layer [11] and the confusion loss [26],
which has found to prevent vanishing gradients with saturated
discriminator but displays higher variance in the gradients
[15]. Additionally, the factor λ is used to vary the relative
strength of the adversarial loss in the overall training process
to balance both objectives.

Figure 5 shows minimax and confusion loss and gradients
in dependence to the discriminator performance on source
and target domain data. When the discriminator achieves high
performance (close to 1 for source data and 0 for target data),
the confusion loss results in significantly stronger gradients
which will support a more stable adversarial training process.

The evaluation for the minimax loss in Table II begins with
considerably lower weights as higher values for λ as 10−2



Loss Minimax Loss
λ 10−2 10−3 10−4 10−5 10−6 10−7 10−8

PT [%] 59.68 55.22 64.35 73.28 73.66 76.32 68.76
σT [%] 2.05 3.40 4.73 3.76 1.89 2.13 3.62

Loss Confusion Loss
λ 101 100 10−1 10−2 10−3 10−4 10−5

PT [%] 76.04 82.03 71.89 71.95 71.28 53.93 37.77
σT [%] 1.14 2.09 2.71 2.00 1.64 29.06 29.71

TABLE II: Evaluation of performance for minimax and confusion
loss with variation of loss weighting. Optimal performance is
achieved with the confusion.

Layer 1 2 3 4 5 6 7

PT [%] 72.25 74.14 78.93 82.03 79.37 79.72 78.63
σT [%] 1.75 1.71 2.90 2.09 1.07 0.98 0.84

TABLE III: Evaluation of performance for the variation of the
split layer between encoder and classifier/discriminator. The optimal
split lies in the middle of the network. While a split to early in the
architecture can lead to low performance, moving the split further
towards the last layers only slowly affects performance.

Layer 3 4 5
Adapted
Capacity -2 0 2 -2 0 2 -2 0 2

PT [%] 73.79 76.30 76.52 74.47 82.03 80.55 79.00 81.06 80.37
σT [%] 6.08 3.94 3.17 2.62 2.09 1.94 0.67 0.53 1.66

TABLE IV: Evaluation of performance for adapting the discrimi-
nator capacity. For the optimal split layer, the best performance is
achieved by not separately changing the discriminator architecture.

resulted in significant training instability risking the collapse
of the target performance to chance ( 5%). We have found
the confusion loss significantly easier to apply as it renders
the game between the adversarial modules more stable as
displayed in Figure 5. The original minimax-loss formulation
was successfully employed in a number of recent works
[11], [10], however, we have found the tuning process more
complex and obtained significantly stronger results based on
the confusion loss.

B. Architecture: How can we directly adapt existing network
architectures that are known to perform well?

When applying ADA to a new task, one can greatly benefit
from applying existing network architectures that have been
optimised and proven to perform well on similar tasks. This
section addresses how to adapt existing architectures easily
to incorporate the additional discriminator module.

The expressiveness and flexibility of encoder and discrim-
inator directly influence the performance of our domain
adaptation task. While the flexibility of the discriminator
limits the types of domain discrepancies that can be detected,
the encoder structure affects the efficiency of concealing the
originating domain from the discriminator while generating
relevant feature distributions for classification.

1) Choice of Split Layer: The following evaluation focuses
in particular on AlexNet [12], which we adapt by providing

the feature output of a particular layer additionally to
a discriminator module. Following Figure 3, the encoder
module now includes all layers before the split layer and
is shared for source and target domain. We duplicate the
architecture following the split layer for supervised module
and discriminator and adapt the discriminator to output a
single value per input as domain classifier. By varying the split
layer with this approach we directly influence the capacity
ratio between encoder and discriminator while keeping the
overall number of layers for the supervised task fixed.

The best possible split results in the middle of the network
as both - encoder and discriminator - have enough capacity
to fulfil their respective tasks (see Table III). An earlier split
layer significantly reduces the encoders capacity to minimise
mutual information with respect to the domain while encoding
classification-relevant features. A later split decreases the
expressiveness of the discriminator’s density model such that
less variations can be detected.

2) Capacity of Discriminator: While the choice of split
layer as displayed above has strong influence on the effective-
ness of domain adaptation, the approach might benefit from
separately adapting the discriminator capacity to improve do-
main discrimination while keeping the rest of the architecture
fixed. In this context, we now evaluate the performance with
respect to varying capacity of the discriminator by either
adding or removing 2 fully connected layers before the final
layer.

