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Abstract

This document contains the mathematical theory behind the Weibull-Cox Matlab function
(also called the Weibull proportional hazards model). The likelihood function and it’s partial
derivatives are given. The Weibull-Cox model assumes a traditional Cox proportional hazards
hazard rate but with a Weibull base hazard rate (instead of Breslow’s estimator which is
implicitly assumed in most implementations of the Cox model). The standard Breslow-Cox
model is ill suited to predicting the event time for new individuals. For this purpose the Weibull-
Cox model can provide predictions with error bars (given by the standard deviation) along with
the usual regression coefficients, survival functions and hazard rates. Requires Optimisation
toolbox. Built on Matlab 8.1.0.604 (R2013a).

Background

The Breslow-Cox model is arguably the most popular method of analysing survival data. Breslow’s
non-parametric estimator of the baseline hazard rate is highly flexible at capturing the time effects
in the hazard rate. However it not a smooth estimator (hence the steps in survival curves). It also
results in an event time probability density that is not correctly normalised and which consequently
cannot be used to make predictions (given by the expected time). A Weibull hazard rate solves
both of these problems.

To see this explicitly consider Breslow’s estimate of the cumulative hazard rate

Λ̂0(τ) =
∑
τi≤τ

1∑
j∈R(τi)

eβ̂·xj
(1)

which and was originally presented in the discussion section of ?. The regression parameters β̂ are
maximum likelihood estimators obtained from the partial likelihood. We assume we have observed
survival data D = {(τ1,∆1), . . . , (τN ,∆N )} for i = 1, . . . , N individuals where τi > 0 is the time
until an event and ∆i = 0 indicates right censoring (assumed independent) and ∆i = 1 indicates
the primary event occurred for individual i.

Once β̂ and Λ̂0(τ) have been inferred from observed data the event time density corresponding
to an individual with covariates x∗ is

p(τ |x∗, β̂, Λ̂0) = λ0(τi)e
β·x∗

exp(−Λ0(τ)eβ·x
∗
). (2)
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However, the event time density is not normalised. To see this consider∫ ∞
0

ds p(s|x∗, β̂, Λ̂0) = 1− exp(−Λ̂0(s)eβ̂·x
∗
)
∣∣∣
s=∞

. (3)

Correct normalisation requires
lim
τ→∞

Λ(τ) =∞, (4)

a condition that is not met by Breslow’s estimator since the largest value (??) can take occurs after
the largest observed time maxi(τi) and which we denote with Λ̂∞0

Λ̂∞0 =
∑
τi

1∑
j∈R(τi)

eβ̂·xj
<∞. (5)

Nevertheless survival curves can be generated according to

S(τ |x∗, β̂, Λ̂0) = exp(−Λ̂0(τ)eβ̂·x
∗
). (6)

Weibull-Cox model definition

We choose a Weibull base hazard rate

λ0(τ) = (ν/ρ)(τ/ρ)ν−1 (7)

where ρ > 0 is a scale parameter and ν > 0 is a shape parameter. It follows that the cumulative
base hazard rate is Λ0(τ) = (τ/ρ)ν . Note that the normalisation condition (??) is satisfied. The
hazard rate for individual i is

πi(τ |xi, ν, ρ,β) = λ0(τ)eβ·xi , (8)

where xi ∈ Rq is a vector of covariates. Using Bayes’ theorem the posterior over parameters is
p(β, ρ, ν|D) ∝ p(D|β, ρ, ν)p(β)p(ρ)p(ν). The data likelihood is given by

p(D|β, λ0) =

N∏
i=1

[λ0(τi)e
β·xi ]∆i exp(−Λ0(τ)eβ·xi). (9)

We can then define the log likelihood as

L(β, ρ, ν) = − 1

N
log p(β, ρ, ν|D)

= − 1

N

∑
i:∆i=1

[log λ0(τi) + β · xi] +
1

N

N∑
i=1

Λ0(τi)e
β·xi

− 1

N
log p(β)− 1

N
log p(ρ)− 1

N
log p(ν) (10)

where log λ0(τ) = log ν− log ρ+ (ν−1) log(τ/ρ). We assume p(β), p(ρ) and p(ν) are constant (and
therefore improper) priors. The optimal values of the parameters are given by numerically solving

{β̂, ρ̂, ν̂} = argmaxβ,ρ,νL(β, ρ, ν). (11)
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The gradient based fminunc optimisation function is used. Partial derivatives can be found below.

Finally, error bars for βr can be obtained from
√

(NH)−1
rr . This gives the standard deviation of

that parameter under a Gaussian approximation of the posterior. The matrix H is defined below.
Error bars for ρ and ν are not defined under a Gaussian approximation since by definition both
parameters are non-negative. In the implementation both parameters are reparameterised such
that they take real values.

Predictions

Predictions can be made by computing the mean (and variance) of the event time density corre-
sponding to a new individual with covariates x∗

〈τ〉 =

∫ ∞
0

ds sλ0(s)eβ̂·x
∗

exp(−Λ0(s)eβ̂·x
∗
). (12)

The hazard rate and survival function are respectively given by

π(τ |x∗, β̂, ρ̂, ν̂) = (ν̂/ρ̂)(τ/ρ̂)ν̂−1eβ̂·x
∗

(13)

S(τ |x∗, β̂, ρ̂, ν̂) = e(τ/ρ)νeβ̂·x∗

. (14)

Usage

A model is fit with the model = wc_train(X, t, E) function where X is a matrix of covariates,
t is a vector of the event times and E is a vector of indictor variables. Type help wc_train for
full details. The function returns a structure which contains the inferred values of the parameters
along with error bars (standard deviations).

Once a model structure has been trained predictions can be made with the wc_predict function.
Survival curves and hazard rates can be generated using wc_survival and wc_hazard respectively.
Use help for further information. An example is given in wc_example.m.

Example

This is a one dimensional dataset with N = 25 that were generated synthetically. Results are
presented in Figures ??, ??, and ??. We can also compare the results to a standard Breslow-Cox
analysis. Note that we do note expect β to be the same in both cases. We will load a standard
matlab example dataset:

cd(matlabroot)

cd(’help/toolbox/stats/examples/’)

load readmissiontimes

X = [Age, Sex, Weight];

[b,logl,H,stats] = coxphfit(X,ReadmissionTime,’censoring’,Censored);

We can then run the Weibull-Cox model. Note that coxphfit uses different censoring labels.

model = wc_train(X, ReadmissionTime, 1 - Censored);

The β coefficients with standard deviations are
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Figure 1: Plot of the observed event times as a function of the covariate x. The white circles
represent censoring events. Note that an ’end of trial’ cutoff was imposed at 6 years. The
black line is the predicted time as a function of the covariate obtained using (??). It can be
interpreted as an inferred function relating the event times to the covariates. The grey area
represents plus and minus one standard deviation.

Breslow-Cox: beta std Weibull-Cox: beta std
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Partial derivatives

We require partial derivatives of the log likelihood for the Weibull-Cox model. These are

∂

∂βs
L(β, ρ, ν) = − 1

N

∑
i:∆i=1

xis +
1

N

N∑
i=1

Λ0(τi)xise
β·xi (15)

and

∂

∂ρ
L(β, ρ, ν) =

N1

N

ν

ρ
+

1

N

N∑
i=1

∂Λ0(τi)

∂ρ
eβ·xi (16)

∂

∂ν
L(β, ρ, ν) = −N1

N

1

ν
− 1

N

∑
i:∆i=1

log(τi/ρ) +
1

N

N∑
i=1

∂Λ0(τi)

∂ν
eβ·xi (17)

where we have used

∂

∂ρ
log λ0(τ) = −ν

ρ
(18)

∂

∂ν
log λ0(τ) =

1

ν
+ log(τ/ρ) (19)
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Figure 2: A plot of the survival function for an individual with x∗ = 1 obtained from (??).
One can see the survival probability drops rapidly around t = 5 which is consistent with
Figure ??.
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Figure 3: A plot of the hazard function for an individual with x∗ = 1 obtained from (??).
One can see the hazard rate increases rapidly around t = 5 which is also consistent with
Figures ?? and ??.
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and

∂Λ0(τ)

∂ρ
= −ν

ρ

(
τ

ρ

)ν
(20)

∂Λ0(τ)

∂ν
= (log τ − log ρ)

(
τ

ρ

)ν
. (21)

Since we require ρ > 0 we write it in the form

ρ = (1 + ρLB + exp(ρ̃)) (22)

where ρ̃ ∈ R and ρLB ≥ 0 is a lower bound on ρ that can be set manually. This formulation allows
the use of unconstrained optimisation functions to be used. However the partial derivatives now
become

∂L
∂ρ̃

=
∂L
∂ρ

∂ρ

∂ρ̃
with

∂ρ

∂ρ̃
=

eρ̃

1 + eρ̃
. (23)

We also require ν > 0 and the same formulation is used.

Second order partial derivatives

∂2

∂βr∂βs
L(β, ρ, ν) =

1

N

N∑
i=1

Λ0(τi)xisxire
β·xi (24)

and

∂2

∂ρ2
L(β, ρ, ν) = −N1

N

ν

ρ2
+

1

N

N∑
i=1

[
ν(ν + 1)

ρ2

(
τi
ρ

)ν]
eβ·xi (25)

∂2

∂ν2
L(β, ρ, ν) =

N1

N

1

ν2
+

1

N

N∑
i=1

(log τi − log ρ)2

(
τi
ρ

)ν
eβ·xi . (26)

Finally we require

∂2

∂ν∂ρ
L(β, ρ, ν) =

∂2

∂ρ∂ν
L(β, ρ, ν) =

N1

N

1

ρ
− 1

N

N∑
i=1

[
ν

ρ
(log τi − log ρ)

(
τi
ρ

)ν
+

1

ρ

(
τi
ρ

)ν]
(27)

∂2

∂ρ∂βs
L(β, ρ, ν) = − 1

N

ν

ρ

N∑
i=1

xis

(
τi
ρ

)ν
eβ·xi (28)

∂2

∂ν∂βs
L(β, ρ, ν) =

1

N

N∑
i=1

(log τi − log ρ)xis

(
τi
ρ

)ν
eβ·xi (29)
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Since we have written the parameters ρ and ν in the form (??) the second order partial derivatives
are in practice given by

∂2L
∂ρ̃2

=
∂2L
∂ρ2

(
∂ρ

∂ρ̃

)2

+
∂L
∂ρ

∂2ρ

∂ρ̃2
with

∂2ρ

∂ρ̃2
=

eρ̃

(1 + eρ̃)2
, (30)

∂2L
∂ρ̃∂ν̃

=
∂2L
∂ν̃∂ρ̃

=
∂2L
∂ρ∂ν

∂ρ

∂ρ̃

∂ν

∂ν̃
, (31)

∂2L
∂ρ̃∂βs

=
∂2L
∂ρ∂βs

∂ρ

∂ρ̃
and

∂2L
∂ν̃∂βs

=
∂2L
∂ν∂βs

∂ν

∂ν̃
. (32)
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