Table IV presents that changing the capacity with the best
split layer configuration (layer 4) leads to no improvement and
it can be seen for all split layer configurations that trimming
layers from the discriminator reduces target performance as
the discriminator expressiveness is diminished. Furthermore,
extending the discriminator leads to lowered accuracy as the
model might overfit to domain discrepancy between both
domain’s training sets.

C. Performance: Where does ADA work best and how do
larger appearance changes influence performance?

To provide bounds for the performance of the approach
we evaluate the classification accuracy of the classifier only
trained on training data from the source domain as lower
bound and only with training data from the target domain as
upper bound. Note, all models are initialised with pretrained
convolutional layers pretrained on ImageNet [31].

As the complexity for unsupervised domain adaptation
directly correlates with the difference between the distribu-
tions, we evaluate benefits of the approach on the following
source-target pairs Sunny - Overcast and Day - Night with
the latter representing a significantly more complex transfer
as visualised in Figure 6.

By increasing the domain shift occurring between source an
target data, we can investigate limitations of the ADA. While
the approach leads to performance gains in both scenarios,
it is clearly better suited to address domains with limited

∗Performance with available training labels on the target domain. This
serves as upper bound for performance.



Fig. 6: Example images for source domain: day (top), and target
domain: night (bottom).

Classification

domains AlexNet AlexNet w
ADA

AlexNet w
target labels

∗

PT [%] overcast-sunny 67.95+−1.02 82.03+−2.09 (87.96+−1.40)
PT [%] day-night 26.79+−4.90 30.21+−4.94 (90.42+−1.04)

Free-Space Segmentation

FCV-VGG16 FCN-
VGG16

w
patch-ADA

FCN-
VGG16
w ADA

FCN-
VGG16
w target
labels ∗

PT [%] 75.12+−0.76 67.68+−4.25 85.27+−1.03 (93.94+−0.84)

TABLE V: Evaluation of the performance gains based on ADA for
the surrogate classification task and free-space segmentation in the
context of autonomous driving. ADA leads to significantly higher
accuracy in all transfer domains and approaches in scenarios with
minor shift towards the performance with known target labels. In
the day-night scenario based on a strong difference in appearance,
the approach only leads to minor benefits. The segmentation task
measures performance PT as mean average precision.

shift, such as the overcast-sunny scenario, and performs
significantly closer to the upper bound obtained from training
on labelled target data as displayed in Table V.

1) Improving Performance in Source Domain: To fully
evaluate the suitability of ADA for long-term robotics

applications, this section aims at investigating the source
performance PS as the original labelled domain is still
of relevance. In addition to improving target performance,
ADA can acts as a regulariser to improve generalisation and
test performance in the source domain as represented in
Table VI. This gain in performance is only possible as long
as both domains have significant structural similarities and
the dominant variations are shared by both domains. With
increasing discrepancy between the domains, it can however
reduce performance on the source domain as it might diminish
information that helps it to generalise in source but not in the
target domain, as can be seen with respect to the day-night
adaptation in Table VI.

domains trained on source ADA

PS [%] overcast-sunny 87.83+−1.56 90.82+−1.45
PS [%] day-night 90.04+−3.01 89.16+−1.78

TABLE VI: Evaluation of the regularising effect of ADA on
source performance. For minor appearance difference between the
domains, the approach can improve source performance by acting as
a regulariser. However, under stronger shifts such as the day-night
transfer it can lead to reduced source performance.

V. SEGMENTATION TASK

Following the optimisation for our surrogate task, we
now apply the distilled insights for optimising ADA to the
task of free space segmentation as possible input data for
motion planning systems. We use the fully convolutional
FCN-VGG16 [13] architecture, which is split - similar to the
classification tests - into encoder and classifier/discriminator.
We set the split layer towards the middle of the architecture
after the 4th maxpool operation (see [13] for the exact archi-
tecture) with fixed capacity of the discriminator architecture
and apply the confusion loss.

Both source and target datasets include 1000 training and
100 test images based on a midday to early evening adaptation
scenario such that the domain shift is intuitively smaller than
in the full day to night transfer from section IV-C. The
segmentation labels are generated for free-space/obstacles
following the approach of Barnes et al [28].

The domain adapted segmentation network performs sig-
nificantly better than the basic supervised approach and is
able to bridge the gap towards performance with available
labels in the target domain as displayed in Figure 7.

As the segmentation output of the approach has a limited
receptive field for each pixel location we additionally evaluate
a patch-wise discriminator in line with research on image-
to-image translation with conditional Generative Adversarial
Networks (cGAN) [32]. This approach enables to keep the
size of the receptive field fixed between the supervised and
adversarial task. While Isola et al [32] have found the patch
discriminator to work better for their task based on cGANs,
it resulted in reduced accuracy for our application on ADA.



FCV-VGG16 FCV-VGG16 w ADA

FCV-VGG16 w patch-ADA FCV-VGG16 w target labels∗

Fig. 7: Examples of segmentation results in the target domain.
Green and red represent free-space and obstacles respectively. ADA
leads to significant performance gains for the unsupervised target
domain while patch-ADA fails to increase accuracy. The scenario
with available target labels serves as upper bound for the performance
when supervised information would be available.

VI. LIMITATIONS OF UNSUPERVISED ADVERSARIAL
DOMAIN ADAPTATION

While we have shown domain adaptation to be beneficial in
many scenarios, it must be marked that the current approach
finds its limitations when the differences between source and
target domains are too severe. As exemplified by the day
to night transfer scenario, the approach still leads to some
improvement but with stronger variation in the underlying
domains, the adversarial encoder loss might even lead to
reduced performance if weighted improperly against the
supervised loss. If the adversarial loss dominates in such
situations the encoder features might lose more information
relevant for the supervised task.

Finally, to overcome the limitation of significant domain
shifts, semi-supervised approaches can be employed to incor-
porate further structure and align the conditional distributions
over feature representations given labels comparable to [26].

VII. DISCUSSION

Adversarial training frameworks such as ADA tend to
be notoriously hard to train. However, a limited number
hyperparameters has strong influence for a given problem
and can be adapted to stabilise and optimise the training
process.

While the detailed performance depends on architecture
and task, we found the principal factors for optimising
performance to be:

• Using relevant initialisation including supervised
warmup helps to guide the training process.

• Applying the confusion loss for the encoder enables
better balancing and stabilising.

• The optimum position for the split layer is mid net-
work. Particularly the application in earlier layers can
significantly reduce the benefits.

Additional to the main evaluation above, we tested the
influence of other advancements from the related GAN
framework. It was found that neither mini-batch discriminator
[33] nor discriminator noise [33] brought significant advances.
This is justified as the former addresses generator mode
collapse which in the context of ADA will be less of a
problem as the supervised loss guides towards more versatile
solutions. The latter seems to have negligible influence in
comparison to the GAN framework as the discriminator’s
task is of higher complexity and with reasonable loss settings,
the risk of the discriminator saturating is minimal.

As a side note, we find it helpful in this adversarial
training framework to apply gradient clipping to prevent
abrupt instabilities when one of the adversarial models finds
a strong exploit.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we cast the common challenge of appearance
change in outdoor robotics as an unsupervised domain
adaptation problem and extend recent adversarial paradigms
for the adaptation of popular, existing architectures leading
to performance benefits in unlabelled target domains. While
instabilities of adversarial training can inhibit the extension
to large scale problems, our extensive tests on a surrogate
task with moderate complexity expose the most significant
factors of influence and enable application on the full-scale
path segmentation task for autonomous driving. With this
straightforward framework we hope to pave the way for
further application on real world tasks, in particular in
the context of autonomous mobility where strong structural
similarities of feature distribution can exist between different
source and target domains, e.g. based on spatial overlay of
driven routes and terrains.

Beyond dealing with appearance change we see many
potential applications of ADA in robotics where sensor
modalities may change, or even transferring models from
a simulated virtual environment to improve their performance
in the real world.

Beyond dealing with appearance change we see many
potential applications of ADA in robotics, whether it be
changes in sensor modalities, or transferring models from a
simulated virtual environment to improve their performance
in the real world.

Lastly, as the alignment of marginal distributions was
observed to be significantly more successful between similar
domains, there is a strong opportunity to explore curriculum



based variations of ADA with a focus on gradual alignment
in continually changing environments. The approach is
of relevance in particular for scenarios with continuous
application of mobile platforms as well as in lifelong learning
tasks.
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